
CO 351 Review Questions (Part II)

David Duan

2019 Fall

Contents

1 Maximum Flow

1.1 Maximum Flow Problem

1.1.1 Describe the maximum flow problem?

1.1.2 Give the primal and dual LP of the maximum flow problem.

1.1.3 Define: residual capacity, augmenting path.

1.1.4 Given $D=(N,A)$, capacities c, and flow x, define the residual graph D'.

1.2 Ford-Fulkerson and Max-Flow Min-Cut

1.2.1 Describe Ford-Fulkerson algorithm.

1.2.2 Under what condition will FF terminate?

1.2.3 Describe Edmonds-Karp algorithm. What's the key difference between EK and FF?

1.2.4

Given $D=(N,A)$, nodes s and t, capacities c, show the value of any s,t-flow is at most the

capacity of any s,t-cut.

1.2.5

Use (6) to prove MFMC: Given $D=(N,A)$, nodes s and t, capacities c, show the maximum value of

any s,t-flow is equal to the minimum capacity of an s,t-cut.

1.2.6 As a corollary of MFMC, show that FF gives a s,t-flow when it terminates.

1.3 Maximum Flow with Lower Bounds

1.3.1 Modify FF to solve the maximum flow with lower bound problem.

1.3.2 Similar to (6): Show the value of any s,t-flow is at most $c(\delta(S)) - \ell(\delta(\bar S))$.

1.3.3 Similar to (7): State the generalized MFMC using the above result.

1.3.4

Prove D is infeasible iff there is an s,t-cut $\delta(S)$ s.t. $c(\delta(S)) - \ell(\delta(\bar S)) < 0$.

1.4 Combinatorial Applications

af://n0
af://n2
af://n3

1.4.1

Prove flow decomposition: Given $D = (N, A)$, s,t, and integer capacities, if x is an s,t-flow of value

k and x is integral, then x is the sum of characteristic vectors of k s,t-dipaths and any number

of dicycles.

1.4.2

Prove Menger's Theorem (Arc-Disjoint Version): Given $D = (N,A)$, nodes s,t, the maximum number of

arc-disjoint s,t-dipaths is equal to the minimum number of arcs that disconnects s from t.

1.4.3

Prove Menger's Theorem (Node-Disjoint Version): If st is not an arc, then the maximum numbers of

node-disjoint s,t-dipaths is equal to the minimum number of node whose removal disconnect s from

t. (Hint: Apply transformation)

1.4.4 Prove Konig's Theorem: In a bipartite graph, $\nu(G) = \tau(G)$.

1.5 Real-Life Applications

1.5.1 Describe how we could solve the matrix rounding problem using max flow.

1.5.2 Describe how we could solve the maximum closure problem using max flow.

1.6 Preflow-Push Algorithm

1.6.1 What is the drawback of FF? What is the intuition behind PFP?

1.6.2 What is the definition for s,t-preflow and excess at $v \in N$?

1.6.3 Given $D = (N,A)$, capacities c, flow x, describe the residual digraph.

1.6.4 What does it mean for a set of heights to be compatible with a preflow x?

1.6.5 Describe the preflow-push algorithm.

1.7 Correctness of Preflow-Push

1.7.1 Prove: If preflow x and height h are compatible, then D' has no s,t-dipath.

1.7.2 Prove: If x is a feasible flow with compatible heights h, then x is a max flow.

1.7.3 Prove: The algorithm maintains a preflow and a height function that are compatible with each other.

1.8 Termination of Preflow-Push

1.8.1 Prove: If u has excess, i.e., $e(u) > 0$, then there is a u,s-dipath in D'.

1.8.2 Prove: Throughout the algorithm, $h(u) \leq 2|N| - 1$ for all $u \in N$.

1.8.3 Prove: The total number of relabel operations is at most $2|N| \times |N| = 2|N|^2$.

1.8.4 Define: Saturating push, non-saturating push.

1.8.5 Prove: The number of saturating pushes throughout the algorithm is at most $2|N||A|$.

1.8.6 Prove: The number of non-saturating pushes throughout the algorithm is $\leq 4|N|^2|A|$.

1.8.7 Prove: PFP terminates in $2|N|^2+2|N|^2|A| + 4|N|^2|A| = 8|N|^2|A| \approx 8|N|^4$ operations.

2 Global Minimum Cut

2.1 Global Minimum Cut

2.1.1 Describe the global min cut problem. What's the motivation for an efficient algorithm?

2.1.2 Define: X,t-cut, s-cut.

2.1.3 Describe the generic algorithm for minimum s-cut.

2.1.4 Prove: The generic algorithm above solves the minimum s-cut problem.

2.2 Hao-Orlin

2.2.1 Define: X-preflow.

2.2.2 What does it mean for height h to be compatible with an X-preflow?

2.2.3 Define: level, cut level.

2.2.4

Prove: If $\delta(S)$ is an X,t-cut with $\delta_{D'}(S) = \varnothing$ and $e(v) = 0$ for all $v \in

