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1 Introduction  

1.1 Basic Definitions  

Def. 1.1.1  A graph  is a -tuple where

 is a finite set of vertices,

 is a finite set of edges with ,

 is an incidence function such that

Remark.  Intuitively,  counts the number of times  is incident to . 

For edge  with ,  and  for all other . 

If  is a loop on , then  and  for all other .

Def. 1.1.2  Recall the following basic definitions from Math23/49: 

Vertices  are adjacent if for some , 

 where , or

 where , i.e.,  is a loop. 

A vertex  and an edge  are incident in  if . 

The degree of a vertex  is . 

The ends of an edge  are  such that . 

Remark.  To see why we define a graph like this, consider the planar dual  of a graph .

If  is the primal planar graph with a fixed planar embedding, then  is 

the dual planar graph with  being the faces of the embedding of  and  the incidence function 

determined by adjacent faces. 
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We see that  and  have different vertex sets and different incidence 

functions but share the same edge set. Our Def. of a graph makes it easier to work with the dual 

graph.

In this course, unless otherwise specified, we usually deal with simple graphs.

Def. 1.1.3  A simple graph is a graph with no parallel edges or loops.

1.2 Connectedness  

Def. 1.2.1

A graph  is connected if  and there is a walk from  to  for any . 

Two vertices  are connected if there is a walk from  to . 

In other words,  is connected iff  and every pair of vertices is connected in .

Remark. 

We use walks instead of paths here because joining two walks always produces a walk but 

joining two paths doesn't necessary give you a path.

We want  because of Prop. 1.5.3; allowing the empty graph to be connected 

violates this Def..

Analogy: Every integer can be uniquely expressed as the product of prime numbers, 

and  is not considered as a prime number.

Prop. 1.3.2  Connectedness is an equivalence relation: reflexive, symmetric, transitive.

Proof.  By intuition.  

1.3 Subgraph and Induced Subgraph  

Def. 1.3.1  A subgraph  is a graph  where  and  is 

the restriction of  to the domain .

Def. 1.3.2  If , then the subgraph  induced by  is the subgraph  where 

 consists of all edges with both ends in .

Remark.  Informally, a subgraph of  is obtained by removing edges and/or vertices arbitrarily; 

an induced subgraph is obtained by just removing vertices, i.e., an edge in  must also be an 

induced subgraph of , given both of its vertices exist in the induced subgraph.

Prop. 1.3.3  Let  be a connected graph.  Then there is a sequence  of connected 

graphs so that  and, for each , the graph  has  vertices and is an 

induced subgraph of .
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Proof.  Let  be maximal so that there exist distinct vertices  of  for which 

 induces a connected subgraph of  for each . If , we are 

done. If  induces a component of , then  is disconnected. Thus, there is some edge  with 

an end in  and an end  outside of . It follows that the subgraph  induced by  is 

connected, since  is connected in  to some  and 's are pairwise connected in . Setting 

 gives a contradiction to the maximality of .  

1.4 Component  

Def. 1.4.1  A component of  is an induced subgraph of the form  where  is an equivalent 

class under connectedness.

Intuitively, the following Prop. tells us that components are maximal subgraphs.

Prop. 1.5.2  A graph  is a component of  iff  is a maximal connected subgraph of , that 

is,  is a connected subgraph of , and there is no connected subgraph  of  such that  is a 

subgraph of  and .

Proof.  

 : Let  be a graph and  be a component of . Suppose for a contradiction that exists a 

connected subgraph  of  such that  is a subgraph of  and . Since  is induced, 

, so we must have , i.e., there 

exists some . Since  is not in the same equivalence class as the vertices in 

, it follows that  is not connected in  or in  to any vertex in . Thus,  is 

disconnected, a contradiction. It follows that  is a maximal connected subgraph.

