Planarity
 CO 342: Introduction to Graph Theory
 David Duan, 2019 Fall

Contents

1 Introduction
1.1 Basic Definitions
1.2 Topology

2 Faces and Euler's Formula
2.1 Faces
2.2 Euler's Formula

3 Edge Subdivision
4 Facial Circuits

5 Minors and Topological Minors
5.1 Graph Minors
5.2 Topological Minors
5.3 Minor vs. Topological Minor

6 Kuratowski's Thm.
$7 \quad$ Straight Line Drawing

1 Introduction

1.1 Basic Definitions

Def. 1.1.1 A plane graph is a pair $G=(V, E)$ where

- V is a finite subset of \mathbb{R}^{2},
- each $e \in E$ is an arc whose endpoints are in V,
- the interior of the edges in E are disjoint from each other, and from V.

A plane graph $G=(V, E)$ naturally corresponds to the graph $G^{\prime}=(V, E, i)$.
Def. 1.1.2 We say that G^{\prime} is the abstract graph defined by G and G is a plane drawing or plane embedding of G^{\prime}. A graph is planar if it has a plane drawing.

Def. 1.1.3

- A curve is a subset of \mathbb{R}^{2} that is homeomorphic to the unit interval $[0,1] \subseteq \mathbb{R}$, i.e., a set X of the form $f([0,1])$, where $f:[0,1] \rightarrow \mathbb{R}^{2}$ is a continuous injective function.
- A closed curve is a set of the form $f([0,1])$ where $f:[0,1] \rightarrow \mathbb{R}^{2}$ is continuous and injective on the domain $[0,1)$ with $f(0)=f(1)$.
- A curve is polygonal if it is a union of a finite number of straight line segments.
- Call a polygonal curve an arc.
- Call a polygonal closed curve a polygon.

Remark. The class of graphs that have a plane drawing where the edges are curves is equal to the class where the edges are required to be polygonal.

Def. 1.1.4 Let P be an arc between x and y, we denote the point set $P \backslash\{x, y\}$, the interior of P, by $\stackrel{\circ}{ }$.

1.2 Topology

Def. 1.2.1 Recall the following definitions from Math 247:

- An open disc in \mathbb{R}^{2} is of the form $D=\left\{x \in \mathbb{R}^{2}:\|x-a\|<r\right\}$ with radius r and center a.
- A set $X \subseteq \mathbb{R}^{2}$ is open if every $x \in X$ is contained in an open disc D with $D \subseteq X$.
- A set $X \subseteq \mathbb{R}^{2}$ is closed if $\mathbb{R}^{2} \backslash X$ is open.
- A set $X \subseteq \mathbb{R}^{2}$ is compact if it is closed and bounded.

Remark. Recall the following results from Math 247:

- Any finite union of open sets is still open.
- Any finite union of closed sets is still closed.
- Any finite union of bounded sets is still bounded.
- Any finite union of compact sets is still bounded.

Remark. Recall the following results about compactness from Math 247:

- Topological Compactness: If \mathcal{U} is a collection of open sets and and X is a compact set where $X \subseteq \bigcup_{U \in \mathcal{U}} U$, then there is a finite subset $\mathcal{U}^{\prime} \subseteq \mathcal{U}$ s.t. $X \subseteq \bigcup_{U \in \mathcal{U}^{\prime}} U$.
- Sequential Compactness: If X is compact and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ is a sequence contained in X, then there is a convergent subsequence \mathbf{x}^{\prime} of \mathbf{x}.

Remark. Review Math 247 Part I Notes. The last two propositions above can be rewritten as:

- A set K is compact if every open cover of K has a finite subcover.
- (BWT:) Every bounded sequence in \mathbb{R}^{n} has a convergent subsequence.

Def. 1.2.2 Two points $x, y \in X$ are linked or connected in a set $X \subseteq \mathbb{R}^{2}$ if there exists an arc contained in X with endpoints x, y.

Remark. Connectedness in plane graphs gives us an equivalence relationship; its equivalences are the components of X. Intuitively, linkedness "partitions" $X \subseteq \mathbb{R}^{2}$ into separate regions.

