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1 Transshipment Problem

1.1 Transshipment Problem

1.1.1 Describe the transshipment problem.

1.1.2 What are the primal and dual LP for TP (explicit equations, no matrix)? 

1.1.3 Define the incidence matrix and express LPs using the incidence matrix.

1.1.4 What's the complementary slackness conditions for TP?

1.2 Cycle, Spanning Tree, and Basis

1.2.1 Prove: The columns of $M$ corresponding to a cycle are linearly dependent.

1.2.2

Prove: If  is a subset of the arcs whose corresponding columns in  are linearly dependent, then  

contains a cycle. (Hint: Show every vertex of the graph has .)

1.2.3 Combine (5) and (6): Describe a basis for the incidence matrix.

1.3 Network Simplex for TP

1.3.1 Define: node potential, reduced cost, feasible dual potential. 

1.3.2 Prove: A feasible TP is unbounded iff there exists a negative dicycle.

1.3.3 Describe the network simplex algorithm for TP.

1.3.4 Describe the auxiliary TP and initialization procedure for network simplex.

1.4 Characterization of Infeasibility

1.4.1

Prove: A TP with digraph  and node demand  is infeasible if and only if there exists 

 such that  and . [Or equivalently,  and ].

2 Minimum Cost Flow Problem

2.1 Minimum Cost Flow Problem

2.1.1 Describe the minimum cost flow problem.

2.1.2 What are the primal and dual LP for TP (explicit equations, no matrix)?

2.1.3 Describe the constraint matrix for MCFP.
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2.1.4

Prove: A tree flow in MCFP consists of a spanning tree $T$ and a feasible flow $x$ where all arcs not in 

$T$ satisfies $x_e \in \{0, c_e\}$. 

2.1.5 What's the complementary slackness condition for MCFP?

2.1.6 Describe the network simplex for MCFP.

2.1.7

Prove: An MCFP is infeasible if and only if there exists $S \subseteq N$ such that $b(S) > c(\delta(\bar 

S))$ or $b(S) < -c(\delta(S))$.

2.2 MCFP Applications

2.2.1 Describe how you could solve the minimum cost perfect matching problem using MCFP.

2.2.2

Prove: If a MCFP has an optimal solution, and all capacities and node demands are integers, then there 

exists an integral optimal solution.

2.2.3 Justify your solution, that is, a solution of the MCFP instance is an optimal matching.

2.2.4

Describe how you could solve the airline scheduling problem using MCFP. (More importantly, you should 

be able to draw a diagram with $n=4$ cities.)

2.2.5

Describe how you could solve the catering problem using MCFP. (More importantly, you should be able to 

draw a diagram with $n=5$ days.)

2.2.6 Describe how you could transform a matrix with consecutive ones into an incidence matrix. 

3 Shortest Dipath Problem

3.1 Shortest Dipath Problem

3.1.1 Describe the shortest dipath problem.

3.1.2 What are the primal and dual LP for shortest dipath problem?

3.1.3 Define: a characteristic vector of a path.

3.1.4

Prove: If $\bar x$ is an integral feasible solution to LP, then $\bar x$ is a sum of the characteristic vector 

of an $s,t$-dipath and a collection of dicycles.

3.1.5

Prove: If there are no negative dicycles, then our LP formulation has an optimal solution that is the 

characteristic vector of an $s,t$-dipath.

3.2 Ford's Algorithm



3.2.1

Prove: Let $D = (N,A)$ be a digraph with arc cost $w \in \R^A$ with no negative dicycle. If $v_1, 

\ldots, v_k$ is a shortest $v_1, v_k$-dipath, then $v_1, \ldots, v_i$ is a shortest $v_1,v_i$-dipath.

3.2.2 Define: A rooted tree at $s$. 

3.2.3 What does Ford's algorithm accomplish?

3.2.4 Describe Ford's algorithm.

3.3 Correctness and Termination of Ford's Algorithm

3.3.1 Define: Predecessor graph.

3.3.2 Prove: Throughout the algorithm, $\bar w_e \leq 0$ for all arcs $e \in A(D_p)$.

3.3.3

Prove: Let $D = (N,A)$ be a digraph with weights $w \in \R^A$ and feasible potentials $y \in \R^N$. 

Let $Q$ be an $s,t$-diwalk. Then $w(Q) \geq y_t - y_s$. Moreover, $w(Q) = y_t - y_s$ iff every arc of 

$Q$ is an equality arc.