 : Let  be a maximal connected subgraph of . If there exists an edge  with ends 

in  but , then the subgraph obtained from  by adding this edge  is also connected, 

contradicting the maximality of . Therefore,  is an induced subgraph of . By connectedness, 

the vertices in  are pairwise connected in . If there is some  that is 

connected in  to a vertex in , then let  be a -path where . Clearly,  is 

connected and not equal to , which again contradicts the maximality of . Therefore,  is 

an equivalent class under connectedness and  is a component by definition.  

1.5 Union and Direct Sum of Graphs  

Def. 1.5.1  Let  and . 

Suppose that the subgraph obtained from  by restricting to  and  is the same 

as the subgraph obtained from  by restricting to  and , (i.e.,  and  

"agree" on their common vertices and edges), then the union  is defined to be the graph 

with vertex set , edge set , in which a vertex  is incident to an edge  iff  and  

are incident in either  or . 
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When  and  are disjoint, the union  is called the direct sum of  and  

and is written .

Example 1.5.2 [Union]

Prop. 1.5.3  Every graph is uniquely the direct sum of connected (sub)graphs.

Proof.  By intuition.  

1.6 Subtraction (Removing Edges or Vertices)  

Def. 1.6.1  For a set  and a graph , write  for the subgraph of  

with vertex set  and edge set , where  is the set of edges that are either in  or 

incident with a vertex in .

Example 1.6.2 [Subtraction]  Observe when we remove an vertex, we must also remove all the 

edges that are incident to it.

1.7 Other Definitions  

Def. 1.7.1  (It is easier to consider paths and circuits as graphs rather than some "part" of a 

graph satisfying certain properties when talking with connectedness later.)
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A path is a graph when edges and vertices form a path. 

The ends of a path are its degree-  vertices (or its only vertex if the path has no edges).  

A circuit is a graph when edges and vertices form a circuit. 

Def. 1.7.2  (We extend the definition of a path to sets of vertices.) 

Given disjoint sets of vertices  in a graph , an -path is a path with one end in , 

the other end in , and all its other vertices in . 

Define an -path or -path similarly where  are single vertices. 

Def. 1.7.3  (Cut edge, cut vertex, and separator.) 

A set  separates  and  in  if there is no -path in .  

 is a cut edge or bridge if there are vertices  of  that are not separated by  but are 

separated .  

A cut vertex of  is a vertex  such that there is some pair  not separated by  but 

separated by . 

1.8 -Connectedness  

Def. 1.8.1  Let , a graph  is -connected if  and there does not exist a set 

 with  such that  is disconnected.

Remark.  Intuitively, a graph is -connected when we cannot remove less than  vertices to make 

the graph disconnected. Note we also need the graph to have enough vertices since saying a graph 

with  vertices is -connected is meaningless.

A graph is -connected when it is connected, except when  (it is still a connected 

graph) as it violates the size constraint.

A graph is -connected when it has no cut vertex, except when  * - * (it does not have 

a cut vertex) as it violates the size constraint.

Example 1.8.2
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Def. 1.8.3  Let , a graph  is -edge-connected if there does not exist a set  with 

 such that  is disconnected.

Remark.  Intuitively, a graph is -edge-connected when we cannot remove less than  edges to 

make the graph disconnected.

Prop. 1.8.4  If  is -connected, then  is -edge-connected.

Proof.  Suppose not. Let  be a -connected graph so that  is disconnected for some 

 with . Let  be a component of . Note that  (by 

definition of -connectedness) and  (as  is only one of the components in 

). 

We claim there exists some pair  of vertices with  and  so that no edge 

in  has ends  and . Suppose not, i.e., there is an edge in  joining every pair of  and 

. Then to disconnect  from  using , we must remove at least 

edges from , contrary to the fact that . Thus, we can find a pair of vertices  where 

 and  such that  does not contain an edge with ends .

For each , let  be an end of  that is not equal to  or . Let . Since  

does not contain an edge with ends  and , we can find such  for each , so . 

Since removing  necessarily removes  from , the graph  is a subgraph of  having 

both  and  as vertices. Since  and  are not connected in , they are not connected in 

. But , contradicting -connectedness of .   