N\setminus (S \cup \{t\})$ then $\delta(S)$ is a minimum $X,t $-cut.

2.2.5

Prove: If ℓ is a cut level and $e(v) =0$ for all v with $h(v) < \ell$, except t, then $\{v:h(v) \geq

\ell\}$ is a min X,t-cut.

2.2.6 Describe the Hao-Orlin algorithm.

2.3 Correctness of Hao-Orlin

2.3.1 Prove: The non-empty levels less than $|N|$ are consecutive.

2.3.2 Prove: The X-preflow and height h are always compatible.

2.3.3 Prove: $h(v) \leq |N| -2$ for all $v \notin X$.

2.3.4 Prove: ℓ is always a cut level.

2.3.5 The stored cuts in each iteration are minimum X,t-cuts.

2.4 Global Min Cut in Undirected Graphs (Karger's Algorithm)

2.4.1 Describe Karger's algorithm. What's the intuition?

2.4.2

Prove: Let $\delta(S^*)$ be a global min cut. The probability that the algorithm produces $\delta(S^*)$

is $\geq \frac{1}{\binom{|V|}{2}}$.

2.4.3

Prove: The probability that that algorithm produces $\delta(S^*)$ after $k|V|^2$ runs is at least $1-

e^{-2k}$ where $k \geq 1$.

af://n6

1 Maximum Flow

1.1 Maximum Flow Problem

1.1.1 Describe the maximum flow problem?

Given a digraph , constraints , nodes as source and sink, we wish to

maximize the total flow from to .

1.1.2 Give the primal and dual LP of the maximum flow problem.

The primal LP is given by

The dual LP is equivalent to

where is the dual variable for the flow constraints and is the for capacities constraints.

1.1.3 Define: residual capacity, augmenting path.

The residual capacity of the -dipath is

An augmenting path is an -dipath where .

1.1.4 Given , capacities , and flow , define the residual graph .

, for each arc ,

If , add arc to with residual .

If , add arc to with residual .

1.2 Ford-Fulkerson and Max-Flow Min-Cut

Note: FF runs in where is the max flow value.

1.2.1 Describe Ford-Fulkerson algorithm.

0. Let for all .

af://n6
af://n7
af://n8
af://n10
af://n16
af://n20
af://n27
af://n29

1. Construct the corresponding residual graph .

2. If the residual graph contains an -dipath , push flow along . Go back to (1).

3. Let be the set of vertices reachable from in . STOP. is the max flow and is the

min cut.

1.2.2 Under what condition will FF terminate?

First, if is integral, then at each step we increase the flow by at least . By induction, it

terminates. If is rational, we could multiply everything by the GCD of the denominators and

make integral, so it will terminate as well. However, if is irrational, then it is possible that it

does not terminate.

We say FF runs in pseudo-polynomial time, that is, it is polynomial in the magnitude of input

but exponential in the size of the input.

1.2.3 Describe Edmonds-Karp algorithm. What's the key difference between EK

and FF?

The algorithm is identical to FF, except we always pick the augmenting path with the fewest

number of arcs. This guarantees the termination of the algorithm.

1.2.4 Given , nodes and , capacities , show the value of any -flow

is at most the capacity of any -cut.

For any -flow and any -cut , the net flow of is equal to the net flow of as the net

flows on other nodes are by the problem setting. Observe

Thus, the value of any -flow is at most the capacity of .

1.2.5 Use (6) to prove MFMC: Given , nodes and , capacities , show

the maximum value of any -flow is equal to the minimum capacity of an -cut.

Let be a max -flow. Then there is no -dipath in the residual digraph , so there is an

empty -cut in .

If , is not an arc in , so .

If , is not an arc in , so

Therefore, the value of is . By the previous proposition, is a max

flow and is a min cut.