3.3.4

Prove: Let $D = (N,A)$ be a digraph with weight $w \in \R^A$. If $D$ has a negative dicycle then $D$ 

has no feasible potentials.

3.3.5

Prove: If $D_p$ contains a dicycle (at any point in the algorithm), then $D$ contains a negative dicycle 

and the algorithm does not terminate.

3.3.6

Prove: Suppose the algorithm terminates. Then $D_p$ is a spanning tree of shortest dipaths rooted at $s$. 

Furthermore, $y_v$ is the cost of a shortest $s,v$-dipath.

3.4 Bellman-Ford's Algorithm

3.4.1 Describe Bellman-Ford's algorithm.

3.4.2

Prove: Let $d_v$ denote the cost of a shortest $s,v$-dipath. Suppose $D$ does not have any negative 

dicycle. Then at any point in the algorithm $y_v \geq d_v$.

3.4.3

Prove: Suppose no negative dicycles exist. After the $i$th iteration, if there is a shortest $s,v$-dipath using 

at most $i$ arcs, then $y_v = d_v$.

3.4.4

Prove: At the end of Bellman-Ford, if $y$ is feasible, then $y_v = d_v$ for all $v \in N$. Otherwise, you 

can conclude there exists a negative dicycle.

3.5 Dijkstra's Algorithm



3.5.1 Describe the intuition of Dijkstra's algorithm.

3.5.2 Describe Dijkstra's algorithm.

3.5.3 Prove its correctness.

3.6 Application of Shortest Dipath

3.6.1 Describe how we could solve network reliability using shortest dipath.

3.6.2 Describe how we could solve currency exchange problem using shortest dipath.
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1 Transshipment Problem  

1.1 Transshipment Problem  

1.1.1 Describe the transshipment problem.  

Given a digraph , node demands , arc costs , we want to find a feasible 

flow  with minimum cost . 

1.1.2 What are the primal and dual LP for TP (explicit equations, no matrix)?  

The primal LP is given by 

The dual LP is given by

Equivalently, the dual constraint is .

1.1.3 Define the incidence matrix and express LPs using the incidence matrix.  

The primal LP can be written as 

The dual LP is thus

1.1.4 What's the complementary slackness conditions for TP?  

For each , either  or . Intuitively, for an arc , either we don't 

use it at all, or we use it to its full potential.
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1.2 Cycle, Spanning Tree, and Basis  

1.2.1 Prove: The columns of  corresponding to a cycle are linearly dependent.  

Proof.  Let  be a cycle and  be its incidence matrix. Let  be obtained from  by 

multiplying the columns corresponding to backward arcs in  by . Then  is the incidence 

matrix of a dicycle . For each , , so there is exactly one entry of  

and one entry of  in each row of . Then the sum of the entries of each row is  and thus the 

sum of columns of  is zero. Since this is a non-trivial linear combination of columns of  with 

zero sum,  is linearly dependent.  

1.2.2 Prove: If  is a subset of the arcs whose corresponding columns in  are

linearly dependent, then  contains a cycle. (Hint: Show every vertex of the graph

has .)

 

Proof.  Since the columns of  in  are linearly dependent, there exists a non-trivial linear 

combination of these columns that equal to zero. Let  be the subset of  whose 

columns receive non-zero coefficients in the linear combination, i.e., there exist non-zero 's 

where . Then for each node , , where  

represents the entry for  in the column for .

Let  be the subset of nodes  where  for at least one . For a node , if , 

then . Hence for each , there exist at least  arcs in  whose columns in  have 

non-zero entries for ; each of these arcs is incident with . It follows that the subgraph with  as 

the nodes and  as the arcs have the property that every node has  and thus contains a 

cycle.  

1.2.3 Combine (5) and (6): Describe a basis for the incidence matrix.  

Let  be the incidence matrix. A set of  columns of  is a basis iff the corresponding 

 arcs make up a spanning tree. Therefore, .
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1.3 Network Simplex for TP  

1.3.1 Define: node potential, reduced cost, feasible dual potential.  

Node potential: the dual solution .

Reduced cost: .

Feasible dual potential:  is feasible if .

1.3.2 Prove: A feasible TP is unbounded iff there exists a negative dicycle.  

 : Let  be a negative dicycle and  be a feasible flow. Define  where  for  

and  otherwise for . Observe  for each . Since  is a dicycle, 

and  is a feasible flow,  is a feasible flow:

The objective value is  where  is a 

constant. It follows that  as  as . 