Remark.  The converse is not necessarily true. Consider a graph such that two  (complete 

graphs with  vertices) sharing a cut vertex. This graph is not -connected because removing 

the cut vertex disconnects it, but is -edge connected because you need to remove at least ten 

edges to disconnect the graph since each graph vertex is connected to at least  other vertices.

Prop. 1.8.5  If  is -edge-connected and , then  is -edge-connected. In other 

words, edge contraction does not destroy -edge-connectedness. (Move this) 
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2 Basic Results  

Highlights from the previous chapter.

1.  is -connected if  and we cannot remove less than  vertices to disconnect .

2.  is a cut vertex if there exists a connected pair of vertices  separated by .

3. -connected  connected and .

4. -connected  connected with no cut vertices and .

2.1 Ear Decomposition  

Def. 2.1.1     arises from  by adding a path if there exists a non-trivial path , i.e., 

, such that  and  is precisely the set of the 

two ends of .

Lemma. 2.1.2  If  is 2-connected and  is obtained from  by adding a path, then  is 2-

connected. 

Proof.  Clearly  by 2-connectedness of . Let  and  be the ends of path  

that was added to  to obtain . We show that for all distinct vertices  of , there is an 

-path in .  

If , then by -connectedness of ,  and  are connected in  and therefore 

also in .

If exactly one of  and  WLOG, say , is a vertex of , then since  is a -path 

containing ,  is connected to at least one of  and  in . Similarly, both  and  are 

connected to  in  by -connectedness of  and thus in . It follows by 

transitivity that  and  are connected in .

Finally, if , then since  is a path containing  and , either  and  are 

connected in  (in which case the claimed statement holds), or one of  and  is 

connected in  to  and the other is connected to  in . Since  and  are 

connected in , it follows by transitivity that  and  are connected in . 

Having considered all cases, we conclude the proof.  

Prop. 2.1.2 (Ear Decomposition)  A loopless graph  is 2-connected if and only if there 

exists graphs  such that 

1.  is a circuit; ,

2. For each ,  is 2-connected and  arises from  by adding a path.

Intuition for .  Go as far as you can, then look at what's stopping you -- there must be an 

extra vertex. But then you could still add a path. Contradiction.
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Proof.

 We can use Lemma. 2.1.2 to show that  obtained from a -connected graph  

is also -connected.

 Let  be a loopless 2-connected graph, and let  be maximal so that there exists subgraphs 

 of  so that each  is 2-connected and arises from  by adding a path, while  

is a circuit. Note that  because every 2-connected graph has a circuit (acyclic graphs have 

degree 1 vertices whose neighbours are cut vertices, i.e., can't be -connected). 

Since adding a single new edge between vertices of  is an example of adding a path (* -- *), 

the maximality of  implies that every edge of  between two vertices of  is an edge of , i.e., 

 is an induced subgraph of . 

If  then  and the theorem holds, so we must have  Since  

is connected, there must be an edge from a vertex  to . 

Because  is 2-connected, there exists a path from  to  in the graph , call it . Now 

 is a path of  with both ends in  and no other vertices in .

Now the graph  is a subgraph of  obtained from  by adding a path. It is also 2-

connected because of . This contradicts the maximality of .  

Cor. 2.1.3  For any two vertices  and  in a -connected graph , there is a circuit of  

containing  and .

Proof.  Observe this is the  case of a version of Menger's theorem. We will provide a proof 

without using Menger's.

Define  as in Prop. 2.1.2, and let  be maximal so that every pair of 

vertices of  are contained in a circuit. Since  is a circuit, , and we may assume that 

 since otherwise the result holds.

Let  be a path with ends  so that  is obtained from  by adding . Let 

. We will show that some circuit of  contains  and .

If , then by the choice of , a circuit  of  contains  and ; this  is also a 

circuit of , as required.

If , then let  by an -path in . Now  and  are both -paths in  

that intersect only in . Thus,  is a circuit of  containing  and .

Finally, suppose  and , so . By the choice of , there is a 

circuit  of  containing  and , and by the connectedness of , there is a -path 

 of . It is clear that  contains an -path  that contains . Now  is a 

circuit of  containing  and  as required.

