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1 Matching and Cover  

Let  be a simple graph.

1.1 Matching  

Def. 1.1.1    is called a matching in  if no two edges in  have an end in common. 

Notation.  Let  denotes the size of a maximum (largest) matching of .

Def. 1.1.2  A matching is called maximum if it has size .

Remark.  Do not confuse maximum matchings with maximal matchings. A maximal matching is 

one that is not a subset of any other matching in , i.e., adding any edge that is not in the 

matching makes it no longer a valid matching. For example, given graph , the 

matching  is a maximal matching because we cannot add  or  to , but it is 

clearly not a maximum matching. 

Def. 1.1.3  A vertex that is incident to an edge in a matching  is saturated by ; otherwise, 

we say the vertex is unsaturated.  

Remark.  Clearly, a matching  saturates  distinct vertices. 

Def. 1.1.4  If every vertex of  is saturated by , then  is a perfect matching.

1.2 Vertex Cover  

Def. 1.2.1  A cover (vertex cover) of  is a set of vertices  s.t. every edge has an end in 

. 

Remark.  Equivalently, if  is a cover of , then  has no edges. 

Notation.  Let  denotes the size of a minimum (smallest) vertex cover.

1.3 Matching vs. Cover  

Prop. 1.3.1  If  is a vertex cover and  is a matching, then every edge in  has an end in , 

and no two edges in  have such an end in common, so . 

Intuition.  Each  corresponds to (at least) a distinct .
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Proof.  For each edge , at least one of  is in . Moreover, for two distinct edges of , 

since  is a matching, any vertices of  they saturate must be different. Therefore, .  

Cor. 1.3.2  The size of a maximum matching  the size of a minimum cover, i.e. .

Proof.  This follows trivially from Prop. 1.3.1.  

Prop. 1.3.3  If  is a matching and  is a cover with , then  is a maximum 

matching,  is a minimum cover, every vertex in  is an end of an edge in , and every edge in 

 has exactly one end in .

Proof.  Let  be any matching. By Prop. 1.3.1, , so  is a maximum cover. 

A mirror argument proves that for any cover ,  so  is a minimum cover.  
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2 Matching in Bipartite Graphs  

Thm. 2.1.1 [Konig]  If  is bipartite, then the size of a maximum matching is equal to the size 

of a minimum cover, i.e.,  .

Remark.  The following remarks help us understand the proof.

1. The equality does not hold for general (non-bipartite) graphs. For example, if  is a 

triangle, then .

2. We can find a perfect matching with  edges and a cover with  vertices in even circuits 

 and paths , i.e., .

3. In an odd circuit  or path , however, the maximum matching has size  but the 

minimum cover has size , i.e., .

Proof 1. (Use Menger's Theorem)  

A vertex cover of a graph  with bipartition  is equivalent to a set  of vertices where 

 has no edges, which is the same as a set of vertices  so that  has no -paths. 

So  such that  has no -path, which equals the max size of a collection 

of vertex disjoint -paths (by Menger's theorem), which equals the max size of a matching of 

,  which equals . 

Proof 2. (Minimum Counterexample)  

Let  be a counterexample with as few edges as possible. Then  by the choice of  

and  for every proper subgraph of  by induction hypothesis. 

Note that  is connected, because if  is a component of , then

contrary to the choice of  as a counterexample.

Also,  is not a path or circuit (we consider these explicitly, because we want a vertex in  to 

have degree at least 3). This is because  is bipartite, so it cannot be an odd path or circuit. By 

our remark above, if  is an even circuit or path then it does not qualify as a counterexample.
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Since  is connected but is not a path or circuit, it has a vertex  of degree . Let  be a 

neighbour of . By the choice of  as a minimum counterexample, we have  but 

 for every proper subgraph of . 

Let . We claim that . Suppose not, i.e., . Let  be a 

cover of . Now  is a cover of . Observe this leads to a contradiction:

So . In other words, there is a maximum matching of  that does not saturate . 

(We say  is inessential.)

Let  be a maximum matching of . Since ,  is also a maximum 

matching of . Since  and  is maximum in  but does not saturate , it must 

saturate . (Otherwise  is a larger matching, contrary to the maximality of .)

Let  be an edge of  incident with  but not  such that  is not in the matching ; such  

must exist because . (In the graph above,  is not saturated; the green edge is in ; 

the middle edge is left to be .) By the minimality of , we have . 

 is a maximum matching of , so  has a cover  such that . If  is also a 

cover of , then , a contradiction. So  is not a cover of . Since it is a 

cover of  but not , it does not contain either end of . In particular, . 