 : Obtain a new digraph  by adding a new node  and arcs  for all . Set the cost of 

new arcs to be . For each , let  be the minimum cost among all possible -dipaths. 

This minimum exists since there is at least one such dipath, and the number of such dipaths is 

finite. 

First, we show if  does not contain a negative dicycle, then  is a feasible potential for . 

Suppose not, i.e., there exist  where . Consider a -dipath  

that has minimum cost. By assumption, . If  is not on , then  is a -dipath 

with cost , which is strictly less than  by assumption. This contradicts the fact that  

is the minimum cost of all -dipaths. 

Now assume  is on , and let  be the part of  from  to , and  be the part of  from  to 

. Since  is a -dipath and a minimum cost -dipath has cost , we have . 

Also, . Then . By assumption, 

, so , or . So  is a dicycle whose cost is 

negative, contradicting the assumption that there is no negative dicycle. Hence  is a feasible 

potential for .

If  does not contain a negative dicycle, then there exists a feasible potential for . The same 

potential applied to only nodes in  is also feasible, hence the dual LP is feasible. Therefore, the 

original TP is bounded by the objective value of the dual feasible solution.  

1.3.3 Describe the network simplex algorithm for TP.  

Given a connected digraph  with arc costs  and node demands ,

1. Find a spanning tree  with a feasible tree flow  by inspection.
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2. Calculate the corresponding dual potentials for all . 

a. Pick an arbitrary node, say , and set .

b. Solve  for each  to get potentials for other nodes. 

3. Calculate reduced costs  for .

4. If every non-basic arc has non-negative reduced cost, we are done. Otherwise, let  be a 

non-basic arc with negative reduce cost.

a. Form and orient a cycle  by adding  to .

b. If all arcs in  are forward, stop. This is a negative dicycle and the problem is 

unbounded. Otherwise, let  be a backward arc with minimum flow in .

c. Push  units along  and update .

d. Go back to (2).

1.3.4 Describe the auxiliary TP and initialization procedure for network simplex.  

Given a digraph  and demands , the auxiliary digraph  with 

 and arc cost  is defined as

.

.

,  for all .

 and .

Intuitively, we added a new node  with demand  and added an arc from each source node to  

and from  to each demand node; original nodes have the same demands; original arcs have no 

cost and new arcs have  cost. 

The auxiliary TP has a natural feasible flow, i.e., transport all supplies to  then distribute to 

demand nodes from , which gives us a starting point for Simplex.
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1.4 Characterization of Infeasibility  

1.4.1 Prove: A TP with digraph  and node demand  is infeasible if

and only if there exists  such that  and . [Or equivalently, 

 and ].

 

Intuitively, if there is a set of nodes with negative net demand but no leaving arcs, or with 

positive net demand but no incoming arcs, then the TP is feasible.

 : Suppose the TP is infeasible, so the auxiliary TP has an optimal solution with strictly 

positive optimal value. 

Let  be an optimal solution. Let . Partition  into  and  based on the dual 

potential. We claim that  satisfies the conditions  and 

.

Suppose  so that  and  Then , 

contradicting the maximality of . Thus, .

For any ,  so  is non-basic and hence 

. Since the optimal value is positive, some flow goes from  to , so

 : Let  where  and . Suppose for a contradiction that  is a feasible 

flow. By feasibility,

By assumption,  so , but , a 

contradiction.   
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2 Minimum Cost Flow Problem  

2.1 Minimum Cost Flow Problem  

2.1.1 Describe the minimum cost flow problem.  

Given digraph , node demands , arc costs , arc capacities , we 

want to find a feasible flow  satisfying node demands and capacity constraints while minimizing 

the total cost.

2.1.2 What are the primal and dual LP for TP (explicit equations, no matrix)?  

The primal and dual LPs are given by

2.1.3 Describe the constraint matrix for MCFP.  

The constraint matrix is given by

where  is the incidence matrix.

2.1.4 Prove: A tree flow in MCFP consists of a spanning tree  and a feasible flow

 where all arcs not in  satisfies .

 

The constraint matrix has rank .

Recall from TP that the incidence matrix has rank . Observe the  capacity constraints 

are linearly dependent, so we can extend the basis by adding them in. The rank of constraint 

matrix is thus .

For each arc , at least one of  and  is in the basis.