Having considered all cases, we conclude the proof.  
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2.2 Block Graph  

Recall the following definitions from the first chapter:

A separator of  is a set  s.t.  is non-empty and disconnected.

A cut vertex is a vertex  s.t.  is a separator.

Def. 2.2.1  A block of  is a maximal connected subgraph of  with no cut vertex. That is,  is 

a block if  or  is -connected.

In a sense, blocks are the 2-connected analogues of components (which are 1-connected).

Def. 2.2.2  The block graph of a graph  is a simple bipartite graph with bipartition  s.t.

 is the set of blocks of ,

 is the set of cut vertices of ,

A block  is adjacent in the block graph to a cut vertex  of  iff .

Example 2.2.3 (Block Graph)  Red = Block, Blue = Cut Vertices.

Observe the block graph "encodes" how the blocks are pieced together to form ; we can 

reconstruct the original graph from its block graph.

Since individual blocks are maximal -connected subgraphs, the block graph is a tree/forest, i.e., 

there is no cycle.

Prop. 2.2.4  Each graph  is the union of its blocks.

Proof.  It suffices to show that each vertex and edge of  is contained in a block of . This is 

true because for every edge  from  to , the subgraph on  has no cut vertex, so is 

contained in some maximal subgraph with no cut vertex, i.e., a block. 

Prop. 2.2.5  Any two blocks intersect in at most one vertex (and no edges).
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Proof.  Let  be blocks,  be distinct. By maximality of  and , the 

subgraph  has a cut vertex . Let  be vertices separated by . Let . 

Since  and  have no cut vertex, each of  and  is connected to  in either  or 

 and hence in . Then  are connected in . Contradiction. 

Cor. 2.2.6  If a vertex  of  is contained in more than one block of , then  is a cut vertex 

of .

Proof.  Suppose  is contained in distinct blocks  and  of . Since  and  are 

distinct connected induced subgraphs that intersect in at most one vertex, there is a neighbour  

of  in  and a neighbour  of  in . We show that  separates  and  in . 

Suppose not, let  be a -path in . By choice of  and , there is a circuit  of  with 

vertex set . Now  is a cut-vertex-free subgraph (it is a circuit) of , so  is 

contained in a block  of  (by Prop. 2.2.4). But  contains both  and , 

contradicting (Prop. 2.2.5) the fact that two blocks intersect in at most one vertex.  

Cor. 2.2.7  The block graph of  is a forest.

Proof.  Suppose not, so the block graph contains a smallest circuit . Since the block graph is 

bipartite, it follows that the vertices of  can be enumerated in order  

for some , where the 's are blocks and the 's are cut vertices, where 

 for each  and  by definition. Since each block  is connected, it 

contains a -path  (where  by definition).

We now argue that the  intersect only when expected. If there are distinct  and  that 

intersect at some internal vertex  of , then  is contained in  and , so by Cor. 2.2.6 is a 

cut vertex of , contradicting the fact that  is a block. It follows that the union of the  is a 

circuit of . But this circuit is a -connected subgraph of  that intersects the block  in both 

 and , contradicting the fact (Prop. 2.2.5) that the intersection of two blocks is at most one 

vertex.  

Prop. 2.2.8  A graph is bipartite if and only if its blocks are bipartite.

Proof.  Let  be a minimal counterexample. That is, each block of  is bipartite but  is not. 

Clearly . Let  be a block of  with at most one neighbour in the block graph of . 

Such block exists because the block graph of  is a forest (Cor. 2.2.7) and every non-trivial 

forest has a leaf.

Let  be the set of vertices of  contained in another block of . Cor. 2.2.6, each vertex of  

is a cut vertex of  and  contains at most one cut vertex of , so .

Let . Now  and . Moreover, each block of 

 is a block of , so it is bipartite. Also, there is no edge from a vertex  in  to a vertex 

in , because such an edge would be contained in a block of  other  which intersects  

in the vertex  that is not a cut vertex of , contradicting (Prop. 2.2.5).