Def. 1.2.3 The frontier of a set $X \subseteq \mathbb{R}^{2}$ is the set Y of all points $y \in \mathbb{R}^{2}$ such that every neighbourhood of y meets both X and $\mathbb{R}^{2} \backslash X$.

Remark. Note that if X is open then its frontier lies in $\mathbb{R}^{2} \backslash X$.
Remark. The frontier of a region O of $\mathbb{R}^{2} \backslash X$ has two important properties:

1. If $x \in X$ lies on the frontier of O, then x can be linked to some point in O by a straight line segment whose interior lies wholly inside O. As a consequence, any two points on the frontier of O can be linked by an arc whose interior lies in O.
2. The frontier of O separates O from the rest of \mathbb{R}^{2}.

Prop. 1.2.4 For every polygon $P \subseteq \mathbb{R}^{2}$, the set $\mathbb{R}^{2} \backslash P$ has exactly two regions. Each of these has the entire polygon P as its frontier.

Prop. 1.2.4 (Class Ver.) If G is a plane graph whose abstract graph is a circuit, then G has exactly two faces.

Ex. 1.2.5 Let P_{1}, P_{2}, P_{3} be three arcs (vertical), between the same two endpoints but otherwise disjoint. Then the following are true:

1. $\mathbb{R}^{2} \backslash\left(P_{1} \cup P_{2} \cup P_{3}\right)$ has exactly three regions, with frontiers $P_{1} \cup P_{2}, P_{2} \cup P_{3}$, and $P_{1} \cup P_{3}$.
2. If P is an arc between a point in $\stackrel{\circ}{P}_{1}$ and a point in $\stackrel{\circ}{P}_{3}$ whose interior lies in the region of $\mathbb{R}^{2} \backslash\left(P_{1} \cup P_{3}\right)$ that contains P_{2}, then $\stackrel{\circ}{P} \cap \stackrel{\circ}{P}_{2} \neq \varnothing$.

2 Faces and Euler's Formula

2.1 Faces

Def. 2.1.1 Let G be a plane graph.

- The set $\mathbb{R}^{2} \backslash G=\mathbb{R}^{2} \backslash(V \cup \bigcup E)$ is open; its regions are the faces of G.
- Since G is bounded, i.e., lies inside some sufficiently large disc D, exactly one of its faces is unbounded: the face that contains $\mathbb{R}^{2} \backslash D$. We call this the outer face (or unbounded face) of G; the other faces are inner faces. We denote the set of faces of G by $F(G)$.

Remark. Throughout this section, we use G to denote the set of points in a vertex of edge of the plane graph of G. (Warning: abuse of notation).

Lemma. 2.1.2 Let $X_{1}, X_{2} \subseteq \mathbb{R}^{2}$ be disjoint sets, each the union of finitely many points and arcs, and let P be an arc between a point in X_{1} and one in X_{2} whose interior P lies in a region O of $\mathbb{R}^{2} \backslash\left(X_{1} \cup X_{2}\right)$. Then $O \backslash \stackrel{\circ}{P}$ is a region of $\mathbb{R}^{2} \backslash\left(X_{1} \cup P \cup X_{2}\right)$. In other words, P does not separate the region O of $\mathbb{R}^{2} \backslash\left(X_{1} \cup X_{2}\right)$.

Proof. By intuition.
Prop. 2.1.3 Let G be a plane graph and e an edge of G.

1. If X is the frontier of a face of G, then either $e \subseteq X$ or $X \cap e=\varnothing$.
2. If e lies on a cycle $C \subseteq G$, then e lies on the frontier of exactly two faces of G, and these are contained in distinct faces of C.
3. If e lies on no cycle (i.e., e is a cut edge), then e lies on the frontier of exactly one face of G.

Proof. Consider one point $x_{0} \in \dot{e}$. We show that x_{0} lies on the frontier of either exactly two faces or exactly one, according as e lies on a cycle in G or not. We then show that every other point in \dot{e} lies on the frontier of exactly the same faces as x_{0}. Then the endpoints of e will also lie on the frontier of these faces, simply because every neighbourhood of an endpoint of e is also the neighbourhood of an inner point of e.
G is the union of finitely many straight line segments; we may assume that any two of these intersect in at most one point. Around every point $x \in \stackrel{\circ}{e}$ we can find an open disc D_{x}, with center x, which meets only those (one or two) straight line segments that contain x.