Recall that non-basic variables are set to zero. Suppose for some , both  and  are both 

non-basic, so . Then there is no way to satisfy the capacity constraint for . 

Therefore, for each arc , there are three possibilities:
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1. Only  is in the basis. (The arc has flow equal to capacity.)

2. Only  is in the basis. (The arc does not have flow at all.)

3. Both  and  are in the basis. (The arc has positive flow, but less than its capacity.)

There exist  arcs where both  and  are in the basis.

Let  denote the number of type-3 arcs. There are  arcs in total, so there are  type-1/2 

arcs. We do a double-counting. 

Recall the rank of constraint matrix is , so a basis has  variables. Each 

of the  type-3 arcs contributes  basic variables while each of the type-1/2 arcs contribute  

basic variable. Then .

Arcs where both  and  are in the basis cannot form a cycle.

Suppose a subset of type-3 arcs form a cycle. Consider the constraint matrix corresponding to the 

cycle. We could multiply  to appropriate columns of the left half to turn  into an incidence 

matrix of a dicycle, so the sum of entries of the first  rows are zero, then multiply  to 

appropriate columns of the right half so the sum of entries of the rest  rows are also zero. It 

follows that the columns of the matrix are linearly dependent. This is a contradiction as a subset 

of a basis cannot be linearly dependent.

Conclusion.  

Since there are  nodes in total and there are  type-3 arcs which contains no cycle, it 

follows that these type-3 arcs correspond to a spanning tree. 

For arcs in the spanning tree , both  and  are in the basis, so . For non-basic 

arcs , if  is in the basis, then ; if  is in the basis, then  and 

.

2.1.5 What's the complementary slackness condition for MCFP?  

From primal and dual LP, the CS conditions are 

1. , and

2. .

Rewrite the dual constraints as  or  and . The objective function 

contains  where , so maximizing  is equivalent to minimizing . Therefore, 

.

For (1): If , then we must have  or . Thus, we  can rewrite (1) as 

.

For (2): If , then , so  and . Thus, we can rewrite 

(2) as .
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Hence, the optimality conditions for MCFP are:

1. .

2. .

3. .

2.1.6 Describe the network simplex for MCFP.  

Given a connected digraph  with arc costs  and node demands ,

1. Find a spanning tree  with a feasible tree flow  by inspection.

2. Calculate the corresponding dual potentials for all . 

a. Pick an arbitrary node, say , and set .

b. Solve  for each  to get potentials for other nodes. 

3. Calculate reduced costs  for .

4. Find a non-basic arc  where either (a)  and , or (b)  and 

. If no such arc exists, the current solution is optimal. 

a. Form and orient a cycle  by adding  to .

b. Orient  in the direction of  if (a); orient  in the direction opposite of  if (b).

c. Let .

d. Push  units of flow along . Update  and go back to (2).

2.1.7 Prove: An MCFP is infeasible if and only if there exists  such that 

 or .

 

Intuitively, if there exists  where total demand is more than total capacity of in-arcs or 

total supply is more than total capacity of out-arcs, then the MCFP is infeasible.

 : We use the same auxiliary digraph as TP. Suppose our MCFP is infeasible, then the 

auxiliary MCFP has optimal value strictly positive. Let  be a feasible tree flow. Set potentials  

with  and all other potentials are either  or . Define  and  as before. We will show 

 satisfies .

Consider  from  to  and  from  to . By CS conditions,

, so all arcs going from  to  are at full capacity.

, so there is no in-flow from  to . Since there is also no 

arc from  to ,  has no in-flow at all.

Since the auxiliary MCFP has strictly positive optimal value and , there must also be some 

flow leaving  for . Thus,
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 :  Suppose there exists  st . Suppose for a contradiction that there is a 

feasible flow , then 

which contradicts the hypothesis . 
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2.2 MCFP Applications  

2.2.1 Describe how you could solve the minimum cost perfect matching problem

using MCFP.

 

Given a bipartite graph , , , and edge costs , we want to 

find a perfect matching in  of minimum total cost. We will formulate this as a MCFP:

Direct each edge from  to . 

Set the capacity for each arc to be 1. 

Set  as supply nodes with  and  as demand nodes with .

Arc costs stay the same.

2.2.2 Prove: If a MCFP has an optimal solution, and all capacities and node

demands are integers, then there exists an integral optimal solution.

 

Suppose first that we have an integral flow. At each step of network Simplex, we chose 

 where  is the 

unique cycle created with the entering arc. Since  and  are integral,  is integral, so the new 

flow created by pushing  along  is integral.