Let  be a bipartition of  and  be a bipartition of , chosen so that  

contains  (this can be done as  and the sides of a bipartition can be swapped). Since 

there are no edges from  to , it follows that  is a 

bipartition of , contrary to the choice of  as a counterexample.  

2.3 Edge Contraction  

Def. 2.3.1  Given an edge  in a graph  with ends , let  denote the graph 

with the edge set , vertex set  where  is a new vertex, in which 

each edge with an end equal to  or  in  now has an end equal to the new vertex  replacing 

it.

Remark.  

1. Any edge parallel to  becomes a loop at the new vertex.

2. If  is a loop, delete it and keep the vertex with the same name.

3. Edge contraction does not break connectedness, i.e., if  is connected, then so is .

4. Edge contraction may break 2-connectedness. Consider a cycle with an edge connecting two 

non-adjacent vertices; contracting this edge would create a cut vertex.

Lemma 2.3.2  Let . If  is -connected and  with , then each vertex in 

 has a neighbour in each component of .

Proof. If there were a vertex  and a component  of  so that  has no neighbour in 

, then  would be a set of  vertices so that  is disconnected. This 

contradicts the -connectedness of . 

Prop. 2.3.3  If  is an edge of  with ends  and  containing neither , nor , 

then .

Intuition. The order of contradiction and deletion does not matter as long as they do not affect 

the same edge. Proof omitted.  

Prop. 2.3.4  If  is -edge-connected and , then  is -edge-connected. In other 

words, edge contraction does not destroy -edge-connectedness.

Proof.  Let  be an edge of a -edge-connected graph  such that  is not -edge-connected. 

Let  be a disconnected pair of vertices of  for some set  with . 

Since  is -edge-connected, there is an -path  in . If , then  is the edge 

set of an -path of . If , then  is a subgraph of  and so  is an -path 

in , contrary to the choice of  and .  
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2.4 2-Connectedness  

Prop. 2.4.1  If  is -connected, , and , then either  or  is -

connected.

Proof.  Suppose that neither  nor  is -connected. 

Let  be vertices so that  and  are disconnected graphs. 

Let  be the ends of  (with ). If , then  but  is 

connected so  is connected, a contradiction to the choice of . Therefore .

Since , we have . We will show that  must be -connected. 

To do this, we will show that  is not a cut vertex of . 

First, note that if , then  which cannot be disconnected since  is 2-

connected. Thus, .

By assumption,  is disconnected. Let  be a component of  that 

does not contain . By the lemma above,  contains a neighbour  of  and  of . Since  does 

not contain , or , removing  from  does not affect the connectivity within , i.e.,  

and  are connected in . It follows from transitivity that  and  are connected in 

. 

Let  be a vertex of . Since  is connected, there exists a path from  to  or  in 

. Therefore, 
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1.  is connected to  or  in , 

2.  and  are connected in , and 

3. Thus,  and  are connected in . 

Since  is arbitrary,  is connected. This contradicts the choice of . The proof is 

complete. 

Lemma. 2.4.2  If a graph contains a degree-2 vertex, then it is not 3-connected.

Intuition.  Removing its two neighbours disconnects the graph.  

Cor. 2.4.3  For a -connected graph, the minimum degree must have at least . Let  denote 

the min degree of a graph and  denote the vertex connectivity, then .

Intuition.  Removing the vertex with minimum degree necessarily disconnects the graph.  

Remark.  The "subtract-contraction" proposition (Prop 2.4.1) works well for 2-connectedness, 

but we cannot hope for a version of it for 3-connectedness. Consider the following example.

Ex. 2.4.4  An -wheel is a graph with  vertices on the perimeter and one vertex in the middle. 

For example, the 3-wheel is a complete graph on 4 vertices and a 4-wheel can be viewed as a 

square with four corners connected to the center. 

Observe that an -wheel for  is 3-connected, but its "spoke" edges can be neither delete nor 

contracted while maintaining 3-connectedness. Thus, we cannot hope for a version of the above 

proposition for 3-connectedness.