1.2.6 As a corollary of MFMC, show that FF gives a -flow when it terminates.

Since FF terminated, there is no augmenting path, so our flow has used up the capacity of some

cut in . By MFMC, the capacity of the min cut equals the max flow, the result follows.

af://n39
af://n42
af://n44
af://n48
af://n56
af://n58

1.3 Maximum Flow with Lower Bounds

Suppose we introduce non-negative lower bounds for the arcs. That is, a flow must

satisfy for all .

1.3.1 Modify FF to solve the maximum flow with lower bound problem.

Given a feasible flow, we form the residual digraph , where for backward arcs, we put residual

 instead of because we want to limit how much flow we could reduce. (You could

interpret the no lower bound version as having a lower bound of zero.) The rest of FF is exactly

the same.

1.3.2 Similar to (6): Show the value of any -flow is at most .

For any -flow and any -cut , we have , so

1.3.3 Similar to (7): State the generalized MFMC using the above result.

Given , , , and nodes , there is a maximum -flow whose value is the same as

the minimum value of provided there is a feasible solution.

1.3.4 Prove is infeasible iff there is an -cut s.t. .

If , by MFMC, the max flow is negative, a contradiction. Now suppose the

network is feasible. Then we cannot have an -cut with because that sets

an upper bound for the flow, again a contradiction.

1.4 Combinatorial Applications

1.4.1 Prove flow decomposition: Given , , and integer capacities, if

is an -flow of value and is integral, then is the sum of characteristic vectors

of -dipaths and any number of dicycles.

If , i.e., is a circulation, then is the sum of characteristic vectors of dicycles. If ,

then there is an -dipath , using our proof for shortest dipath; is an -flow of value

. We are done by induction on .

1.4.2 Prove Menger's Theorem (Arc-Disjoint Version): Given , nodes

, the maximum number of arc-disjoint -dipaths is equal to the minimum number

of arcs that disconnects from .

If there are arc-disjoint -dipaths, then we must remove at least one arc from each dipath.

The inequality is thus trivial. We now show the equality.

af://n58
af://n60
af://n62
af://n65
af://n67
af://n69
af://n70
af://n72

Apply MFMC with capacity . By MFMC, there is an -flow with the same value as the

capacity of an -cut , say . We may assume that is integral as is integral. By flow

decomposition, is the sum of -dipaths and some dicycles. Since , each arc is used on

at most -dipath. Hence, these -dipaths are all arc-disjoint. If we remove all arcs in ,

then is disconnected from .

1.4.3 Prove Menger's Theorem (Node-Disjoint Version): If is not an arc, then

the maximum numbers of node-disjoint -dipaths is equal to the minimum number

of node whose removal disconnect from . (Hint: Apply transformation)

We transform the node-disjoint version into arc-disjoint version. For every node , generate two

nodes and with a single arc from to . Arcs of the form maps to with and

all other arcs have capacity Then we can simply apply Menger's Theorem for arc-disjoint

version and conclude the proof: min-cut cannot use arcs with and thus only newly created

edges, which corresponds to an -separator.

1.4.4 Prove Konig's Theorem: In a bipartite graph, .

For any graph , holds trivially. Now, let be a bipartition of and create

with arcs . Each newly created edge has capacity . We then orient edges from to ;

original arcs have capacity .

A maximum matching consists of a maximum number of internally disjoint -paths. By

Menger's Theorem, this is precisely the set of some minimum separator . Notice that is

actually a vertex cover by definition, so the result follows.

1.5 Real-Life Applications

1.5.1 Describe how we could solve the matrix rounding problem using max flow.

Suppose we want to round the matrix elements either by taking the ceiling/floor so

that the sum of the columns , , and sum of rows , , are floored/ceilinged.

To transform this into a max flow problem:

1. Let be dummy nodes and create nodes for ,

2. Add an arc from to with and .

3. All arcs have lower bound and capacity floor/ceiling

4. All arcs have lower bound and capacity floor/ceiling

We then look for a feasible flow saturating all arcs incident with and .

1.5.2 Describe how we could solve the maximum closure problem using max flow.

af://n75
af://n77
af://n80
af://n81
af://n94

A closure is a set of nodes such that . Suppose we are given a set of tasks, each with

some benefit (positive or negative). However, to perform some task, you need to also perform

other tasks dependent on it. Form a digraph with node weights ; an arc

represents "if we take we must also take ". Our goal is to find a closure with max total weight.

