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1 Maximum Flow

1.1 Maximum Flow Problem

1.1.1 Describe the maximum flow problem?

1.1.2 Give the primal and dual LP of the maximum flow problem.

1.1.3 Define: residual capacity, augmenting path.

1.1.4 Given $D=(N,A)$, capacities $c$, and flow $x$, define the residual graph $D'$.

1.2 Ford-Fulkerson and Max-Flow Min-Cut

1.2.1 Describe Ford-Fulkerson algorithm.

1.2.2 Under what condition will FF terminate?

1.2.3 Describe Edmonds-Karp algorithm. What's the key difference between EK and FF?

1.2.4

Given $D=(N,A)$, nodes $s$ and $t$, capacities $c$, show the value of any $s,t$-flow is at most the 

capacity of any $s,t$-cut.

1.2.5

Use (6) to prove MFMC: Given $D=(N,A)$, nodes $s$ and $t$, capacities $c$, show the maximum value of 

any $s,t$-flow is equal to the minimum capacity of an $s,t$-cut.

1.2.6 As a corollary of MFMC, show that FF gives a $s,t$-flow when it terminates.

1.3 Maximum Flow with Lower Bounds

1.3.1 Modify FF to solve the maximum flow with lower bound problem.

1.3.2 Similar to (6): Show the value of any $s,t$-flow is at most $c(\delta(S)) - \ell(\delta(\bar S))$.

1.3.3 Similar to (7): State the generalized MFMC using the above result.

1.3.4

Prove $D$ is infeasible iff there is an $s,t$-cut $\delta(S)$ s.t. $c(\delta(S)) - \ell(\delta(\bar S)) < 0$.

1.4 Combinatorial Applications
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1.4.1

Prove flow decomposition: Given $D = (N, A)$, $s,t$, and integer capacities, if $x$ is an $s,t$-flow of value 

$k$ and $x$ is integral, then $x$ is the sum of characteristic vectors of $k$ $s,t$-dipaths and any number 

of dicycles.

1.4.2

Prove Menger's Theorem (Arc-Disjoint Version): Given $D = (N,A)$, nodes $s,t$, the maximum number of 

arc-disjoint $s,t$-dipaths is equal to the minimum number of arcs that disconnects $s$ from $t$.

1.4.3

Prove Menger's Theorem (Node-Disjoint Version): If $st$ is not an arc, then the maximum numbers of 

node-disjoint $s,t$-dipaths is equal to the minimum number of node whose removal disconnect $s$ from 

$t$. (Hint: Apply transformation)