2.5 3-Connectedness  

Thm. 2.5.1 (Tutte)  If  is a 3-connected graph with , then  has an edge 

 such that  is 3-connected.

Lemma. 2.5.2  If Tutte's Theorem does not hold, then we claim that for every edge  with 

distinct ends , there is a vertex  such that  disconnected, and each of 

the vertices  has a neighbour in each component of .

Proof.  Let  be the vertex of  created by the contraction. Since  is not 3-connected 

(assumption), there exists a set of vertices  such that  and  is 

disconnected. 

Suppose . Since  and  is 3-connected,  is connected. By Prop. 2.3.3, we 

can exchange the order of subtraction and edge contraction, so  is 

connected, as edge contraction does not destroy connectedness. Contradiction. Thus, . 

Let  be the other element of . The disconnected graph  is now equal to . 

The other part follows from what we proved in Prop. 2.3.3. 
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Proof. (Tutte)  Suppose Tutte's theorem is false. Choose  with ends  so that the number of 

vertices of a smallest component  of  is as small as possible, where  is given by 

Lemma. 2.5.2. Let  be a neighbour of  in .  

By Lemma, there exists  so that  is disconnected and each of  has a 

neighbour in each component in . Since  and  are adjacent in  (so they must be 

in the same component afterwards) and  has  components, there is a component 

 of  containing neither  nor . (i.e.,  is also a component of .)

We argue that . This will lead to a contradiction since  and  was 

chosen to be as small as possible. To see this, let . Since  has a neighbour in  and  

is a component of , there is a path from  to  in the graph of . 

Then there exists a path from  to  in , so  is in the same component as  in the 

graph , and thus . This proves . The proof is complete. 
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3 Menger's Theorem  

3.1 Menger's Theorem for Sets of Vertices  

Thm. 3.1.1 (Menger's Theorem For Sets of Vertices)  Given  and  being the 

cardinality of a minimal set  such that  has no -paths, then there are  vertex-

disjoint -paths in .

Proof.  Suppose the statement is false. Let  specify a counterexample where  is as 

small as possible. 

If every edge of  is a loop, then every -separator contains  and  itself is an 

-separator, so  is the size of a smallest -separator. But each vertex in  is an 

-path, so there are  vertex-disjoint -paths. Therefore  is not a counterexample. It 

follows that  must contain an edge  with ends  with .

Let  be the identified vertex of . Define

Then  both are sets of vertices of . We will show that if there are  disjoint -paths 

in , then there are  disjoint -paths in . 

Claim 1.  Let  be a subgraph of  containing . Let . Then there exists an -

path in  if and only if there exists an -path in .

Proof.  Let  be component of  and  be the corresponding component of . That is,  

if  and  otherwise. Then  contains a vertex in  iff  contains a vertex in  by 

definition of . The same goes for  and . Then  contains an -path iff some component 

 of  contains a vertex in  and a vertex in  iff some component  of  contains a vertex 

in  and a vertex in  iff  contains an -path. 

Claim 2.  There does not exist  disjoint -paths in . 

Proof.  Suppose that disjoint -paths  existed in . Each path  not containing 

 is also an -path in . If none of the  contains , then  has  disjoint -paths, 

contradicting the choice of  as a counterexample. 

Now suppose one of the , say , contains  Let  be the subgraph of  with vertex set 

 and edge set . Now . By Claim 1, since  has/is 

an -path,  contains an -path . Since  are vertex-disjoint, the paths 

 are vertex-disjoint -paths in , again a contradiction. 

By the minimality of ,  is not a counterexample. It follows that the smallest -

separator  in  has size less than . 
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Claim 3.  Let  be a minimal -separator in . Then . 

Proof.  If , then , so  contains no -path, as  

is a separator. Applying Claim 1 with , we see that  has no -path. 

Thus,  is a separator of size  in , a contradiction. Therefore, . 

Let us "uncontract"  from : define . Note that , 

so  separates  from  in . This gives  (assumption). Since  and 

, we get . Let . 