To transform this into a max flow problem:

1. Add be dummy nodes.

2. Add arcs with capacity if .

3. Add arcs with capacity if .

4. Original arcs have capacity .

We have the following observations:

1. An -cut in has finite capacity iff is a closure in . (Because there

exists an arc in with infinite capacity iff such an arc existed in the original graph.)

2. The weight of the closure is . (There is an arc from to every with

 and an arc from every with to . Nodes not in the closure are included in

both are thus get cancelled.)

3. is a constant and is the capacity of an -cut.

Thus, to maximize the weight of closure , we minimize , i.e., find the min

cut. We can solve this using max flow.

1.6 Preflow-Push Algorithm

1.6.1 What is the drawback of FF? What is the intuition behind PFP?

FF/EK does global adjustments, which could be inefficient sometimes. PFP, on the other hand,

makes local adjustments.

1.6.2 What is the definition for -preflow and excess at ?

An -preflow is a flow that satisfies capacity constraints and the in-flow is greater than or equal

to the out-flow for each intermediate nodes. If in-flow is greater than out-flow, we call the extra

amount excess.

Intuitively, an -preflow is a flow that "makes sense", i.e., does not violate constraints or having

more out-flow than in-flow.

1.6.3 Given , capacities , flow , describe the residual digraph.

The residual graph is identical to the one for FF.

1.6.4 What does it mean for a set of heights to be compatible with a preflow ?

af://n115
af://n116
af://n118
af://n121
af://n123

. Height is compatible with a preflow if

1. , , and

2. for .

1.6.5 Describe the preflow-push algorithm.

0. Initialization.

a. Set and for every .

b. Set preflow with for every and otherwise.

1. While there exists with excess, i.e., ,

a. If there exists where , push on .

b. Otherwise, increment by . (Relabel operation.)

1.7 Correctness of Preflow-Push

1.7.1 Prove: If preflow and height are compatible, then has no -dipath.

Suppose not, so an -dipath exists in . Let in and

 (compatible). Adding all these inequalities gives , so

 and thus , a contradiction as there are nodes in the path but only

nodes in the digraph.

1.7.2 Prove: If is a feasible flow with compatible heights , then is a max flow.

Since is compatible with , by the lemma above, has no -dipath. Since there is no

augmenting path in (so no extra flow is available) and is feasible, is indeed optimal.

1.7.3 Prove: The algorithm maintains a preflow and a height function that are

compatible with each other.

At initialization, we have a preflow where for every and otherwise.

By construction, and .

Also, for arcs in , so only is in . Observe .

For arcs where , , so . Now .

Thus, the preflow and height are compatible at initialization. Now suppose there exists

 with excess, i.e., .

Consider a push operation, i.e., when there exists satisfying , we push

flow along . Since we are pushing the minimum between excess and residual, it is

always true that and ; exactly one of these becomes an equality.

af://n130
af://n146
af://n147
af://n149
af://n151

If we push residual, then . The only possible new arc in is but

so we are fine.

If we push excess, then . Then , so the only possible new arc is also and as

above we are fine.

Thus the preflow and height are compatible after a push operation.

Consider a relabel operation, i.e., when every satisfies , we increment

 by . Then before relabeling, it must be that every satisfies . Then

adding to , we have for all arcs . Thus the preflow and height

are compatible after a relabel operation.

Hence, if the algorithm terminates, this guarantees the correctness of the algorithm.

1.8 Termination of Preflow-Push

1.8.1 Prove: If has excess, i.e., , then there is a -dipath in .

We show the contrapositive. Let be the set of all nodes with no -dipath in and we

show that . Suppose , i.e., there exists where and . But

then could reach via . Thus , so every in-arc is empty and every out-arc is full for

. It follows that

1.8.2 Prove: Throughout the algorithm, for all .

Suppose that at some point in the algorithm the height increases to . Since a relabel

operation only occurs when there is excess, this implies that . By the previous lemma,

there is a -dipath in , which has length at most . By compatibility, height decreases

by at most in each arc resulting in , a contradiction.

1.8.3 Prove: The total number of relabel operations is at most .

There are nodes in , each can have at most relabel operations (from to), so

the overall upper bound is .