1.4.4 Prove Konig's Theorem: In a bipartite graph, $\nu(G) = \tau(G)$.

1.5 Real-Life Applications

1.5.1 Describe how we could solve the matrix rounding problem using max flow.

1.5.2 Describe how we could solve the maximum closure problem using max flow.

1.6 Preflow-Push Algorithm

1.6.1 What is the drawback of FF? What is the intuition behind PFP? 

1.6.2 What is the definition for $s,t$-preflow and excess at $v \in N$?

1.6.3 Given $D = (N,A)$, capacities $c$, flow $x$, describe the residual digraph.

1.6.4 What does it mean for a set of heights to be compatible with a preflow $x$?

1.6.5 Describe the preflow-push algorithm.

1.7 Correctness of Preflow-Push

1.7.1 Prove: If preflow $x$ and height $h$ are compatible, then $D'$ has no $s,t$-dipath.

1.7.2 Prove: If $x$ is a feasible flow with compatible heights $h$, then $x$ is a max flow.

1.7.3 Prove: The algorithm maintains a preflow and a height function that are compatible with each other.

1.8 Termination of Preflow-Push

1.8.1 Prove: If $u$ has excess, i.e., $e(u) > 0$, then there is a $u,s$-dipath in $D'$.

1.8.2 Prove: Throughout the algorithm, $h(u) \leq 2|N| - 1$ for all $u \in N$.

1.8.3 Prove: The total number of relabel operations is at most $2|N| \times |N| = 2|N|^2$.

1.8.4 Define: Saturating push, non-saturating push.

1.8.5 Prove: The number of saturating pushes throughout the algorithm is at most $2|N||A|$.

1.8.6 Prove: The number of non-saturating pushes throughout the algorithm is $\leq 4|N|^2|A|$.



1.8.7 Prove: PFP terminates in $2|N|^2+2|N|^2|A| + 4|N|^2|A| = 8|N|^2|A| \approx 8|N|^4$ operations.

2 Global Minimum Cut

2.1 Global Minimum Cut

2.1.1 Describe the global min cut problem. What's the motivation for an efficient algorithm?

2.1.2 Define: $X,t$-cut, $s$-cut.

2.1.3 Describe the generic algorithm for minimum $s$-cut. 

2.1.4 Prove: The generic algorithm above solves the minimum $s$-cut problem.

2.2 Hao-Orlin

2.2.1 Define: $X$-preflow.

2.2.2 What does it mean for height $h$ to be compatible with an $X$-preflow?

2.2.3 Define: level, cut level.

2.2.4

Prove: If $\delta(S)$ is an $X,t$-cut with $\delta_{D'}(S) = \varnothing$ and $e(v) = 0$ for all $v \in 

N\setminus (S \cup \{t\})$ then $\delta(S)$ is a minimum $X,t $-cut.

2.2.5

Prove: If $\ell$ is a cut level and $e(v) =0$ for all $v$ with $h(v) < \ell$, except $t$, then $\{v:h(v) \geq 

\ell\}$ is a min $X,t$-cut.

2.2.6 Describe the Hao-Orlin algorithm.

2.3 Correctness of Hao-Orlin

2.3.1 Prove: The non-empty levels less than $|N|$ are consecutive.

2.3.2 Prove: The $X$-preflow and height $h$ are always compatible.

2.3.3 Prove:  $h(v) \leq |N| -2$ for all $v \notin X$.

2.3.4 Prove:  $\ell$ is always a cut level.

2.3.5 The stored cuts in each iteration are minimum $X,t$-cuts.

2.4 Global Min Cut in Undirected Graphs (Karger's Algorithm)

2.4.1 Describe Karger's algorithm. What's the intuition?

2.4.2

Prove: Let $\delta(S^*)$ be a global min cut. The probability that the algorithm produces $\delta(S^*)$ 

is $\geq \frac{1}{\binom{|V|}{2}}$. 

2.4.3

Prove: The probability that that algorithm produces $\delta(S^*)$ after $k|V|^2$ runs is at least $1-

e^{-2k}$ where $k \geq 1$. 
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1 Maximum Flow  

1.1 Maximum Flow Problem  

1.1.1 Describe the maximum flow problem?  

Given a digraph , constraints , nodes  as source and sink, we wish to 

maximize the total flow from  to .

1.1.2 Give the primal and dual LP of the maximum flow problem.  

The primal LP is given by

The dual LP is equivalent to

where  is the dual variable for the flow constraints and  is the for capacities constraints.

1.1.3 Define: residual capacity, augmenting path.  

The residual capacity  of the -dipath  is

An augmenting path is an -dipath where . 

1.1.4 Given , capacities , and flow , define the residual graph .  

, for each arc , 

If , add arc  to  with residual .

If , add arc  to  with residual .  

1.2 Ford-Fulkerson and Max-Flow Min-Cut  

Note: FF runs in  where  is the max flow value.

1.2.1 Describe Ford-Fulkerson algorithm.  

0. Let  for all .
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1. Construct the corresponding residual graph .

2. If the residual graph  contains an -dipath , push  flow along . Go back to (1).

3. Let  be the set of vertices reachable from  in . STOP.  is the max flow and  is the 

min cut.

1.2.2 Under what condition will FF terminate?  

First, if  is integral, then at each step we increase the flow by at least . By induction, it 

terminates. If  is rational, we could multiply everything by the GCD of the denominators and 

make  integral, so it will terminate as well. However, if  is irrational, then it is possible that it 

does not terminate. 

We say FF runs in pseudo-polynomial time, that is, it is polynomial in the magnitude of input 

but exponential in the size of the input.

1.2.3 Describe Edmonds-Karp algorithm. What's the key difference between EK

and FF?

 

The algorithm is identical to FF, except we always pick the augmenting path with the fewest 

number of arcs. This guarantees the termination of the algorithm.

1.2.4 Given , nodes  and , capacities , show the value of any -flow

is at most the capacity of any -cut.

 

For any -flow  and any -cut , the net flow of  is equal to the net flow of  as the net 

flows on other nodes are  by the problem setting. Observe

Thus, the value of any -flow is at most the capacity of .  

1.2.5 Use (6) to prove MFMC: Given , nodes  and , capacities , show

the maximum value of any -flow is equal to the minimum capacity of an -cut.