But the edge from  to  is an edge of , so it has one end in . Thus, . 

Then  is a vertex of  that is in the cover , but is not saturated by . Since every edge in 

 contains a vertex in  (and  is a standalone vertex that contributes to the size of  but not 

), it follows that , a contradiction since we chose . 

Remark.  Bipartiteness in this proof is used to guarantee that  contains no odd paths/circuits.

Remark.  By Konig's theorem, for every bipartite graph, there is either a matching of size  or a 

cover of size . Thus, a cover of size  is a certificate (hint: CO 351) that  has no matching 

of size .
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3 Size of Maximum Matchings in General Graphs  

3.1 Odd Components and Hypomatchable Graphs  

Def. 3.1.1  A component   of  is an odd component/even component if  is odd/even.

Notation.  Let  denote the number of odd components of .

Prop. 3.1.2  Let  be a set of vertices. If  contains more than  odd 

components, i.e.,  , then  has no perfect matching.

Intuition.  Suppose  has a perfect matching . Let . Since  is odd,  

has an "extra" vertex that must connect to a vertex in  in the matching , i.e., there exists 

 where  and . Since each odd component "consumes" a vertex in , if 

 has more than  odd components, then there cannot be a perfect matching. 

Prop. 3.1.3  If  is a set of vertices and  is a matching of , then  has at least 

 vertices that are not saturated by .

Proof.  Every odd component of  that contains no unsaturated vertex has a vertex joined 

by an edge of  to a vertex in . There are at most  edges of  with an end in , so at least 

 odd components of  contain an unsaturated vertex.  

Remark.  When  is a maximum matching, the number of vertices in  that is not saturated by 

 is precisely . For each set of vertices , by Prop. 

3.1.3,

Rearranging terms, the following holds true for all :

Equivalently, we only need to consider  which gives the minimum RHS:

This gives us a characterization of the size of a maximum matching in a graph (Thm. 3.2.1).

Prop. 3.1.4  If removing any vertex from a graph  does not affect the size of its maximum 

matching, i.e.,   for all , then every component is odd, and for each 

component  of  and each vertex  of , the graph  has a perfect matching.

Proof.  We define a new relation. Let  if removing  and  from  decreases the size of a 

maximum matching, i.e.,  or . 

For example,  if  and  are adjacent in , because we can add  to a 

maximum matching in  to obtain a larger matching. 
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We show that  is an equivalence relation. It suffices to show transitivity as both symmetry and 

reflexivity are guaranteed by definition.

Suppose that  are distinct with  and  (removing  and  or  and  

decreases the size of a maximum matching of  by ). Suppose for a contradiction that  

(removing  and  has no impact on the size of a maximum matching of ), i.e., 

. Then,

1. There is a maximum matching  in  not saturating  and . (The size of the maximum 

matching of  is the same as the maximum matching of , so there exists an 

maximum matching of  that doesn't need  and .) 

2. There is also a maximum matching  not saturating . (By assumption, 

).)

By construction, each of  is in at most one of  and , so each has degree at most  in 

, which makes each of them an end of a path component of . (Any 

intermediate vertex of a path or a vertex in a circuit has degree .)

Therefore, there is some path component  of  that has some  as an end but does 

not have  as an end. Moreover,  contains an even number of edges, because  and  are 

maximal so  cannot be augmented. 

Therefore,  is a matching of size  (as we discard and add the same number of edges 

from ) that does not saturate  or , contrary to the fact that  (because our assumption 

states that removing  and  from  decreases the size of a maximum matching). Thus,  is an 

equivalence relation.

Suppose there is a path  in . Then  so by transitivity, . 

Thus every pair of vertices in the same component are related by . 

We now prove the proposition, i.e., argue that each component  of  has a matching saturating 

every vertex except  for every choice of . Suppose not, then  has a maximum matching, 

avoiding another vertex  of . Then , which contradicts the fact that . 

This gives the result. 

Def. 3.1.5  A graph  is hypomatchable if   has a perfect matching for every .

3.2 Tutte-Berge Formula  

Thm. 3.2.1 (Tutte-Berge)  For every maximum matching, there exists a set of vertices 

 for which equality holds, i.e.,
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Notation.  For , let  be the graph obtained from  by deleting all edges not in :

Notation.  Let  denote the symmetric difference or disjunctive union of  and .

Remark.  Let  be matchings of . Consider . By definition, 

Note that  and  can both be true when  is contained in both matchings.