Let us pick an inner point x_{0} from a straight line segment $S \subseteq e$. Then $D_{x_{0}} \cap G=D_{x_{0}} \cap S$, so $D_{x_{0}} \backslash G$ is the union of two open half-discs. Since these half-discs do not meet G, they each lie in a face of G. Let us denote these faces by f_{1} and f_{2}; they are the only faces of G with x_{0} on their frontier, and they may coincide.

If e lies on a cycle $C \subseteq G$, then $D_{x_{0}}$ meets both faces of C (Jordan). Since f_{1} and f_{2} are contained in faces of C (check with an example), $f_{1} \neq f_{2}$. If e does not lie on any cycle, then e is a bridge and thus links two disjoint point sets X_{1}, X_{2} as in Lemma above, with $X_{1} \cup X_{2}=G \backslash \dot{e}$. Clearly, $f_{1} \cup \dot{e} \cup f_{2}$ is the subset of a face f of $G-e$. By Lemma, $f \backslash \dot{e}$ is a face of G. But $f \backslash \dot{e}$ contains f_{1} and f_{2} by definition of f, so $f_{1}=f \backslash \AA=f_{2}$ since f_{1}, f_{2} and f are all faces of G.

Now consider any other point $x_{1} \in \dot{e}$. Let P be the arc from x_{0} to x_{1} contained in e. Since P is compact, finitely many of the discs D_{x} with $x \in P$ cover P. Let us enumerate these discs as D_{0}, \ldots, D_{n} in the natural order of the centers along P; adding $D_{x_{0}}$ or $D_{x_{1}}$ as necessary, we may assume that $D_{0}=D_{x_{0}}$ and $D_{n}=D_{x_{1}}$. By induction on n, we can easily prove that every point $y \in D_{n} \backslash e$ can be linked by an arc inside $\left(D_{0} \cup \cdots \cup D_{n}\right) \backslash e$ to a point $z \in D_{0} \backslash e$; then y and z are equivalent in $\mathbb{R}^{2} \backslash G$.

Hence, every point of $D_{n} \backslash e$ lies in f_{1} or in f_{2}, so x_{1} cannot lie on the frontier of any other face of G. Since both half-discs of $D_{0} \backslash e$ can be linked to $D_{n} \backslash e$ this way (swap the roles of D_{0} and D_{n}), we find the x_{1} lies on the frontier of both f_{1} and f_{2}.

Cor. 2.1.4 The frontier of a face f is a point set of a subgraph of G.
Def. 2.1.5 The subgraph of G whose point set is the frontier of a face f is called the boundary of f.

Prop. 2.1.6 If G is a plane forest, then G has exactly one face whose boundary is G.
Proof. By intuition.
Prop. 2.1.7 If a plane graph G has different faces with the same boundary, then G is a cycle.
Proof. Let G be a plane graph and $H \subseteq G$ be the boundary of distinct faces f_{1}, f_{2} of G. Since f_{1} and f_{2} are also faces of H, the proposition above implies that H contains a cycle C. By prop, f_{1} and f_{2} are contained in different faces of C. Since f_{1} and f_{2} both have all of H as boundary, this
implies $H=C$; any further vertex or edge of H would lies in one of the faces of C and hence not on the boundary of the other. Thus, f_{1} and f_{2} are distinct faces of C. As C has only two faces, it follows that $f_{1} \cup C \cup f_{2}=\mathbb{R}^{2}$ and hence $G=C$.

Prop. 2.1.8 Let G be a plane graph and P be a path of G, so that G is obtained from a plane graph H by adding the graph P. Then

1. There exists a single face f of H that contains the interior of P,
2. Each face of H other than f is a face of G,
3. The face of H containing P is the union of two faces f_{1}, f_{2} of G and the interior of P.