If there were an -separator  in  with , then  would contain no 

 paths. Since every -path contains an -path, this implies that  is an -

separator, so  gives a contradiction. Thus, the smallest size of an -separator is . 

Similarly, the smallest size of an -separator is .

Since  is not a counterexample, it follows there are  disjoint -paths  in 

. Say that  is the end in  of . Similarly, we can find  disjoint -paths , 

where  is the end in  of . 

If there were a vertex  for some  and , then let  be at the end of  

in  and  be the end of  in , then  and  are connected in , and  and  are 

connected in , so  and  are connected in , contradicting the fact that  is a 

separator. Thus, the paths  intersect only at their ends in  for any  and . Thus, 

 gives a collections of  disjoint -paths in , a contradiction.  

3.2 Menger's Theorem for Two Vertices  

Def. 3.2.1  Let  and . -paths  are internally disjoint if the sets 

, , and if  are adjacent  are disjoint sets.

Thm. 3.2.2 (Menger's Theorem for Two Vertices)  If  are nonadjacent vertices of  

and  is the size of a smallest -separator  with , then there are  internally disjoint 

-paths in .

Intuition.  Apply Menger's theorem on the neighbour sets of  and . Note that the neighbour 

sets can be overlapping. This gives you  internally disjoint -paths. Some of the paths might 

be trivial. You can then glue  and  onto both ends of the paths and get  internally disjoint 

paths as required.

Proof.  Let  be the neighbour sets of  and , respectively. Let  be the smallest size 

of an -separator  in . Since  contains no -paths, and every -path contains 

an -path,  is necessarily an -separator, so . Applying Menger's Theorem 

for Sets of Vertices, there are  vertex-disjoint -paths . It follows that there are  

internally disjoint -paths of the form . 

3.3 Fan Lemma  
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Lemma 3.3.1 (Fan Lemma)  If  is a vertex of a graph  and  with , then one 

of the following holds:

1. There exist  paths , each starting at , all disjoint except their intersection at , 

and all intersecting  in precisely the last vertex.

2. There is a set  so that  and  has no -path.

Proof.  Let  be the set of vertices of  adjacent to . By Menger's theorem for sets, there is 

either a set of  vertex-disjoint -paths, or there is a set  with  for which 

 has no -paths. For the second case, since , every -path contains an -

path, so  has no -paths implies  has no -paths, as required.

It remains to prove the first case. Let  be vertex-disjoint -paths. If none of these 

paths contain , then  is a collection of  vertex-disjoint -paths that intersect 

only at . If one of the paths, say , contains , then let  be the vertex occurring after  in . 

Since , this choice is well-defined, and we have  by the definition of . Thus,  

contains an -path  which does not contain . Then the paths  

form a collection of  distinct -paths that intersect only at , as required.  

Prop. 3.3.2  If  is a -connected graph and  with , then  has a circuit 

containing each vertex in .

Proof.  Consider a circuit  containing as many vertices from  as possible. (Recall 2-connected 

graphs have circuits, so such  must exist.) Let . Since  is -connected, there is no 

set  of size less than  such that there are no -paths in . 

Therefore there are at least  paths from  to . 

Let  be the paths formed by  between the elements of . Since 

, we have .

By the Fan Lemma, there exists  paths from  to  that only intersect at . In In 

either case (that is, if  or ), there exists some  s.t.  contains the end of  

of these two paths . 

Now there is a circuit  contained in , containing all vertices  but also the 

vertex . Thus, contradicts the maximality of . 

3.4 Other Versions of Menger's Theorem  

Thm. 3.4.1  If  is a graph with , then the following are equivalent:

1.  is -connected.

2. For every  with , there are  internally disjoint -paths in .

Thm. 3.4.2  Let  with . For , exactly one of the following holds:

1. There exists  internally disjoint -paths in .
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2. There exists a set  such that  and  contains no  paths.

Thm. 3.4.3  Let . For , exactly one of the following holds:

1. There are  vertex-disjoint -paths in .

2. There exists  with  such that  has no -paths. 
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