Consider the upper bound of  for . Since  has at most two neighbours in 

 (when it is saturated by both  and ),  has maximum degree . 

Thus, each component of  is a path or a circuit. We have the following observations.

1. Each vertex in a circuit of  is saturated by both  and . This follows directly 

from the result that if , then  is saturated by both matchings.

2. For a path with only one edge, the edge is in both  and . (We also ignore the trivial 

case, where a path has length .)

3. For a non-trivial path (i.e., with more than one edge), all its internal vertices are saturated 

by both  and  and all its end vertices are saturated by exactly one of .

4. Each circuit and path of length  alternates between edges in  and . Therefore each 

circuit is even.

If  is a path component of odd length that is not an edge of , then it contains more 

edges from one of  than from the other, i.e.,  or . 

If , then  is a matching larger than . (Hint: augmenting path).

Then if  and  are both maximum matchings, then every path component of  that 

is not an edge of  has even length.  



Proof. (Thm 3.2.1)  Let  be a counterexample with as few vertices as possible. That is, there 

does not exist  where the following holds:

Clearly  (or both LHS and RHS equal to zero). We split the proof into claims.

Claim 1.   is connected.

Proof. (Claim 1)  If not, let  be a component of . Since  and  have less vertices than 

, by IH, they are not counterexample. Since the maximum matching of  is equal to the sum of 

maximum matchings in all components, we have

contrary to the choice of  as a counterexample. 

Claim 2.  Removing any vertex  from  does not affect the size of its maximum matching, i.e., 

 for each .

Proof. (Claim 2)  Suppose for some ,  i.e., . Since 

 is a minimal counterexample, we have

so there is a set  that achieves the minimum, i.e.,

Let . We know , , and , 

so



The  on both sides cancel, so we get 

Recall the remark following Prop. 3.1.3 gives us  and we get  here, we get an equality, which 

contradicts the choice of  as a counterexample. 

Proof. (Thm 3.2.1)  A minimal counterexample , by the previous two claims and Prop. 3.1.4, 

is hypomatchable and therefore has an odd number of vertices. By definition of a maximum 

matching,  and thus  for each . 

When , we have

Since RHS is an upper bound for  for any  and  attains the upper bound, you cannot 

do any better. It follows that we found the set  as desired.  

Thm. 3.2.2 (Tutte)    has a perfect matching iff  for all .

Proof.  This can be seen as a corollary of Thm. 3.2.1. 

Thm. 3.2.3 (Petersen)  If  is a 3-regular graph (i.e.,  for each ) with no 

cut edge, then  is a perfect matching.

Proof.  Suppose not. By Thm. 3.2.2, there is a set  with . 

For every odd set , 

there is an odd number of edges leaving . 



LHS is odd because there  is odd and each  has degree , thus odd.

Each internal edge  contributes  to , so the term is even.

Each outgoing edge contributes  to , by parity,  is odd.

Therefore, the number of edges with an end in  is at least , which 

contradicts the -regularity of .  (???)
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4 Berge Witness and Gallai-Edmonds Partition  

4.1 Berge Witness  

Recall  is hypomatchable if for each ,  has a perfect matching. This implies  is 

unsaturated and has an odd number of vertices.

Def. 4.1.1  If  attains the minimum of Tutte-Berge Formula, i.e.,

then  is called a Berge witness.

What is the structure of  and its maximum matchings relative to a Berge Witness?

Recall from Prop. 3.1.3, for any matching , there exist at least  odd 

components of  that contain an unsaturated vertex. 

If  is a Berge witness and  is a maximum matching, then there are exactly  

unsaturated vertices in . 

Therefore the unsaturated vertices of  all lie in odd components of  and no two are in the 

same component; every other vertex of  is saturated. We have the following observations:

Every odd component of  containing no unsaturated vertices must have a vertex that 

is matched by  to a vertex in .

Every vertex in  is matched to a vertex in some odd component of  in this way.

The even components of  contain no unsaturated vertices and no vertices matched by 

 for a vertex in , so they have a perfect matching.

Def. 4.1.2    is avoidable  if some maximum matching of  does not saturate , i.e.,

4.2 Gallai-Edmonds Partition  

af://n158
af://n159
af://n178


Thm. 4.2.1 (Gallai, Edmonds)  Let  be the set of avoidable vertices in the graph . Let  

be the set of vertices not in  but with a neighbour in . Let . Then,

1.  is a Berge Witness in .

2.  is the set of vertices in odd components of .

3.  is the set of vertices in even components of .

4. Every odd component of  is hypomatchable.

5. Every even component of  is a perfect matching.

Proof.  We will construct sets  and show that they have the required properties.