 

Let  be a max -flow. Then there is no -dipath in the residual digraph , so there is an 

empty -cut  in . 

If ,  is not an arc in , so .

If ,  is not an arc in , so 

Therefore, the value of  is . By the previous proposition,  is a max 

flow and  is a min cut.  

1.2.6 As a corollary of MFMC, show that FF gives a -flow when it terminates.  

Since FF terminated, there is no augmenting path, so our flow has used up the capacity of some 

cut  in . By MFMC, the capacity of the min cut equals the max flow, the result follows.  
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1.3 Maximum Flow with Lower Bounds  

Suppose we introduce non-negative lower bounds  for the arcs. That is, a flow must 

satisfy  for all .

1.3.1 Modify FF to solve the maximum flow with lower bound problem.  

Given a feasible flow, we form the residual digraph , where for backward arcs, we put residual 

 instead of  because we want to limit how much flow we could reduce. (You could 

interpret the no lower bound version as having a lower bound of zero.) The rest of FF is exactly 

the same.

1.3.2 Similar to (6): Show the value of any -flow is at most .  

For any -flow  and any -cut , we have , so

1.3.3 Similar to (7): State the generalized MFMC using the above result.  

Given , , , and nodes , there is a maximum -flow  whose value is the same as 

the minimum value of  provided there is a feasible solution.

1.3.4 Prove  is infeasible iff there is an -cut  s.t. .  

If , by MFMC, the max flow is negative, a contradiction. Now suppose the 

network is feasible. Then we cannot have an -cut with  because that sets 

an upper bound for the flow, again a contradiction.  

1.4 Combinatorial Applications  

1.4.1 Prove flow decomposition: Given , , and integer capacities, if 

is an -flow of value  and  is integral, then  is the sum of characteristic vectors

of  -dipaths and any number of dicycles.

 

If , i.e.,  is a circulation, then  is the sum of characteristic vectors of dicycles. If , 

then there is an -dipath , using our proof for shortest dipath;  is an -flow of value 

. We are done by induction on .  

1.4.2 Prove Menger's Theorem (Arc-Disjoint Version): Given , nodes 

, the maximum number of arc-disjoint -dipaths is equal to the minimum number

of arcs that disconnects  from .

 

If there are  arc-disjoint -dipaths, then we must remove at least one arc from each dipath. 

The inequality  is thus trivial. We now show the equality.
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Apply MFMC with capacity . By MFMC, there is an -flow with the same value as the 

capacity of an -cut , say . We may assume that  is integral as  is integral. By flow 

decomposition,  is the sum of  -dipaths and some dicycles. Since , each arc is used on 

at most  -dipath. Hence, these -dipaths are all arc-disjoint. If we remove all  arcs in , 

then  is disconnected from .  

1.4.3 Prove Menger's Theorem (Node-Disjoint Version): If  is not an arc, then

the maximum numbers of node-disjoint -dipaths is equal to the minimum number

of node whose removal disconnect  from . (Hint: Apply transformation)

 

We transform the node-disjoint version into arc-disjoint version. For every node , generate two 

nodes  and  with a single arc from  to . Arcs of the form  maps to  with  and 

all other arcs have capacity  Then we can simply apply Menger's Theorem for arc-disjoint 

version and conclude the proof: min-cut cannot use arcs with  and thus only newly created 

edges, which corresponds to an -separator.  

1.4.4 Prove Konig's Theorem: In a bipartite graph, .  

For any graph ,  holds trivially. Now, let  be a bipartition of  and create  

with arcs . Each newly created edge has capacity . We then orient edges from  to ; 

original arcs have capacity . 

A maximum matching consists of a maximum number of internally disjoint -paths. By 

Menger's Theorem, this is precisely the set of some minimum separator . Notice that  is 

actually a vertex cover by definition, so the result follows.  

1.5 Real-Life Applications  

1.5.1 Describe how we could solve the matrix rounding problem using max flow.  

Suppose we want to round the matrix  elements either by taking the ceiling/floor so 

that the sum of the columns , , and sum of rows , , are floored/ceilinged. 

To transform this into a max flow problem:

1. Let  be dummy nodes and create nodes  for , 

2. Add an arc from  to  with  and .

3. All arcs  have lower bound  and capacity floor/ceiling 

4. All arcs  have lower bound  and capacity floor/ceiling 

We then look for a feasible flow saturating all arcs incident with  and .

