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1 Introduction  

1.1 Basic Definitions  

Def. 1.1.1  A plane graph is a pair  where

 is a finite subset of ,

each  is an arc whose endpoints are in ,

the interior of the edges in  are disjoint from each other, and from .

A plane graph  naturally corresponds to the graph . 

Def. 1.1.2  We say that  is the abstract graph defined by  and  is a plane drawing or plane 

embedding of . A graph is planar if it has a plane drawing.

Def. 1.1.3  

A curve is a subset of  that is homeomorphic to the unit interval , i.e., a set  

of the form , where  is a continuous injective function. 

A closed curve is a set of the form  where  is continuous and injective 

on the domain  with .

A curve is polygonal if it is a union of a finite number of straight line segments.

Call a polygonal curve an arc.

Call a polygonal closed curve a polygon.

Remark.  The class of graphs that have a plane drawing where the edges are curves is equal to 

the class where the edges are required to be polygonal.

Def. 1.1.4  Let  be an arc between  and , we denote the point set , the interior of 

, by .

1.2 Topology  

Def. 1.2.1  Recall the following definitions from Math 247:

An open disc in  is of the form  with radius  and center .

A set  is open if every  is contained in an open disc  with . 

A set  is closed if  is open.

A set  is compact if it is closed and bounded.

Remark.  Recall the following results from Math 247:

Any finite union of open sets is still open.

Any finite union of closed sets is still closed.
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Any finite union of bounded sets is still bounded.

Any finite union of compact sets is still bounded.

Remark.  Recall the following results about compactness from Math 247:

Topological Compactness: If  is a collection of open sets and and  is a compact set where 

, then there is a finite subset  s.t. . 

Sequential Compactness: If  is compact and  is a sequence contained in , 

then there is a convergent subsequence  of . 

Remark.  Review Math 247 Part I Notes. The last two propositions above can be rewritten as:

A set  is compact if every open cover of  has a finite subcover.

(BWT:) Every bounded sequence in  has a convergent subsequence.

Def. 1.2.2  Two points  are linked or connected in a set  if there exists an arc 

contained in  with endpoints .

Remark.  Connectedness in plane graphs gives us an equivalence relationship; its equivalences are 

the components of . Intuitively, linkedness "partitions"  into separate regions. 

Def. 1.2.3  The frontier of a set  is the set  of all points  such that every 

neighbourhood of  meets both  and .

Remark.  Note that if  is open then its frontier lies in . 

Remark.  The frontier of a region  of  has two important properties:

1. If  lies on the frontier of , then  can be linked to some point in  by a straight line 

segment whose interior lies wholly inside . As a consequence, any two points on the 

frontier of  can be linked by an arc whose interior lies in .

2. The frontier of  separates  from the rest of . 

Prop. 1.2.4  For every polygon , the set  has exactly two regions. Each of these 

has the entire polygon  as its frontier. 

Prop. 1.2.4 (Class Ver.)  If  is a plane graph whose abstract graph is a circuit, then  has 

exactly two faces.

Ex. 1.2.5  Let  be three arcs (vertical), between the same two endpoints but otherwise 

disjoint. Then the following are true:

http://david-duan.me/assets/course-notes/Math247-1.pdf


1.  has exactly three regions, with frontiers , , and .

2. If  is an arc between a point in  and a point in  whose interior lies in the region of 

 that contains , then . 
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2 Faces and Euler's Formula  

2.1 Faces  

Def. 2.1.1  Let  be a plane graph.

The set  is open; its regions are the faces of . 

Since  is bounded, i.e., lies inside some sufficiently large disc , exactly one of its faces is 

unbounded: the face that contains . We call this the outer face (or unbounded face) of 

; the other faces are inner faces. We denote the set of faces of  by .

Remark.  Throughout this section, we use  to denote the set of points in a vertex of edge of the 

plane graph of . (Warning: abuse of notation).

Lemma. 2.1.2  Let  be disjoint sets, each the union of finitely many points and 

arcs, and let  be an arc between a point in  and one in  whose interior  lies in a region 

 of . Then  is a region of . In other words,  does not 

separate the region  of .  

Proof.  By intuition.  

Prop. 2.1.3  Let  be a plane graph and  an edge of .

1. If  is the frontier of a face of , then either  or .

2. If  lies on a cycle , then  lies on the frontier of exactly two faces of , and these are 

contained in distinct faces of . 