Now, because  is integral, we have an integral feasible flow (by sending all flow from supply 

nodes to  then distribute flow to demand nodes) for the auxiliary digraph. If we run Simplex 

with this flow, the flow remains integral.

2.2.3 Justify your solution, that is, a solution of the MCFP instance is an optimal

matching.

 

For our MCFP formulation, by the lemma above, there exists an integral optimal solution . 

Then for each arc , . The set of active arcs  is a perfect 

matching because each node is incident with exactly one edge (supply is  so only one arc can be 

chosen). Also, any perfect matching corresponds to an integral flow. Hence, our MCFP solves the 

MCPM problem.

2.2.4 Describe how you could solve the airline scheduling problem using MCFP.

(More importantly, you should be able to draw a diagram with  cities.)

 

Consider the following airline scheduling problem:

A plane visits cities  in this order. 

There are  passengers from city  to city  ( ).

The ticket costs are  .

The plane has capacity .

Our goal is to maximize ticket costs subject to plane capacity.
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The arcs between nodes represent the path of the plane with capacity , cost 0.

Cost 0: We need to make the trip anyway, so we consider the cost as 0.

Capacity : the plane has capacity , so each trip has  people at most.

Each node  takes passengers from  to , either through the plane, or through other means.

 cost from node  to node : make money (negative since minimization).

 cost from node  to node : passengers not taking the plane, no gain.

2.2.5 Describe how you could solve the catering problem using MCFP. (More

importantly, you should be able to draw a diagram with  days.)

 

Consider the following catering problem:

A caterer requires  clean napkins for each day .

They can buy new ones from the store for a cost of .

Used napkins can be washed in two ways:

1-day service for a cost of  each.

2-day service for a cost of  each.

Used napkins can be kept in storage for free.

We want to minimize the total cost of napkins. 
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2.2.6 Describe how you could transform a matrix with consecutive ones into an

incidence matrix.

 

Suppose  where each column has consecutive 's and all other entries are 's. We could 

do the following transformation:

1. Add slack variables (appending  to the right of .)

2. Add a redundant row of all zeros.

3. Subtract the -th row from -th, then subtract the -th from th, etc.

Observe  becomes an incidence matrix! The entry with " " in  corresponds to the topmost "

" in  and " " in  corresponds to the entry one below the bottommost " " in . Also, the 

demands add up to zero.
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3 Shortest Dipath Problem  

3.1 Shortest Dipath Problem  

3.1.1 Describe the shortest dipath problem.  

Given a dipath , arc costs , two distinct nodes , we wish to find a 

minimum cost -dipath.

3.1.2 What are the primal and dual LP for shortest dipath problem?  

The primal LP is given by

The dual LP is identical to the one for TP:

3.1.3 Define: a characteristic vector of a path.  

A characteristic vector of a path P is a vector  where  if  and  otherwise.

3.1.4 Prove: If  is an integral feasible solution to LP, then  is a sum of the

characteristic vector of an -dipath and a collection of dicycles.

 

Consider the set of active arcs  in . 

We first show the existence of an -dipath. Let  be an -cut. The net flow of  is  

(because the net flow of  is  and the net flow of all other nodes in  are zero by 

construction), so there must be at least one arc in  with non-zero flow, i.e., it is in . Since 

this holds for every -cut, there exists an -dipath  using arcs in .

We now show the possible existence of a collection of dicycles. Consider the flow obtained by 

removing the characteristic vector of  from the integral feasible solution . Since 

both  satisfy the flow constraints, we get  for all .

Consider the set of active arcs  in . If , we are done as  was an 

-dipath. Otherwise, take a longest dipath  in . Since , there 

is an arc  for some . Moreover,  cannot be outside of the path since we took a longest 

dipath. This forms a dicycle .
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Removing this cycle from flow , we get , which also satisfies 

 for all  and the sum of the flow has decreased by at least . By 

induction, we are done.  

3.1.5 Prove: If there are no negative dicycles, then our LP formulation has an

optimal solution that is the characteristic vector of an -dipath.

 

Let  be an optimal solution. By the previous proposition,  for some 

-dipath  and dicycles ; the cost of  is . 

We now show all cycles have zero cost, i.e., . Suppose not. We are given that there are 

no negative dicycles, so suppose  has positive cost. Then  is a feasible solution 

with cost , contrary to the optimality of . 