1.5.2 Describe how we could solve the maximum closure problem using max flow.  
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A closure is a set of nodes such that . Suppose we are given a set of tasks, each with 

some benefit (positive or negative). However, to perform some task, you need to also perform 

other tasks dependent on it. Form a digraph  with node weights ; an arc  

represents "if we take  we must also take ". Our goal is to find a closure with max total weight.

To transform this into a max flow problem:

1. Add  be dummy nodes.

2. Add arcs  with capacity  if .

3. Add arcs  with capacity  if .

4. Original arcs have capacity .

We have the following observations:

1. An -cut  in  has finite capacity iff  is a closure in . (Because there 

exists an arc in  with infinite capacity iff such an arc existed in the original graph.)

2. The weight of the closure is . (There is an arc from  to every  with 

 and an arc from every  with  to . Nodes not in the closure are included in 

both are thus get cancelled.)

3.  is a constant and  is the capacity of an -cut.

Thus, to maximize the weight of closure , we minimize , i.e., find the min 

cut. We can solve this using max flow.

1.6 Preflow-Push Algorithm  

1.6.1 What is the drawback of FF? What is the intuition behind PFP?  

FF/EK does global adjustments, which could be inefficient sometimes. PFP, on the other hand, 

makes local adjustments.

1.6.2 What is the definition for -preflow and excess at ?  

An -preflow is a flow that satisfies capacity constraints and the in-flow is greater than or equal 

to the out-flow for each intermediate nodes. If in-flow is greater than out-flow, we call the extra 

amount excess.

Intuitively, an -preflow is a flow that "makes sense", i.e., does not violate constraints or having 

more out-flow than in-flow.

1.6.3 Given , capacities , flow , describe the residual digraph.  

The residual graph is identical to the one for FF.

1.6.4 What does it mean for a set of heights to be compatible with a preflow ?  
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. Height  is compatible with a preflow  if

1. , , and 

2.  for . 

1.6.5 Describe the preflow-push algorithm.  

0. Initialization.

a. Set  and  for every .

b. Set preflow  with  for every  and  otherwise.

1. While there exists  with excess, i.e., ,

a. If there exists  where , push  on .

b. Otherwise, increment  by . (Relabel operation.)

1.7 Correctness of Preflow-Push  

1.7.1 Prove: If preflow  and height  are compatible, then  has no -dipath.  

Suppose not, so an -dipath exists in . Let  in  and 

 (compatible). Adding all these inequalities gives , so 

 and thus , a contradiction as there are  nodes in the path but only  

nodes in the digraph.  

1.7.2 Prove: If  is a feasible flow with compatible heights , then  is a max flow.  

Since  is compatible with , by the lemma above,  has no -dipath. Since there is no 

augmenting path in  (so no extra flow is available) and  is feasible,  is indeed optimal.  

1.7.3 Prove: The algorithm maintains a preflow and a height function that are

compatible with each other.

 

At initialization, we have a preflow  where  for every  and  otherwise. 

By construction,  and . 

Also,  for arcs in , so only  is in . Observe . 

For arcs  where , , so . Now .

Thus, the preflow and height are compatible at initialization. Now suppose there exists 

 with excess, i.e., .

Consider a push operation, i.e., when there exists  satisfying , we push 

flow  along . Since we are pushing the minimum between excess and residual, it is 

always true that  and ; exactly one of these becomes an equality.
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If we push residual, then . The only possible new arc in  is  but  

so we are fine.

If we push excess, then . Then , so the only possible new arc is also  and as 

above we are fine.

Thus the preflow and height are compatible after a push operation.

Consider a relabel operation, i.e., when every  satisfies , we increment 

 by . Then before relabeling, it must be that every  satisfies . Then 

adding  to , we have  for all arcs . Thus the preflow and height 

are compatible after a relabel operation.

Hence, if the algorithm terminates, this guarantees the correctness of the algorithm.  

1.8 Termination of Preflow-Push  

1.8.1 Prove: If  has excess, i.e., , then there is a -dipath in .  

We show the contrapositive. Let  be the set of all nodes  with no -dipath in  and we 

show that . Suppose , i.e., there exists  where  and . But 

then  could reach  via . Thus , so every in-arc is empty and every out-arc is full for 

. It follows that   

1.8.2 Prove: Throughout the algorithm,  for all .  

Suppose that at some point in the algorithm the height  increases to . Since a relabel 

operation only occurs when there is excess, this implies that . By the previous lemma, 

there is a -dipath in , which has length at most . By compatibility, height decreases 

by at most  in each arc resulting in , a contradiction.  