3. If  lies on no cycle (i.e.,  is a cut edge), then  lies on the frontier of exactly one face of .

Proof.  Consider one point . We show that  lies on the frontier of either exactly two faces 

or exactly one, according as  lies on a cycle in  or not. We then show that every other point in 

 lies on the frontier of exactly the same faces as . Then the endpoints of  will also lie on the 

frontier of these faces, simply because every neighbourhood of an endpoint of  is also the 

neighbourhood of an inner point of . 

 is the union of finitely many straight line segments; we may assume that any two of these 

intersect in at most one point. Around every point  we can find an open disc , with 

center , which meets only those (one or two) straight line segments that contain . 
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Let us pick an inner point  from a straight line segment . Then , so 

 is the union of two open half-discs. Since these half-discs do not meet , they each lie in 

a face of . Let us denote these faces by  and ; they are the only faces of  with  on their 

frontier, and they may coincide. 

If  lies on a cycle , then  meets both faces of  (Jordan). Since  and  are 

contained in faces of  (check with an example), . If  does not lie on any cycle, then  is 

a bridge and thus links two disjoint point sets  as in Lemma above, with . 

Clearly,  is the subset of a face  of . By Lemma,  is a face of . But  

contains  and  by definition of , so  since  and  are all faces of . 

Now consider any other point . Let  be the arc from  to  contained in . Since  is 

compact, finitely many of the discs  with  cover . Let us enumerate these discs as 

 in the natural order of the centers along ; adding  or  as necessary, we may 

assume that  and . By induction on , we can easily prove that every point 

 can be linked by an arc inside  to a point ; then  and  

are equivalent in .  

Hence, every point of  lies in  or in , so  cannot lie on the frontier of any other face 

of . Since both half-discs of  can be linked to  this way (swap the roles of  and 

), we find the  lies on the frontier of both  and .  

Cor. 2.1.4  The frontier of a face  is a point set of a subgraph of . 

Def. 2.1.5  The subgraph of  whose point set is the frontier of a face  is called the boundary 

of .

Prop. 2.1.6  If  is a plane forest, then  has exactly one face whose boundary is .

Proof.  By intuition.  

Prop. 2.1.7  If a plane graph  has different faces with the same boundary, then  is a cycle. 

Proof.  Let  be a plane graph and  be the boundary of distinct faces  of . Since  

and  are also faces of , the proposition above implies that  contains a cycle . By prop,  

and  are contained in different faces of . Since  and  both have all of  as boundary, this 



implies ; any further vertex or edge of  would lies in one of the faces of  and hence not 

on the boundary of the other. Thus,  and  are distinct faces of . As  has only two faces, it 

follows that  and hence .  

Prop. 2.1.8  Let  be a plane graph and  be a path of , so that  is obtained from a plane 

graph  by adding the graph . Then

1. There exists a single face  of  that contains the interior of , 

2. Each face of  other than  is a face of ,

3. The face of  containing  is the union of two faces  of  and the interior of .

Moreover, if  is bounded by a circuit, so are  and .

Cor. 2.1.9    has exactly one more face than .

Prop. 2.1.10  In a 2-connected, loopless graph, every face boundary is a circuit.

Proof.  Recall that there are (plane) graphs  so that  is a circuit, , and each 

 is obtained from  by adding a path. The proposition shows that if each of  is bounded 

by a circuit, then the same is true for . An induction gives the proof.  

Prop. 2.1.11  If  is a face of a plane graph  that is not a forest, then the boundary of  

contains a circuit of .

2.2 Euler's Formula  

Thm. 2.2.1  If  is a connected plane graph, then .

Proof.  Recall that a tree on  vertices has  edges. Let  be a counterexample with as few 

edges as possible. If  has no circuit, then  is a tree, so . Moreover, trees 

have exactly one face, so  and the formula holds. Thus  cannot be a tree, i.e., it has 

a circuit. Let  be an edge contains in a circuit of . Note that  is connected. By 

the lemma,  as  is not a counterexample. So

af://n135


which contradicts the choice of  as a counterexample.  

Cor. 2.2.2  

If  is a simple planar graph with , then .   

If  is also triangle-free, then .  

Remark.  From this, we see that the number of edges in a general graph is  but it is 

 in planar graphs.