Moreover, if f is bounded by a circuit, so are f_{1} and f_{2}.
Cor. 2.1.9 G has exactly one more face than H.
Prop. 2.1.10 In a 2-connected, loopless graph, every face boundary is a circuit.
Proof. Recall that there are (plane) graphs G_{1}, \ldots, G_{k} so that G_{1} is a circuit, $G_{k}=G$, and each G_{i+1} is obtained from G_{i} by adding a path. The proposition shows that if each of G_{i} is bounded by a circuit, then the same is true for G_{i+1}. An induction gives the proof.

Prop. 2.1.11 If f is a face of a plane graph G that is not a forest, then the boundary of f contains a circuit of G.

2.2 Euler's Formula

Thm. 2.2.1 If G is a connected plane graph, then $|V(G)|-|E(G)|+|F(G)|=2$.
Proof. Recall that a tree on n vertices has $n-1$ edges. Let G be a counterexample with as few edges as possible. If G has no circuit, then G is a tree, so $|E(G)|=|V(G)|-1$. Moreover, trees have exactly one face, so $|F(G)|=1$ and the formula holds. Thus G cannot be a tree, i.e., it has a circuit. Let $e \in E(G)$ be an edge contains in a circuit of G. Note that $G-e$ is connected. By the lemma, $|F(G)|=|F(G-e)|+1$ as $G-e$ is not a counterexample. So

$$
\begin{aligned}
2 & =|V(G-e)|-|E(G-e)|+|F(G-e)| \\
& =|V(G)|-(|E(G)|-1)+(|F(G)|-1) \\
& =|V(G)|-|E(G)|+|F(G)|,
\end{aligned}
$$

which contradicts the choice of G as a counterexample.

Cor. 2.2.2

- If G is a simple planar graph with $|V(G)| \geq 3$, then $|E(G)| \leq 3|V(G)|-6$.
- If G is also triangle-free, then $|E(G)| \leq 2|V(G)|-4$.

Remark. From this, we see that the number of edges in a general graph is $O\left(|V|^{2}\right)$ but it is $O(|V|)$ in planar graphs.

Proof. If G is a forest, then $|E(G)|=|V(G)|-1 \leq 2|V(G)|-4 \leq 3|V(G)|-6$ whenever $|V(G)| \geq 3$ so the proposition holds.

Let us assume G contains a circuit. Define $X:=\{(f, e): e$ is an edge in the boundary of $f\}$. We can count X in two ways:

1. $|X|=\sum_{f \in F(G)}$ (number of edges in the boundary of $\left.f\right) \geq 3|F|$ as each face boundary contains a circuit hence the size at least 3 .
2. $|X|=\sum_{e \in E}$ (number of faces with e in the boundary) $\leq 2|E(G)|$ because each edge is in at most 3 face boundaries.

Thus, $3|F| \leq|X| \leq 2|E| \Longrightarrow|F| \leq \frac{2}{3}|E|$. It follows from Euler's Formula that

$$
2=|V|-|E|+|F| \leq|V|-|E|+\frac{2}{3}|E| \Longrightarrow|E| \leq 3|V|-6
$$

Adjusting the lower bound $3|F|$ above will show the proposition for triangle-free planar graphs.
Cor. 2.2.3 $K_{3,3}$ and K_{5} are non-planar.
Proof.

- $K_{3,3}$ is triangle free with $|V|=6$ and $|E|=9$ but $2|V|-4=8<9$.
- K_{5} has $|V|=5$ and $|E|=10$ but $3|V|-6=9<|E|$.

Remark. Note that deleting one edge makes both graphs planar.

3 Edge Subdivision

Def. 3.1.1 Let e be an edge of a graph G.

- The graph H obtained from G by subdividing e is the graph obtained from G by deleting the edge e, adding a new vertex v_{e}, and adding new edges $v_{e} u_{1}$ and $v_{e} u_{2}$ where u_{1} and u_{2} (possibly equal, i.e., a loop) were original ends of e.
- A subdivision of a graph G is any graph obtained from G by repeatedly subdividing edges.

Remarks.

1. $\operatorname{deg}_{H}\left(v_{e}\right)=2$: we explicitly gave it two neighbours, which were the ends of e.
2. G is isomorphic to H / e_{1} and H / e_{2} (contradicting either new edge reverses the subdivision).
3. "Repeatedly": $0,1,2, \ldots$ times. We want G to be a subdivision of itself.