Thus, all dicycles have zero cost and . It follows that  is an optimal solution that 

is a characteristic vector of an -dipath.
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3.2 Ford's Algorithm  

3.2.1 Prove: Let  be a digraph with arc cost  with no negative

dicycle. If  is a shortest -dipath, then  is a shortest -dipath.

 

Since there are no negative dicycles, the LP has an optimal integral solution corresponding to a 

characteristic vector of an -dipath. Then there is an optimal dual solution  where all arcs 

of  are equality arcs by CS conditions. Let . Note that  is still feasible for the 

dual LP of the shortest -dipath problem. Moreover, any arc in  is also in , so all the arcs 

of  are equality arcs with respect to . Thus, the CS conditions are satisfied for the -

dipath problem and  is an optimal solution.  

3.2.2 Define: A rooted tree at .  

A tree  is rooted at  if for all , the unique -path in  is an -dipath. Note that:

1. There is an -dipath in  for all  iff there is a spanning tree in  rooted at .

2. Let  be a spanning tree in . Then  is rooted at  iff  and  for 

.

3.2.3 What does Ford's algorithm accomplish?  

Ford's algorithm allows us to find shortest -dipath for all  in one go.

3.2.4 Describe Ford's algorithm.  

Assume every node can be reached from  via a dipath, the algorithm tries to produce a feasible 

potential and a rooted spanning tree  at , so that the arcs of  are all equality arcs. At each 

step, we keep track of the potential and predecessor of each node.

0. Initialization. 

a. Set  and  for all .

b. Set predecessor  for all .

1. Correction. While  is not feasible, i.e., there exists an arc  with a negative reduced cost, 

a. Set , so that  becomes an equality arc.

b. Set . Loop.

A key observation is by setting  where  to begin with, we are 

decreasing .
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3.3 Correctness and Termination of Ford's Algorithm  

3.3.1 Define: Predecessor graph.  

The predecessor graph  is given by  and .

3.3.2 Prove: Throughout the algorithm,  for all arcs .  

Let  be arbitrary and  be its predecessor. When a correction takes place with an arc 

whose head is , . Until the predecessor of  is changed again, the reduced cost stays 

non-positive, and only  can change (due to connecting other arcs). By observation above,  

can only decrease, so  only decreases.  

3.3.3 Prove: Let  be a digraph with weights  and feasible

potentials . Let  be an -diwalk. Then . Moreover, 

 iff every arc of  is an equality arc.

 

Let  where  and . Since  is feasible,  for 

. Adding them up, we get 

. Subtracting  from both 

sides, we get . Moreover,  iff  hold 

for .  

3.3.4 Prove: Let  be a digraph with weight . If  has a negative

dicycle then  has no feasible potentials.

 

Let  be feasible and  be a dicycle. Now  is a -diwalk, so 

we must have . Hence,  has no negative dicycle. 

3.3.5 Prove: If  contains a dicycle (at any point in the algorithm), then 

contains a negative dicycle and the algorithm does not terminate.

 

Suppose we produce a dicycle  in  by connecting arc . Then 

it must be true that in the previous iteration, . By proposition above, 

 for all  throughout the algorithm, so  for 

. Since  is a dicycle, adding up these inequalities cancel out 's and we are left with 

, i.e.,  is a negative dicycle. It follows from the previous lemma that 

there cannot be a feasible potential, so the algorithm never terminates.   

3.3.6 Prove: Suppose the algorithm terminates. Then  is a spanning tree of

shortest dipaths rooted at . Furthermore,  is the cost of a shortest -dipath.

 

Since the algorithm terminates,  cannot contain a cycle and  does not have a predecessor. 

Then  is a rooted spanning tree. Since all nodes other than  has a predecessor,  for 

all  and  is rooted at . Now, all arcs in  are equality arcs, because  for 

all  and  is impossible since  is feasible (by termination). 

af://n318
af://n319
af://n321
af://n323
af://n325
af://n327
af://n329


For , let  be the unique -dipath in . Consider the LP formulation of the shortest 

-dipath problem:  is feasible for the primal and  is feasible for the dual. Since all arcs in  are 

equality arcs, CS conditions hold, so  is optimal and the objective of the dual is 

, i.e.,  is the cost of a shortest -dipath.  
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3.4 Bellman-Ford's Algorithm  

3.4.1 Describe Bellman-Ford's algorithm.  

The idea is to go through arcs in "passes".