Let  be a Berge witness in , chosen so that

1. The number of non-hypomatchable odd components of  is as small as possible.

2.  is as small as possible (subject to the first condition).

Furthermore, we inductively assume the theorem holds for all graphs with fewer vertices than .

Claim 1.  Every odd component of  is hypomatchable.

Proof. (Claim 1)  Suppose false. Let  be a non-hypomatchable odd component. Then there 

exists  where  has no perfect matching. Let  be a Berge Witness for , 

chosen so that every odd component of  is hypomatchable (exists because of IH). 

Since  is odd,  contains an even number of vertices. If  is non-hypomatchable, 

 does not have a perfect matching, so there must exist at least two unsaturated vertices in 

 given  is a Berge Witness of , i.e., .

We now show that  is a Berge Witness for . (This will be a contradiction since 

 has fewer non-hypomatchable odd components than  does.) We have



Thus,  is a Berge Witness whose deletion have fewer non-hypomatchable odd 

components than , a contradiction. (Recall for  there are exactly  

non-hypomatchable odd components.)

Claim 2.  For every non-empty set , at least  odd components of  have a 

neighbour in .

Proof. (Claim 2)  Let  be a set violating this. In a maximum matching , 

the vertices  are matched to vertices in different odd components of . Call them 

, respectively. Since  violates the claim,  are the only odd components of 

 having a neighbour in . We show that  is a Berge Witness in . Observe

so  is a Berge Witness. 

All odd components of  that are not in  are odd components of . 

The other vertices of  are partitioned by the connected, even sets  and the 

even components of . Therefore,  has no odd components that are not odd 

components of . But  and  has no more non-hypomatchable odd 

components than . This contradicts the choice of . 

Claim 3.  Every vertex in an odd component of  is avoidable.

Proof.  Let  be a vertex of an odd component  of . We show that there is a matching  

of  that matches every vertex in  to a vertex in an odd component of  other than . By 

claim 2, each set  has neighbours in at least  odd components of  other than ; 

the existence of  follows from Hall's Marriage Theorem. Now, since  saturates  vertex 

from each odd component of , no vertices of any even component , and saturates , 

we can use Claim 2 and the fact that even components of  have perfect matchings to 

extend  to a maximum matching of  avoiding .

We have proved there exists a Berge Witness  such that 

1. Every odd component of  is hypomatchable.

2. Every vertex in an odd component of  is avoidable.



3. Each non-empty set  has edges to  odd components of .

Since every vertex in  or an even component of  is unavoidable, claim 2 implies that the 

set of vertices in odd components of  is precisely the set of avoidable vertices of . By (2), 

every  has a neighbour in  and clearly no vertex outside 

 has a neighbour in . Thus, . 

This implies the result where we use claim (1).  
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5 Finding a Maximum Matching Efficiently  

The idea is to take any matching  and look for an augmenting path. If there isn't one,  is 

maximum. Otherwise, use the path to find a larger matching, repeat.

Def. 5.1.1  Let  be a matching of graph  and  be an unsaturated vertex. An -alternating 

tree  rooted at  is a tree subgraph of  containing , such that

For each , the path in  from  to  is -alternating, and  is saturated.

Every leaf vertex of  has even distance from  in .

By this definition, for , the matching edge incident with  is also an edge of . 

Def. 5.1.2  Given an -alternating tree  rooted at , the outer vertices of  are those at even 

distance from ; those at odd distance are inner vertices.

Def. 5.1.3  An -alternating forest  is a subgraph whose components are -alternating trees. 

Define the inner and outer vertices of  in the obvious way.

Prop. 5.1.4  Given a matching  in a graph , we can efficiently find either

an -augmenting path in , or

an -alternating forest  in  containing every -unsaturated vertex in  such that the 

neighbours of each other vertex  in  are either inner vertices of , or outer vertices in the 

same component of  as .

Proof.  Start by initializing  as the forest whose components  are just the unsaturated 

vertices .

While an outer vertex  of  has a neighbour  outside , since ,  is saturated and 

therefore matched by  to some . Let  be the component of  containing . Replace 

 with  to form a larger -alternating forest .

After the loop, all neighbours of outer vertices of  are in . If  are outer-vertices in distinct 

components  of  that are adjacent, then  is an -augmenting path, where 

 is the path in  from the root to . Thus, if we cannot find an -augmenting path,  

satisfies the hypothesis of the proposition. 

Cor. 5.1.5  Let  be given by the proposition. If there are no edges in  between outer vertices, 

then  is bipartite and we are done (  is maximum).