1.8.4 Define: Saturating push, non-saturating push.

If we push on arc then it is a saturating push (the arc is saturated as we use up

its capacity); if we push then it is called a non-saturating push.

1.8.5 Prove: The number of saturating pushes throughout the algorithm is at most

.

Suppose we have a saturating push on , then before the push, . Observe

disappears from as . In order to push on again, we need to first push flow on .

To do so, we need to relabel at least twice to obtain . Thus, between two

af://n170
af://n171
af://n173
af://n175
af://n177
af://n179

saturated pushes on the same edge, at least two relabel operations need to occur. By previous

lemma, the maximum number of relabel operations on node cannot exceed , so up to

saturating pushes are possible on . There are arcs in counting both forward and

backward arcs, so the number of saturating pushes is .

1.8.6 Prove: The number of non-saturating pushes throughout the algorithm is

.

Define the function which counts the total height for nodes with excess, i.e.,

At initialization, , because all nodes with excess have height zero. Note the function never

becomes negative as we are summing up non-negative heights. We want to determine the effect

on for each type of operation.

Each relabel operation is done on a node with excess, so goes up by one. There are

relabel operations by previous lemma, so the maximum increases for relabeling is

throughout the algorithm.

Each saturating push (i.e., push) on decreases and increases . If before

the push, we add to after the push. By previous lemma, , so we add

at most over the algorithm. By another lemma, there is no more than

saturating pushes, so the maximum increases from saturating pushes is

.

Each non-saturating push (i.e., push) on makes positive but . At worst, we

need to add to and subtract from . By the choice of ,

, so decreases by at least . We have argued that is non-negative throughout the

algorithm, so the number of non-saturating pushes is therefore at most

.

1.8.7 Prove: PFP terminates in

operations.

This follows from the previous proof.

af://n181
af://n188
af://n191

2 Global Minimum Cut

2.1 Global Minimum Cut

2.1.1 Describe the global min cut problem. What's the motivation for an efficient

algorithm?

Given and capacity , we want to find a global minimum cut, i.e., partition into

two disjoint sets and , where is minimized.

Fix . Observe it must reside on either side of a global min cut.

2.1.2 Define: -cut, -cut.

Given and , an -cut has the form where and . In other words,

if is an -cut and , then and .

Given , an -cut has the form where and . In other words, if is an -

cut and , then and .

Note that we could reduce the global min cut problem to min -cut problem. By remark above, if

a global min cut contains , then we are good. Otherwise, reverse all arcs and we will find the

global min cut. Thus, we just need to solve min -cut twice for a fixed .

2.1.3 Describe the generic algorithm for minimum -cut.

0. Initialize .

1. While , pick , find a min -cut, add to .

2. Output the minimum over all cuts found.

2.1.4 Prove: The generic algorithm above solves the minimum -cut problem.

Let be a minimum -cut. Consider the first time we pick some not in . Immediately

before this step, . The algorithm gives us a minimum -cut . But is also an

-cut (thus) and is also an -cut (thus), so they

have the same capacity.

2.2 Hao-Orlin

2.2.1 Define: -preflow.

An -preflow is a flow where every node not in has a non-negative excess; nodes not in are

allowed to have negative excesses.

2.2.2 What does it mean for height to be compatible with an -preflow?

Height are compatible with an -preflow if

af://n191
af://n192
af://n193
af://n196
af://n200
af://n208
af://n210
af://n211
af://n213

1. for all .

2. .

3. for all .

2.2.3 Define: level, cut level.

A level , denoted , consists of all nodes with height .

A cut level is a level where no arc goes from to in .

2.2.4 Prove: If is an -cut with and for all

then is a minimum -cut.

Take any -cut . Note the flow out of is equal to the flow into . The net flow out of

 is . The net flow into is equal to

Since , all out-arcs of are full and all in-arcs of are empty, so

.

Next, for all tells us

Consider the flow . Since for every and we see that for this particular we

have , achieves the minimum (lower bound) and hence is a min -cut.

2.2.5 Prove: If is a cut level and for all with , except , then

 is a min -cut.

Consider , the set of nodes at or above level . If is a cut level, there is no

arc going from level to level in , so is an -cut with . Combine this

with for all with except , we see that is indeed a minimum -cut.

2.2.6 Describe the Hao-Orlin algorithm.

0. Initialization.

a. Initialize and pick .

b. Initialize and for all another .

c. Initialize .

d. Send as much flow out of as possible.