0. Initialization.

a. Set  and  for all .

b. Set predecessor  for all .

c. Set the counter .

1. Correction. While ,

a. For each , if , set  and .

b. Increment .

3.4.2 Prove: Let  denote the cost of a shortest -dipath. Suppose  does not

have any negative dicycle. Then at any point in the algorithm .

 

The claim is clearly true at initialization. If  then there exists a dipath from  to  using 

. For each of these arcs , . Adding up all inequalities  for all arcs  in this -

dipath, we obtain . Since  is the cost of a shortest -dipath,  

are we are done.  

3.4.3 Prove: Suppose no negative dicycles exist. After the th iteration, if there is

a shortest -dipath using at most  arcs, then .

 

We do an induction on . When  (initialization), trivial. Assume that this is true after the 

th iteration. We want to show this still holds after th iteration.

Pick  which has a shortest -dipath that uses at most  arcs. If there is a shortest -

dipath that uses at most  arcs, by induction hypotheses, . By proposition,  will not 

change. 

Suppose there is a shortest -dipath that uses  arcs, say . Since no 

negative dicycle exists,  is a shortest -dipath that uses  arcs. By induction,  

after the th iteration and this does not change after the -th iteration. 

Consider . 

If , this means that . 

If , this means that . 

Contradiction. This cannot happen.

If , this means that the algorithm will correct the arc  in the th 

iteration so . 

We are done by induction. 
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3.4.4 Prove: At the end of Bellman-Ford, if  is feasible, then  for all .

Otherwise, you can conclude there exists a negative dicycle.

 

Bellman-Ford runs  iterations. Any shortest -dipath could use at most  arcs. If 

 is feasible, then there are no negative dicycles. By the theorem above,  for all . If 

not, then there exists a negative dicycle.
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3.5 Dijkstra's Algorithm  

3.5.1 Describe the intuition of Dijkstra's algorithm.  

If there are no negative arcs,  is a feasible potential for the dual. We wish to raise potentials 

by  for non-tree nodes while maintaining feasibility.

Let  be our current tree.

1. : both  and  increases by , so  stays the same.

2. : we do not change the potentials, so  stays the same.

3. :  increases and that does not affect feasibility of the potentials.

4. :  decreases by ; thus choose  to be minimum among all such 

arcs.

Now, the arc which determined the minimum becomes an equality arc and we can add it to .

3.5.2 Describe Dijkstra's algorithm.  

1. Initialize  for all  and .

2. While  is not a spanning tree,

a. Pick  such that .

b. Update  for all .

c. Add  to  and  to .

3.5.3 Prove its correctness.  

By our work above,  is always feasible. This includes at initialization as we do not have negative 

costs. All arcs in  are equality arcs. In addition, the algorithm produces a spanning tree rooted 

at . Thus, the same LP argument gives that it must be a tree of shortest -dipaths for all 

.
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3.6 Application of Shortest Dipath  

3.6.1 Describe how we could solve network reliability using shortest dipath.  

A network  where each arc  is assigned an associated reliability . Think of 

this as a probability that  is operational. For a given dipath , the reliability of  is 

. Our goal is to maximize reliability amongst all -dipaths.

Notice that  and  is strictly increasing so it suffices to compare 

logarithms of reliability. We also make this a minimization problem by having negative arc costs: 

let  denote the cost of arc . We could then solve it using Bellman-Ford.

3.6.2 Describe how we could solve currency exchange problem using shortest

dipath.

 

We have a set of currencies. There is an exchange rate  representing how much does  unit of 

currency  converts into currency . We want to exchange a series of currencies back to the 

original one so that we make a profit.

Since we can make some profit, the following inequality must hold:

Label each arc with cost . We can just run Bellman-Ford.
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	Transshipment Problem
	Transshipment Problem
	Describe the transshipment problem.
	What are the primal and dual LP for TP (explicit equations, no matrix)? 
	Define the incidence matrix and express LPs using the incidence matrix.
	What's the complementary slackness conditions for TP?

	Cycle, Spanning Tree, and Basis
	Prove: The columns of M corresponding to a cycle are linearly dependent.
	Prove: If B is a subset of the arcs whose corresponding columns in M are linearly dependent, then B contains a cycle. (Hint: Show every vertex of the graph has \deg \geq 2.)
	Combine (5) and (6): Describe a basis for the incidence matrix.