Proof.  If  is a forest, then  whenever 

 so the proposition holds. 

Let us assume  contains a circuit. Define . We 

can count  in two ways:

1.  as each face boundary 

contains a circuit hence the size at least .

2.  because each edge is in at 

most  face boundaries. 

Thus, . It follows from Euler's Formula that

Adjusting the lower bound  above will show the proposition for triangle-free planar graphs.   

Cor. 2.2.3    and  are non-planar. 

Proof.  

 is triangle free with  and  but .

 has  and  but . 

Remark.  Note that deleting one edge makes both graphs planar. 
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3 Edge Subdivision  

Def. 3.1.1  Let  be an edge of a graph .   

The graph  obtained from  by subdividing  is the graph obtained from  by deleting 

the edge , adding a new vertex , and adding new edges  and  where  and  

(possibly equal, i.e., a loop) were original ends of .   

A subdivision of a graph  is any graph obtained from  by repeatedly subdividing edges.  

Remarks.

1. : we explicitly gave it two neighbours, which were the ends of .

2.  is isomorphic to  and  (contradicting either new edge reverses the subdivision).

3. "Repeatedly":  times. We want  to be a subdivision of itself. 

Prop. 3.1.2    is planar if and only if  is planar. In fact,  and  have plane drawings that 

correspond to the same set of points in .   

Cor. 3.1.3  If  is non-planar and  is a subdivision of , then  is non-planar.   

Cor. 3.1.4  If  has a subdivision of a non-planar graph  as a subgraph, then  is non-planar.

Remark.  If this holds, then we say  is a topological minor of . (See later sections.)

Ex. 3.1.5  We can find a  in a subdivided Petersen graph.   
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4 Facial Circuits  

Recall that if  is a 2-connected loopless plane graph, every face boundary is a circuit.

Lemma. 4.1.1  If  is a face of a plane graph , then there is a plane graph  obtained by 

adding a vertex  inside the face  and an edge from  to each vertex in the boundary of .

Thm. 4.1.2  If  is a simple, 3-connected, plane graph, then a circuit  of  is the boundary of 

a face if and only if  is induced (i.e., there is no other edge between any two vertices in ) and  

 is connected (i.e.,  is a non-separating circuit). 

Remark.  Observe neither of these two properties has anything to do with the specific planar 

drawing; they are purely graph-theoretic/combinatorial properties.

Proof.  

 : Let  be a circuit so that  is an induced subgraph and  is connected

Let  be the two faces of the plane graph . If  both contain points of the drawing of 

, then, since  has no chords, each contains a vertex of the drawing of . Call the vertices 

 and . By the Jordan curve theorem, there is no -path in , a 

contradiction since  is connected. Therefore either  or  contains no vertex of , so it is 

a face of  with boundary .

 : Conversely, let  be a simple, 3-connected, plane graph and  be a circuit that is a 

boundary of a face . Construct the plane graph  by adding a new vertex  as in the 

lemma. We will show that  must be induced and non-separating, or  is not planar.
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Suppose  is not induced. Let  be (a subset of) the vertices on  given in cyclic order, 

and suppose a chord  exists. Note that  and there exists vertices  in 

different components of . Since  is 3-connected, there is a path  in  with one 

end  and the other end  where  and  are given above.

Now, the path , the chord  the path around  from  to  to  to , and the edge from  

to all of  gives a subgraph of  that is a subdivision of , where  are 

the terminals. Therefore,  is non-planar, a desired contradiction.

(Note the term terminal is useful when describing a subdivision.)

We now show  is connected. Suppose that  is disconnected. Let  be vertices in 

different components of . 

By 3-connectedness and Menger's theorem, there are 3 internally disjoint -paths  in 

. None of these is a path in , so there is a vertex  for each . 

Now the paths from  to  to  and the edges from  to  form a  subdivision that 

is a subgraph of , contradicting the planarity of .  
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5 Minors and Topological Minors  

5.1 Graph Minors  

Def. 5.1.1  A graph  has a graph  as a minor if  can be obtained from  by deleting 

vertices/edges and contracting edges.

          

Prop. 5.1.2    has an -minor if and only if there is a function  that 

maps vertices of  to connected subgraphs of , 

maps edges of  to edges of , 

such that

the subgraphs  are vertex-disjoint,

for each  with ends  and , the edge  has ends in  and , 

 is injective (i.e., you cannot map different edges from  to the same edge in ).