Proof.  The bipartition is given by the set of inner and outer vertices. Since there are no edges in 

 between outer vertices, let  be the set of inner vertices. The outer vertices are all isolated in 

 (which makes them all odd components). Note that the number of outer vertices is exactly 

one more than the number of inner vertices in a tree (namely, the root). 
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Thus,  is a Berge Witness and  is a maximum matching.

Remark. If  is bipartite, then there are no edges between outer vertices in the same component 

(they give odd circuits) so this argument is always valid.

Prop. 5.1.6  If  is an odd circuit in  and  is a matching of  s.t.  contains a maximum 

matching of  and the other vertex of  is unsaturated, then  is a maximum matching of  iff 

 is a maximum matching of . 

Moreover, if  is any matching in , then  can be extended to a matching of  of size 

.

Proof.  We first show that . Let  be a maximum matching of 

. For each vertex  of , let  be the matching of size  in  that does not 

saturate . Now that  is also a matching of . Since  contains at most one edge incident 

with  in , it contains at most one edge incident with a vertex of  in , so at most one 

vertex of  is saturated by  in . Let  be this vertex if it exists, otherwise choose  

arbitrarily. Now  is a matching of  of size , 

giving the required lower bound on .

Next, we show that  is a matching of . Since the edges in  

saturate all but one vertex of  and the last vertex of  is unsaturated, it follows that every edge 

in  has no end in . Therefore the edges in  have the same ends in  as they do in . 

Then  is a set of edges in  for which no two share an end, so  is a matching of .

Finally, we show that  is a maximum matching of  if and only if  is a maximum 

matching of . Note that . Suppose first that  

is a maximum matching of . Then by our first claim, we have

Since  is a matching in , equality holds, so  is maximum in .

Conversely, suppose that  is not a maximum matching of . Then there is an -augmenting 

path  in . If  contains no vertex of , then  is an -augmenting path in , so  is 

not maximum in  as required. If  contains a vertex of , then, since both ends of  are -

unsaturated, there must be an end  of  that is not in . Let  be the subpath of  starting 

at  and ending at the first vertex in  occurring in . As a set of edges in . the path  is 

-alternating, having the '-unsaturated vertex  as one end and the -unsaturated vertex  

as the other. Therefore,  is an -augmenting path in , so again the matching  is not 

maximum in .  

Def. 5.1.6  A blossom is an odd circuit with only one unsaturated vertex. 



This allows us, given a matching  and a "blossom"  for , to reduce the problem of finding a 

matching larger than  to finding maximum matching of , i.e., if  is a maximum 

matching in , stop;  is a maximum matching in . Otherwise, let  be a maximum 

matching in ; extend  to a matching of size

Prop. 5.1.7  If there is an edge  between outer vertices  in the same component , we can 

recurse on a smaller graph.

Proof.  If there is an edge  between outer vertices  in the same component , let  be the 

odd circuit of  containing , let  be the shortest path in  from the root to .

Now  is a blossom in the matching , which has size . Use  recursively to either 

conclude that  is a maximum matching in , or to find a larger matching in .  

Remark.  Since matchings have size , we only find an augmenting path or recurse a 

maximum of  times, hence it is polynomial time.
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6 Game  

The following are bonus material.

Def. (Slither)  The game is played on graph  by two players, Alice and Bob, who take turns 

choosing edges of  so that the chosen edges always for ma path. The first player with no more 

valid moves loses. 

Claim.  If  has a perfect matching , then Alice can force a win.

Proof.  Consider the first turn where Alice cannot choose an edge of . Say Bob just extended 

the path  by a vertex . Every vertex of  has its match in , so Alice can extend using the 

match of . 

Claim.  If  is hypomatchable, then Bob can force a win.

Proof.  Similar to 1. 

Using Gallai-Edmonds.

: unavoidable with a neighbour in . Berge Witness.

: avoidable vertices in .

: the rest vertices in .

Every component of  is hypomatchable.

Since  is a Berge Witness, every maximum matching of  induces a perfect matching of 

each component of , and a maximum matching  has a perfect matching of each 

component of .

Claim.  If , then Alice can win.

Proof.  Let  be a maximum matching of , and Alice start with  in . Say Bob uses 

vertex  and Alice is stuck. But then the portion of the path from  to  is -alternating,  is 

-unsaturated, and both ends of  are unavoidable, a contradiction.  

Claim.  If , then the first player to choose an edge with an end in  loses.

Proof.  Similar to claim 3.
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