Prop. 3.1.2 G is planar if and only if H is planar. In fact, G and H have plane drawings that correspond to the same set of points in \mathbb{R}^{2}.

Cor. 3.1.3 If H is non-planar and G is a subdivision of H, then G is non-planar.
Cor. 3.1.4 If G has a subdivision of a non-planar graph H as a subgraph, then G is non-planar.
Remark. If this holds, then we say H is a topological minor of G. (See later sections.)
Ex. 3.1.5 We can find a $K_{3,3}$ in a subdivided Petersen graph.

4 Facial Circuits

Recall that if G is a 2-connected loopless plane graph, every face boundary is a circuit.
Lemma. 4.1.1 If f is a face of a plane graph G, then there is a plane graph G^{+}obtained by adding a vertex v inside the face f and an edge from v to each vertex in the boundary of f.

Thm. 4.1.2 If G is a simple, 3 -connected, plane graph, then a circuit C of G is the boundary of a face if and only if C is induced (i.e., there is no other edge between any two vertices in C) and $G-C$ is connected (i.e., C is a non-separating circuit).

Remark. Observe neither of these two properties has anything to do with the specific planar drawing; they are purely graph-theoretic/combinatorial properties.

Proof.

\Longleftarrow : Let C be a circuit so that C is an induced subgraph and $G-C$ is connected

Let f_{1}, f_{2} be the two faces of the plane graph C. If f_{1}, f_{2} both contain points of the drawing of G , then, since C has no chords, each contains a vertex of the drawing of G. Call the vertices $v_{1} \in f_{1}$ and $v_{2} \in f_{2}$. By the Jordan curve theorem, there is no v_{1}, v_{2}-path in $G-C$, a contradiction since $G-C$ is connected. Therefore either f_{1} or f_{2} contains no vertex of G, so it is a face of G with boundary C.
\Longrightarrow : Conversely, let G be a simple, 3-connected, plane graph and C be a circuit that is a boundary of a face f. Construct the plane graph G^{+}by adding a new vertex $v^{+} \in f$ as in the lemma. We will show that C must be induced and non-separating, or G is not planar.

Suppose C is not induced. Let x, u, y, v be (a subset of) the vertices on C given in cyclic order, and suppose a chord $x y \in E(G)$ exists. Note that $|V(C)| \geq 4$ and there exists vertices u, v in different components of $C-\{x, y\}$. Since G is 3 -connected, there is a path P in $G-x y$ with one end u and the other end v where u and v are given above.

Now, the path P, the chord $x y$, the path around C from x to u to y to v, and the edge from v^{+} to all of $\{x, u, y, v\}$ gives a subgraph of G^{+}that is a subdivision of K_{5}, where $\left\{x, u, y, v, v^{+}\right\}$are the terminals. Therefore, G^{+}is non-planar, a desired contradiction.
(Note the term terminal is useful when describing a subdivision.)
We now show $G-C$ is connected. Suppose that $G-C$ is disconnected. Let x, y be vertices in different components of $G-C$.

By 3-connectedness and Menger's theorem, there are 3 internally disjoint x, y-paths P_{1}, P_{2}, P_{3} in G. None of these is a path in $G-C$, so there is a vertex $u_{i} \in V(C) \cap V\left(P_{i}\right)$ for each $i \in\{1,2,3\}$. Now the paths from x to u_{i} to y and the edges from v^{+}to u_{1}, u_{2}, u_{3} form a $K_{3,3}$ subdivision that is a subgraph of G^{+}, contradicting the planarity of G^{+}.

5 Minors and Topological Minors

5.1 Graph Minors

Def. 5.1.1 A graph G has a graph H as a minor if H can be obtained from G by deleting vertices/edges and contracting edges.

Prop. 5.1.2 G has an H-minor if and only if there is a function φ that

- maps vertices of H to connected subgraphs of G,
- maps edges of H to edges of G,
such that
- the subgraphs $\{\varphi(v): v \in V(H)\}$ are vertex-disjoint,
- for each $e \in E(H)$ with ends u and v, the edge $\varphi(e)$ has ends in $\varphi(u)$ and $\varphi(v)$,
- φ is injective (i.e., you cannot map different edges from H to the same edge in G).