5.2 Topological Minors  

Recall graph subdivision:

Def. 5.2.1    has  as a topological minor if some subdivision of  is contained in  as a 

subgraph.

Prop. 5.2.2    is a topological minor of  if and only if there is a function  that 

maps vertices of  to vertices of ,  
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maps edges of  to paths of , 

such that

the vertices  are distinct vertices of  (terminals),

for each edge  of  with ends  and , the path  has ends  and  in , (or 

 is a circuit containing  if  is a loop of ), and

paths  and  only intersect at a vertex  if  and  is a common end of  

and  in . (i.e., the paths are disjoint except where they are required to intersect.)

5.3 Minor vs. Topological Minor  

Prop. 5.3.1  If  has an -topological minor, then  has an -minor.

Proof. See assignment.

Remark. The converse is not necessarily true. For example, the  in Petersen graph is a minor 

but not a topological one.

Prop. 5.3.2  If  has a maximum degree of  and  has an -minor, then  has a topological 

-minor.

Proof.  See A3.

Thm. 5.3.3    has a  or  as a topo minor if and only if  has a  or  as a minor. 

 minor  or  topological minor.

 minor  topological minor. See A3.

Proof.  If  a topological minor in , then it has a minor in  by Prop. 5.3.1. 

If it has a  minor, it has a topological  by proposition Prop. 5.3.2. It remains to show 

that if  has a -minor, it has a minor in . 

Let  be a counterexample with as few edges as possible. If  has  edges, then  is just a 

 plus isolated vertices, so  has a topological -minor. Thus  has  edges, so there is an 

edge  of  such that  or  has a -minor. 

By minimality of  (induction),  or  has a  or  topological minor. If  is a 

topological minor of , then  is also a topological minor of , a contradiction. So  is a 

topological minor of . 

Let  be the ends of , let  be the identified vertex in . Let  be the set of terminal 

vertices corresponding to the topological copy of  inside . Let  be the set of paths between 

the terminals that give . We want to show that "uncontracting"  does not violate the claim.

If  is not in any paths in , then  and  give a topological copy of  inside , so  is not a 

counterexample. Contradiction.
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If  is an internal vertex of a path , then there is a path  of  with the same ends as  

such that . Now replacing  with  gives a 

topological copy of  in , again a contradiction.

Otherwise, let . So  corresponds to a vertex  of  and each edge  of  incident with  

corresponds to a path  with  as an end. There is also a path  of  with 

 and either  or  as a end.

If one of  (say ) is an end of  of the paths , then we can replace this  with either 

itself of  to give a topological copy of  in . If this is not the case, then each of  and  

is an end of  of the paths in . Since the number of  is equal to the degree of  in  and 

, it follows that  and each of  and  is an end of exactly two . So  

contains a topological , contrary to the choice of .  
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6 Kuratowski's Thm.  

Thm. 6.1.1: Kuratowski's Theorem.  The following are equivalent:

1.  is planar.

2.  has no topological minor in .

3.  has no minor in . 

We proved that (2) iff (3) in Section 5. We also know 1 implies 2 and 1 implies 3 as topological 

minors and minors of planar graphs are planar. It remains to show that 2 implies 1 or 3 implies 1 

to complete the proof for Kuratowski's Thm..

We will first prove (the contrapositive of) 3 implies 1 for 3-connected graphs, then come back for 

general (i.e., non-3-connected) graphs.

Lemma 6.1.2   If  is 3-connected and non-planar then  has a minor in .

Let  be a counterexample with  minimized. Then:

 is non-planar.

 has no  or -topological minor.

 is simple (otherwise, for a parallel edge or loop ,  is planar by minimality, so  is 

planar).

 (since every graph on  vertices is planar).

Since , there is an edge  with ends  so that  is -connected. Since  has no 

 or -minor and is not a counterexample, it is planar. 

Let  be the identified vertex in . Since  is -connected,  is -connected, so each 

face of  is bounded by a circuit. 

Let  be the circuit bounding the face containing  (in some drawing of ). So every 

neighbour of  in  is a vertex of . 

We pause for a bit and prove the following lemma first.