1. Loop. While ,

a. PFP. While there exists such that and :

af://n222
af://n225
af://n232
af://n234

i. If there exists where , push on .

ii. Otherwise,

i. If is the only node with , do not relabel. Instead, set .

ii. If we want to relabel to , reset .

iii. Otherwise, relabel as before.

b. Store. When no node satisfies and , store the cut .

c. Reset.

i. Add to , set .

ii. Send as much flow out of as possible.

iii. Pick a new with lowest height.

iv. Reset cut level by setting .

2. Return the the minimum cut amongst all stored cuts.

2.3 Correctness of Hao-Orlin

2.3.1 Prove: The non-empty levels less than are consecutive.

Initially, is at level and everything else is at level , so the claim is trivially true at

initialization. We do not relabel when is the only node of height ; this keeps non-empty

levels consecutive. Transitioning to a new iteration, we move with lowest height to meaning

the non-empty levels remain consecutive.

2.3.2 Prove: The -preflow and height are always compatible.

 for all follows from the algorithm. for all follows

from PFP during an iteration. At the end of each iteration, we move to and push all flow out

of . Thus, we have for all .

It remains to show that . Initially, and . When we

move to , the next , call it , has height or , since non-empty levels are

consecutive. Originally, . We add to after the move and might add to ,

so this inequality is true after this move.

2.3.3 Prove: for all .

Recall . There are node not in . Since the non-empty levels

are consecutive, the highest level not in is at most .

2.3.4 Prove: is always a cut level.

af://n279
af://n280
af://n282
af://n285
af://n287

When , level is empty, so it is automatically a cut level. We change to something

else when we want to relabel , but is the only node with its height. We want to relabel

because and no neighbour of is one level below in . Thus, no arcs goes from

to level . Thus, is a cut level and we can set .

2.3.5 The stored cuts in each iteration are minimum -cuts.

It suffices to show that is always a cut level, because then by the previous corollary, Hao-Orlin

produces a min -cut. Indeed, by the last proof, is a cut level.

2.4 Global Min Cut in Undirected Graphs (Karger's Algorithm)

2.4.1 Describe Karger's algorithm. What's the intuition?

To find the global min cut in undirected graphs, we pick one edge at random, contract it, and

keep track of vertices each contracted vertex represents. Do this until two vertices remains and

output the cut represented by these two vertices.

To make edges with small capacities more likely to survive, we set probability of an edge gets

selected proportional to its capacity.

The algorithm is as follows. While , pick with probability and contract .

Repeat.

2.4.2 Prove: Let be a global min cut. The probability that the algorithm

produces is .

Consider the probability we pick an edge in in the first step. The denominator is

and the numerator is .

Consider the cuts of the form for . Each edge appears in two such cuts

and . Since is a global minimum cut,

So the probability that an edge in is selected is

The probability that survives the first contraction is thus at least .

Now suppose we have contracted edges and is still intact. We have vertices left

and say the graph is . We want to find the probability of selecting an edge in .

af://n289
af://n291
af://n292
af://n296

The numerator is ; the denominator is . Now, each node represents several nodes

(because of contractions):

So, the probability is at most

The probability that survives this contraction is at least

The largest possible is (since we finish when we have vertices, so in the last step, we

have vertices left).

Overall, the probability that survives all contractions is

We expect the algorithm to produce a minimum cut if it runs times.

2.4.3 Prove: The probability that that algorithm produces after runs is

at least where .

We use . The probability of failure is at most

af://n314

	CO 351 Review Questions (Part II)
	David Duan
	2019 Fall
	Maximum Flow
	Maximum Flow Problem
	Describe the maximum flow problem?
	Give the primal and dual LP of the maximum flow problem.
	Define: residual capacity, augmenting path.
	Given D=(N,A), capacities c, and flow x, define the residual graph D'.

	Ford-Fulkerson and Max-Flow Min-Cut
	Describe Ford-Fulkerson algorithm.
	Under what condition will FF terminate?
	Describe Edmonds-Karp algorithm. What's the key difference between EK and FF?
	Given D=(N,A), nodes s and t, capacities c, show the value of any s,t-flow is at most the capacity of any s,t-cut.
	Use (6) to prove MFMC: Given D=(N,A), nodes s and t, capacities c, show the maximum value of any s,t-flow is equal to the minimum capacity of an s,t-cut.
	As a corollary of MFMC, show that FF gives a s,t-flow when it terminates.