5.2 Topological Minors

Recall graph subdivision:

H

G

Def. 5.2.1 G has H as a topological minor if some subdivision of H is contained in G as a subgraph.

Prop. 5.2.2 H is a topological minor of G if and only if there is a function φ that

- maps vertices of H to vertices of G,
- maps edges of H to paths of G,
such that
- the vertices $\{\varphi(v): v \in V(H)\}$ are distinct vertices of G (terminals),
- for each edge e of H with ends u and v, the path $\varphi(e)$ has ends $\varphi(u)$ and $\varphi(v)$ in G, (or $\varphi(e)$ is a circuit containing $\varphi(u)$ if e is a loop of $u)$, and
- paths $\varphi(e)$ and $\varphi\left(e^{\prime}\right)$ only intersect at a vertex x if $x=\varphi(u)$ and u is a common end of e and e^{\prime} in H. (i.e., the paths are disjoint except where they are required to intersect.)

5.3 Minor vs. Topological Minor

Prop. 5.3.1 If G has an H-topological minor, then G has an H-minor.
Proof. See assignment.
Remark. The converse is not necessarily true. For example, the K_{5} in Petersen graph is a minor but not a topological one.

Prop. 5.3.2 If H has a maximum degree of 3 and G has an H-minor, then G has a topological H-minor.

Proof. See A3.
Thm. 5.3.3 G has a K_{5} or $K_{3,3}$ as a topo minor if and only if G has a K_{5} or $K_{3,3}$ as a minor.

- K_{5} minor $\Longrightarrow K_{5}$ or $K_{3,3}$ topological minor.
- $K_{3,3}$ minor $\Longrightarrow K_{3,3}$ topological minor. See A3.

Proof. If G a topological minor in $\left\{K_{3,3}, K_{5}\right\}$, then it has a minor in $\left\{K_{3,3}, K_{5}\right\}$ by Prop. 5.3.1. If it has a $K_{3,3}$ minor, it has a topological $K_{3,3}$ by proposition Prop. 5.3.2. It remains to show that if G has a K_{5}-minor, it has a minor in $\left\{K_{3,3}, K_{5}\right\}$.

Let G be a counterexample with as few edges as possible. If G has ≤ 10 edges, then G is just a K_{5} plus isolated vertices, so G has a topological K_{5}-minor. Thus G has ≥ 11 edges, so there is an edge e of G such that $G-e$ or G / e has a K_{5}-minor.

By minimality of G (induction), $G-e$ or G / e has a K_{5} or $K_{3,3}$ topological minor. If H is a topological minor of $G-e$, then H is also a topological minor of G, a contradiction. So H is a topological minor of G / e.

Let u, v be the ends of e, let $x=x_{u v}$ be the identified vertex in G / e. Let T be the set of terminal vertices corresponding to the topological copy of H inside G. Let \mathcal{P} be the set of paths between the terminals that give H. We want to show that "uncontracting" $x_{u v}$ does not violate the claim. If x is not in any paths in \mathcal{P}, then T and \mathcal{P} give a topological copy of H inside G, so G is not a counterexample. Contradiction.

If x is an internal vertex of a path $P \in \mathcal{P}$, then there is a path P^{\prime} of G with the same ends as P such that $E(P) \subseteq E\left(P^{\prime}\right) \subseteq E(P) \cup\{e\}$. Now replacing \mathcal{P} with $(\mathcal{P} \backslash\{P\}) \cup\left\{P^{\prime}\right\}$ gives a topological copy of H in G, again a contradiction.

Otherwise, let $x \in T$. So x corresponds to a vertex a of H and each edge f of H incident with a corresponds to a path $P_{f} \in \mathcal{P}$ with x as an end. There is also a path P_{f}^{\prime} of G with $E\left(P_{f}\right)=E\left(P_{f}^{\prime}\right)$ and either u or v as a end.