Lemma 6.1.3 (Circle Lemma)  Given , a path contained in  with both 

endpoints in  but no internal vertices in  is an -interval. If  are sets of vertices in a 

circuit , exactly one of the following holds:

1. .

2. . ( )

3. There are distinct vertices  in cyclic order around  so that  and 

. ( )

4. There is an -interval containing  or vice versa.
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Proof.  WLOG, assume . Suppose false. 

If , then either  or there is a -interval containing , so (1) or (4) holds. 

Now assume .

If there is some , then  is contained in an -interval  with ends . 

If  then (4) holds. Otherwise there is some , now  give (3). 

Otherwise . Then , and thus (1) or (2) holds. 

Apply the circle lemma where  and . Outcomes 

(2) and (3) give a -topological-minor or a -topological minor, respectively. Outcome (1) 

gives  and  is a separate in , which contradicts 3-connectedness. Outcome 

(4) gives a planar drawing of , a contradiction. 

Lemma 6.1.4  If  is a planar graph, then

0.  has a plane drawing contained in . (If I have a plane graph, I can 

draw it in the right half of the plane.)

1. For every vertex  of ,  has a plane drawing such that  is at the origin, and every other 

vertex has strictly positive -coordinate. (Given a plane graph and a vertex, I can put the 

vertex at the origin and every other vertex is on the right half of the plane.)

2. For every pair of adjacent vertices  and  of , there is a plane drawing of  where  is at 

the origin,  is at , and every other point in the drawing has positive -coordinate. 

(Given a plane graph and a pair of vertices , I can put  at the origin,  at , and 

every other vertex is on the right half of the plane.)

Proof Sketch. (of (2))



Use stereographic projection to find a drawing of  where the edge from  to  is on the 

unbounded face, and we shift this drawing so that all -coordinates are positive. Move  and  to 

the desired positions and reroute edges consistently. 

We are now ready for the last step of Kuratowski's Thm..

Thm. 6.1.5  If  has no -minor or -minor, then  is planar.

Proof.  Let  be a minimal counterexample. Then  is not 3-connected (we already proved the 3-

connected case). Note that every proper (deleted or contracted at least one edge) minor of  is 

not a counterexample, so it is planar. 

If  is disconnected, then let  be a component of . 

Now  and  are planar, so  is planar by proposition. Thus  is connected.

If  is not 2-connected, then  has a cut vertex . Let  be graphs intersecting at only , 

so . 

Using Lemma 6.1.4.(1), we can draw  so that  is at the origin and everything else is 

negative, and  where  is at the origin and everything else is positive. Then  again is planar. 

Thus  is 2-connected.

If  is not 3-connected, then since it is 2-connected, it has vertices  so that  is 

disconnected. Let  be graphs on at least three vertices with intersection  such that 

. 



Let  be obtained from  by adding a new edge  from  to . Since  is 2-connected, 

 is connected, so contains a path  from  to . Therefore  has  as a minor, so  

is a minor of . Similarly,  is a minor of . Since they are proper minor of  (since they have 

less vertices than ),  and  have no - or -minors; they are no counterexamples, so 

they are planar. Now glue together two drawings using prop (2) as before. This gives a drawing of 

a graph with  as a subgraph. 

The proof is complete. 

Having proved (3) implies (1), we finished the proof for Kuratowski's Thm.: TFAE:

1.  is planar.

2.  has no topological minor in .

3.  has no minor in . 

Remark.  Can we decide if a graph is planar in polynomial time (in )?

We can test 3-connectedness by deleting every positive set of 1 or 2 vertices and using BFS to 

check connectedness. Given  3-connected, find an edge  s.t.  is 3-connected. (Guess , check 

if  is 3-connected.) Recursively run algorithm on  (after simplifying). If the algorithm 

gives a  or  minor, then this is a minor of  and  is not planar. Otherwise, the algorithm 

gives a planar drawing of .
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7 Straight Line Drawing  

The following are extra material:

Every simple planar graph has a drawing where edge are straight line segments.

Every 3-connected planar graph has a drawing where edges are straight line segments and 

faces convex polygons.

Given a circuit  of a 3-connected plane graph , a spring embedding of  is a 

function  such that 

The vertices of  are mapped to a prescribed convex polygon.

 for all .

Spring embeddings exist and all vertices are in the interior of the polygon.

A spring embeddings of a 3-connected simple planar graph  gives a straight line drawing 

with convex faces.
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