	Network Simplex for TP
	Define: node potential, reduced cost, feasible dual potential. 
	Prove: A feasible TP is unbounded iff there exists a negative dicycle.
	Describe the network simplex algorithm for TP.
	Describe the auxiliary TP and initialization procedure for network simplex.

	Characterization of Infeasibility
	Prove: A TP with digraph D = (N,A) and node demand b \in \R^N is infeasible if and only if there exists S \subseteq N such that b(S) < 0 and \delta(S) = \varnothing. [Or equivalently, b(S) > 0 and \delta(\bar S) = \varnothing].


	Minimum Cost Flow Problem
	Minimum Cost Flow Problem
	Describe the minimum cost flow problem.
	What are the primal and dual LP for TP (explicit equations, no matrix)?
	Describe the constraint matrix for MCFP.
	Prove: A tree flow in MCFP consists of a spanning tree T and a feasible flow x where all arcs not in T satisfies x_e \in \{0, c_e\}. 
	What's the complementary slackness condition for MCFP?
	Describe the network simplex for MCFP.
	Prove: An MCFP is infeasible if and only if there exists S \subseteq N such that b(S) > c(\delta(\bar S)) or b(S) < -c(\delta(S)).

	MCFP Applications
	Describe how you could solve the minimum cost perfect matching problem using MCFP.
	Prove: If a MCFP has an optimal solution, and all capacities and node demands are integers, then there exists an integral optimal solution.
	Justify your solution, that is, a solution of the MCFP instance is an optimal matching.
	Describe how you could solve the airline scheduling problem using MCFP. (More importantly, you should be able to draw a diagram with n=4 cities.)
	Describe how you could solve the catering problem using MCFP. (More importantly, you should be able to draw a diagram with n=5 days.)
	Describe how you could transform a matrix with consecutive ones into an incidence matrix. 


	Shortest Dipath Problem
	Shortest Dipath Problem
	Describe the shortest dipath problem.
	What are the primal and dual LP for shortest dipath problem?
	Define: a characteristic vector of a path.
	Prove: If \bar x is an integral feasible solution to LP, then \bar x is a sum of the characteristic vector of an s,t-dipath and a collection of dicycles.
	Prove: If there are no negative dicycles, then our LP formulation has an optimal solution that is the characteristic vector of an s,t-dipath.

	Ford's Algorithm
	Prove: Let D = (N,A) be a digraph with arc cost w \in \R^A with no negative dicycle. If v_1, \ldots, v_k is a shortest v_1, v_k-dipath, then v_1, \ldots, v_i is a shortest v_1,v_i-dipath.
	Define: A rooted tree at s. 
	What does Ford's algorithm accomplish?
	Describe Ford's algorithm.

	Correctness and Termination of Ford's Algorithm
	Define: Predecessor graph.
	Prove: Throughout the algorithm, \bar w_e \leq 0 for all arcs e \in A(D_p).
	Prove: Let D = (N,A) be a digraph with weights w \in \R^A and feasible potentials y \in \R^N. Let Q be an s,t-diwalk. Then w(Q) \geq y_t - y_s. Moreover, w(Q) = y_t - y_s iff every arc of Q is an equality arc.
	Prove: Let D = (N,A) be a digraph with weight w \in \R^A. If D has a negative dicycle then D has no feasible potentials.
	Prove: If D_p contains a dicycle (at any point in the algorithm), then D contains a negative dicycle and the algorithm does not terminate.
	Prove: Suppose the algorithm terminates. Then D_p is a spanning tree of shortest dipaths rooted at s. Furthermore, y_v is the cost of a shortest s,v-dipath.

	Bellman-Ford's Algorithm
	Describe Bellman-Ford's algorithm.
	Prove: Let d_v denote the cost of a shortest s,v-dipath. Suppose D does not have any negative dicycle. Then at any point in the algorithm y_v \geq d_v.
	Prove: Suppose no negative dicycles exist. After the ith iteration, if there is a shortest s,v-dipath using at most i arcs, then y_v = d_v.
	Prove: At the end of Bellman-Ford, if y is feasible, then y_v = d_v for all v \in N. Otherwise, you can conclude there exists a negative dicycle.

	Dijkstra's Algorithm
	Describe the intuition of Dijkstra's algorithm.
	Describe Dijkstra's algorithm.
	Prove its correctness.

	Application of Shortest Dipath
	Describe how we could solve network reliability using shortest dipath.
	Describe how we could solve currency exchange problem using shortest dipath.