If one of $u, v($ say $u)$ is an end of ≤ 1 of the paths P_{f}^{\prime}, then we can replace this P_{f}^{\prime} with either itself of $P_{f}^{\prime} \cup\{e\}$ to give a topological copy of H in G. If this is not the case, then each of u and v is an end of ≥ 2 of the paths in P_{f}^{\prime}. Since the number of P_{f}^{\prime} is equal to the degree of a in H and $H \in K_{e, e}, K_{5}$, it follows that $H=K_{5}$ and each of u and v is an end of exactly two P_{f}^{\prime}. So G contains a topological $K_{3,3}$, contrary to the choice of G.

6 Kuratowski's Thm.

Thm. 6.1.1: Kuratowski's Theorem. The following are equivalent:

1. G is planar.
2. G has no topological minor in $\left\{K_{3,3}, K_{5}\right\}$.
3. G has no minor in $\left\{K_{3,3}, K_{5}\right\}$.

We proved that (2) iff (3) in Section 5. We also know 1 implies 2 and 1 implies 3 as topological minors and minors of planar graphs are planar. It remains to show that 2 implies 1 or 3 implies 1 to complete the proof for Kuratowski's Thm..

We will first prove (the contrapositive of) 3 implies 1 for 3 -connected graphs, then come back for general (i.e., non-3-connected) graphs.

Lemma 6.1.2 If G is 3 -connected and non-planar then G has a minor in $\left\{K_{5}, K_{3,3}\right\}$.
Let G be a counterexample with $|E(G)|$ minimized. Then:

- G is non-planar.
- G has no K_{5} or $K_{3,3}$-topological minor.
- G is simple (otherwise, for a parallel edge or loop $e, G-e$ is planar by minimality, so G is planar).
- $|V(G)| \geq 5$ (since every graph on ≤ 4 vertices is planar).

Since $|V(G)| \geq 5$, there is an edge e with ends u, v so that G / e is 3 -connected. Since G / e has no K_{5} or $K_{3,3}$-minor and is not a counterexample, it is planar.

Let x be the identified vertex in G / e. Since G / e is 3 -connected, $(G / e)-x$ is 2 -connected, so each face of $(G / e)-x$ is bounded by a circuit.

Let C be the circuit bounding the face containing x (in some drawing of G / e). So every neighbour of x in G / e is a vertex of C.

We pause for a bit and prove the following lemma first.
Lemma 6.1.3 (Circle Lemma) Given $A \subseteq V(C)$, a path contained in $V(C)$ with both endpoints in A but no internal vertices in A is an A-interval. If A, B are sets of vertices in a circuit C, exactly one of the following holds:

1. $|A \cup B| \leq 2$.
2. $|A \cap B| \geq 3 .\left(K_{5}\right)$
3. There are distinct vertices $a_{1}, b_{1}, a_{2}, b_{2}$ in cyclic order around C so that $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B .\left(K_{3,3}\right)$
4. There is an A-interval containing B or vice versa.

Proof. WLOG, assume $|A| \leq|B|$. Suppose false.
If $|A| \leq 1$, then either $|B| \leq 1$ or there is a B-interval containing A, so (1) or (4) holds.
Now assume $|A| \geq 2$.
If there is some $b_{1} \in B \backslash A$, then b_{1} is contained in an A-interval I with ends a_{1}, a_{2}.
If $B \subseteq I$ then (4) holds. Otherwise there is some $b_{2} \in B \backslash I$, now $a_{1}, b_{1}, a_{2}, b_{2}$ give (3).
Otherwise $B \subseteq A$. Then $|A| \leq|B| \Longrightarrow B=A \Longrightarrow A \cap B=A \cup B$, and thus (1) or (2) holds.

Apply the circle lemma where $A=\{x \in N(u): x \in C\}$ and $B=\{x \in N(v): x \in C\}$. Outcomes (2) and (3) give a K_{5}-topological-minor or a $K_{3,3}$-topological minor, respectively. Outcome (1) gives $|A \cup B| \leq 2$ and $A \cup B$ is a separate in G / e, which contradicts 3 -connectedness. Outcome (4) gives a planar drawing of G, a contradiction.

Lemma 6.1.4 If G is a planar graph, then
0 . G has a plane drawing contained in $\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$. (If I have a plane graph, I can draw it in the right half of the plane.)