	Maximum Flow with Lower Bounds
	Modify FF to solve the maximum flow with lower bound problem.
	Similar to (6): Show the value of any s,t-flow is at most c(\delta(S)) - \ell(\delta(\bar S)).
	Similar to (7): State the generalized MFMC using the above result.
	Prove D is infeasible iff there is an s,t-cut \delta(S) s.t. c(\delta(S)) - \ell(\delta(\bar S)) < 0.

	Combinatorial Applications
	Prove flow decomposition: Given D = (N, A), s,t, and integer capacities, if x is an s,t-flow of value k and x is integral, then x is the sum of characteristic vectors of k s,t-dipaths and any number of dicycles.
	Prove Menger's Theorem (Arc-Disjoint Version): Given D = (N,A), nodes s,t, the maximum number of arc-disjoint s,t-dipaths is equal to the minimum number of arcs that disconnects s from t.
	Prove Menger's Theorem (Node-Disjoint Version): If st is not an arc, then the maximum numbers of node-disjoint s,t-dipaths is equal to the minimum number of node whose removal disconnect s from t. (Hint: Apply transformation)
	Prove Konig's Theorem: In a bipartite graph, \nu(G) = \tau(G).

	Real-Life Applications
	Describe how we could solve the matrix rounding problem using max flow.
	Describe how we could solve the maximum closure problem using max flow.

	Preflow-Push Algorithm
	What is the drawback of FF? What is the intuition behind PFP?
	What is the definition for s,t-preflow and excess at v \in N?
	Given D = (N,A), capacities c, flow x, describe the residual digraph.
	What does it mean for a set of heights to be compatible with a preflow x?
	Describe the preflow-push algorithm.

	Correctness of Preflow-Push
	Prove: If preflow x and height h are compatible, then D' has no s,t-dipath.
	Prove: If x is a feasible flow with compatible heights h, then x is a max flow.
	Prove: The algorithm maintains a preflow and a height function that are compatible with each other.

	Termination of Preflow-Push
	Prove: If u has excess, i.e., e(u) > 0, then there is a u,s-dipath in D'.
	Prove: Throughout the algorithm, h(u) \leq 2|N| - 1 for all u \in N.
	Prove: The total number of relabel operations is at most 2|N| \times |N| = 2|N|^2.
	Define: Saturating push, non-saturating push.
	Prove: The number of saturating pushes throughout the algorithm is at most 2|N||A|.
	Prove: The number of non-saturating pushes throughout the algorithm is \leq 4|N|^2|A|.
	Prove: PFP terminates in 2|N|^2+2|N|^2|A| + 4|N|^2|A| = 8|N|^2|A| \approx 8|N|^4 operations.

	Global Minimum Cut
	Global Minimum Cut
	Describe the global min cut problem. What's the motivation for an efficient algorithm?
	Define: X,t-cut, s-cut.
	Describe the generic algorithm for minimum s-cut.
	Prove: The generic algorithm above solves the minimum s-cut problem.

	Hao-Orlin
	Define: X-preflow.
	What does it mean for height h to be compatible with an X-preflow?
	Define: level, cut level.
	Prove: If \delta(S) is an X,t-cut with \delta_{D'}(S) = \varnothing and e(v) = 0 for all v \in N\setminus (S \cup \{t\}) then \delta(S) is a minimum X,t -cut.
	Prove: If \ell is a cut level and e(v) =0 for all v with h(v) < \ell, except t, then \{v:h(v) \geq \ell\} is a min X,t-cut.
	Describe the Hao-Orlin algorithm.

	Correctness of Hao-Orlin
	Prove: The non-empty levels less than |N| are consecutive.
	Prove: The X-preflow and height h are always compatible.
	Prove: h(v) \leq |N| -2 for all v \notin X.
	Prove: \ell is always a cut level.
	The stored cuts in each iteration are minimum X,t-cuts.

	Global Min Cut in Undirected Graphs (Karger's Algorithm)
	Describe Karger's algorithm. What's the intuition?
	Prove: Let \delta(S^*) be a global min cut. The probability that the algorithm produces \delta(S^*) is \geq \frac{1}{\binom{|V|}{2}}.
	Prove: The probability that that algorithm produces \delta(S^*) after k|V|^2 runs is at least 1-e^{-2k} where k \geq 1.