1.8.3 Prove: The total number of relabel operations is at most .  

There are  nodes in , each can have at most  relabel operations (from  to ), so 

the overall upper bound is .  

1.8.4 Define: Saturating push, non-saturating push.  

If we push  on arc  then it is a saturating push (the arc is saturated as we use up 

its capacity); if we push  then it is called a non-saturating push.

1.8.5 Prove: The number of saturating pushes throughout the algorithm is at most

.

 

Suppose we have a saturating push on , then before the push, . Observe  

disappears from  as . In order to push on  again, we need to first push flow on . 

To do so, we need to relabel  at least twice to obtain . Thus, between two 
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saturated pushes on the same edge, at least two relabel operations need to occur. By previous 

lemma, the maximum number of relabel operations on node  cannot exceed , so up to  

saturating pushes are possible on . There are  arcs in  counting both forward and 

backward arcs, so the number of saturating pushes is .  

1.8.6 Prove: The number of non-saturating pushes throughout the algorithm is 

.

 

Define the function  which counts the total height for nodes with excess, i.e.,

At initialization, , because all nodes with excess have height zero. Note the function never 

becomes negative as we are summing up non-negative heights. We want to determine the effect 

on  for each type of operation.

Each relabel operation is done on a node with excess, so  goes up by one. There are  

relabel operations by previous lemma, so the maximum increases for relabeling is  

throughout the algorithm. 

Each saturating push (i.e., push ) on  decreases  and increases . If  before 

the push, we add  to  after the push. By previous lemma, , so we add 

at most  over the algorithm. By another lemma, there is no more than  

saturating pushes, so the maximum increases from saturating pushes is 

.

Each non-saturating push (i.e., push ) on  makes  positive but . At worst, we 

need to add  to  and subtract  from . By the choice of , 

, so  decreases by at least . We have argued that  is non-negative throughout the 

algorithm, so the number of non-saturating pushes is therefore at most 

.  

1.8.7 Prove: PFP terminates in 

operations.

 

This follows from the previous proof.
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2 Global Minimum Cut  

2.1 Global Minimum Cut  

2.1.1 Describe the global min cut problem. What's the motivation for an efficient

algorithm?

 

Given  and capacity , we want to find a global minimum cut, i.e., partition  into 

two disjoint sets  and , where  is minimized.

Fix . Observe it must reside on either side of a global min cut.

2.1.2 Define: -cut, -cut.  

Given  and , an -cut has the form  where  and . In other words, 

if  is an -cut and , then  and . 

Given , an -cut has the form  where  and . In other words, if  is an -

cut and , then  and .

Note that we could reduce the global min cut problem to min -cut problem. By remark above, if 

a global min cut contains , then we are good. Otherwise, reverse all arcs and we will find the 

global min cut. Thus, we just need to solve min -cut twice for a fixed .

2.1.3 Describe the generic algorithm for minimum -cut.  

0. Initialize .

1. While , pick , find a min -cut, add  to .

2. Output the minimum over all cuts found.

2.1.4 Prove: The generic algorithm above solves the minimum -cut problem.  

Let  be a minimum -cut. Consider the first time we pick some  not in . Immediately 

before this step, . The algorithm gives us a minimum -cut . But  is also an 

-cut (thus ) and  is also an -cut (thus ), so they 

have the same capacity.  

2.2 Hao-Orlin  

2.2.1 Define: -preflow.  

An -preflow is a flow where every node not in  has a non-negative excess; nodes not in  are 

allowed to have negative excesses. 

2.2.2 What does it mean for height  to be compatible with an -preflow?  

Height  are compatible with an -preflow if
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1.  for all .

2. .

3.  for all .

2.2.3 Define: level, cut level.  

A level , denoted , consists of all nodes with height .

A cut level is a level  where no arc goes from  to  in .

2.2.4 Prove: If  is an -cut with  and  for all 

then  is a minimum -cut.

 

Take any -cut . Note the flow out of  is equal to the flow into . The net flow out of 

 is . The net flow into  is equal to 

Since , all out-arcs of  are full and all in-arcs of  are empty, so 

. 