1. For every vertex v of G, G has a plane drawing such that v is at the origin, and every other vertex has strictly positive x-coordinate. (Given a plane graph and a vertex, I can put the vertex at the origin and every other vertex is on the right half of the plane.)
2. For every pair of adjacent vertices u and v of G, there is a plane drawing of G where u is at the origin, v is at $(0,1)$, and every other point in the drawing has positive x-coordinate. (Given a plane graph and a pair of vertices u, v, I can put u at the origin, v at $(0,1)$, and every other vertex is on the right half of the plane.)

Proof Sketch. (of (2))

Use stereographic projection to find a drawing of G where the edge from u to v is on the unbounded face, and we shift this drawing so that all x-coordinates are positive. Move u and v to the desired positions and reroute edges consistently.

We are now ready for the last step of Kuratowski's Thm..
Thm. 6.1.5 If G has no $K_{3,3}$-minor or K_{5}-minor, then G is planar.
Proof. Let G be a minimal counterexample. Then G is not 3 -connected (we already proved the 3 connected case). Note that every proper (deleted or contracted at least one edge) minor of G is not a counterexample, so it is planar.

If G is disconnected, then let C be a component of G.

Now $G-C$ and C are planar, so G is planar by proposition. Thus G is connected.
If G is not 2-connected, then G has a cut vertex v. Let G_{1}, G_{2} be graphs intersecting at only v, so $G=G_{1} \cup G_{2}$.

Using Lemma 6.1.4.(1), we can draw G_{1} so that v is at the origin and everything else is negative, and G_{2} where v is at the origin and everything else is positive. Then G again is planar. Thus G is 2-connected.

If G is not 3 -connected, then since it is 2-connected, it has vertices u, v so that $G-\{u, v\}$ is disconnected. Let G_{1}, G_{2} be graphs on at least three vertices with intersection $\{u, v\}$ such that $G_{1} \cup G_{2}=G$.

Let $G_{1}^{\prime}, G_{2}^{\prime}$ be obtained from G_{1}, G_{2} by adding a new edge e from u to v. Since G is 2-connected, G_{2} is connected, so contains a path P_{2} from u to v. Therefore $G_{1} \cup P_{2}$ has G_{1}^{\prime} as a minor, so G_{1}^{\prime} is a minor of G. Similarly, G_{2}^{\prime} is a minor of G. Since they are proper minor of G (since they have less vertices than $G), G_{1}^{\prime}$ and G_{2}^{\prime} have no $K_{3,3^{-}}$or K_{5}-minors; they are no counterexamples, so they are planar. Now glue together two drawings using prop (2) as before. This gives a drawing of a graph with G as a subgraph.

The proof is complete.
Having proved (3) implies (1), we finished the proof for Kuratowski's Thm.: TFAE:

1. G is planar.
2. G has no topological minor in $\left\{K_{3,3}, K_{5}\right\}$.
3. G has no minor in $\left\{K_{3,3}, K_{5}\right\}$.

Remark. Can we decide if a graph is planar in polynomial time (in $|V|$)?
We can test 3 -connectedness by deleting every positive set of 1 or 2 vertices and using BFS to check connectedness. Given $G 3$-connected, find an edge e s.t. G / e is 3 -connected. (Guess e, check if G / e is 3 -connected.) Recursively run algorithm on G / e (after simplifying). If the algorithm gives a $K_{3,3}$ or K_{5} minor, then this is a minor of G and G is not planar. Otherwise, the algorithm gives a planar drawing of G / e.

$7 \quad$ Straight Line Drawing

The following are extra material:

- Every simple planar graph has a drawing where edge are straight line segments.
- Every 3-connected planar graph has a drawing where edges are straight line segments and faces convex polygons.
- Given a circuit C of a 3-connected plane graph $G=(V, E)$, a spring embedding of G is a function $\varphi: V \rightarrow \mathbb{R}^{2}$ such that
- The vertices of C are mapped to a prescribed convex polygon.
- $\varphi(u)=\frac{1}{\operatorname{deg}(u)} \sum_{v \text { adjacent to } u} \varphi(v)$ for all $u \in V \backslash C$.
- Spring embeddings exist and all vertices are in the interior of the polygon.
- A spring embeddings of a 3-connected simple planar graph G gives a straight line drawing with convex faces.