Next,  for all  tells us 

Consider the flow . Since  for every  and we see that for this particular  we 

have ,  achieves the minimum (lower bound) and hence  is a min -cut.  

2.2.5 Prove: If  is a cut level and  for all  with , except , then 

 is a min -cut.

 

Consider , the set of nodes at or above level . If  is a cut level, there is no 

arc going from level  to level  in , so  is an -cut with . Combine this 

with  for all  with  except , we see that  is indeed a minimum -cut.  

2.2.6 Describe the Hao-Orlin algorithm.  

0. Initialization.

a. Initialize  and pick .

b. Initialize  and  for all another .

c. Initialize .

d. Send as much flow out of  as possible.

1. Loop. While ,

a. PFP.  While there exists  such that  and :
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i. If there exists  where , push  on . 

ii. Otherwise,

i. If  is the only node with , do not relabel. Instead, set .

ii. If we want to relabel  to , reset .

iii. Otherwise, relabel as before.

b. Store.  When no node satisfies  and , store the cut .

c. Reset. 

i. Add  to , set . 

ii. Send as much flow out of  as possible. 

iii. Pick a new  with lowest height.

iv. Reset cut level by setting .

2. Return the the minimum cut amongst all stored cuts.

2.3 Correctness of Hao-Orlin  

2.3.1 Prove: The non-empty levels less than  are consecutive.  

Initially,  is at level  and everything else is at level , so the claim is trivially true at 

initialization. We do not relabel  when  is the only node of height ; this keeps non-empty 

levels consecutive. Transitioning to a new iteration, we move  with lowest height to  meaning 

the non-empty levels remain consecutive.  

2.3.2 Prove: The -preflow and height  are always compatible.  

 for all  follows from the algorithm.  for all  follows 

from PFP during an iteration. At the end of each iteration, we move  to  and push all flow out 

of . Thus, we have  for all .

It remains to show that . Initially,  and . When we 

move  to , the next , call it , has height  or , since non-empty levels are 

consecutive. Originally, . We add  to  after the move and might add  to , 

so this inequality is true after this move.

2.3.3 Prove:  for all .  

Recall . There are  node not in . Since the non-empty levels 

are consecutive, the highest level not in  is at most .  

2.3.4 Prove:  is always a cut level.  
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When , level  is empty, so it is automatically a cut level. We change  to something 

else when we want to relabel , but  is the only node with its height. We want to relabel  

because  and no neighbour of  is one level below  in . Thus, no arcs goes from  

to level . Thus,  is a cut level and we can set .  

2.3.5 The stored cuts in each iteration are minimum -cuts.  

It suffices to show that  is always a cut level, because then by the previous corollary, Hao-Orlin 

produces a min -cut. Indeed, by the last proof,  is a cut level.  

2.4 Global Min Cut in Undirected Graphs (Karger's Algorithm)  

2.4.1 Describe Karger's algorithm. What's the intuition?  

To find the global min cut in undirected graphs, we pick one edge at random, contract it, and 

keep track of vertices each contracted vertex represents. Do this until two vertices remains and 

output the cut represented by these two vertices. 

To make edges with small capacities more likely to survive, we set probability of an edge gets 

selected proportional to its capacity.

The algorithm is as follows. While , pick  with probability  and contract . 

Repeat.

2.4.2 Prove: Let  be a global min cut. The probability that the algorithm

produces  is .

 

Consider the probability we pick an edge in  in the first step. The denominator is  

and the numerator is . 

Consider the cuts of the form  for . Each edge  appears in two such cuts  

and . Since  is a global minimum cut, 

So the probability that an edge in  is selected is

The probability that  survives the first contraction is thus at least . 

Now suppose we have contracted  edges and  is still intact. We have  vertices left 

and say the graph is . We want to find the probability of selecting an edge in . 
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The numerator is ; the denominator is . Now, each node represents several nodes 

(because of contractions):

So, the probability is at most 

The probability that  survives this contraction is at least 

The largest possible  is  (since we finish when we have  vertices, so in the last step, we 

have  vertices left).

Overall, the probability that  survives all contractions is

We expect the algorithm to produce a minimum cut if it runs  times. 

2.4.3 Prove: The probability that that algorithm produces  after  runs is

at least  where .

 

We use . The probability of failure is at most
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	Maximum Flow
	Maximum Flow Problem
	Describe the maximum flow problem?
	Give the primal and dual LP of the maximum flow problem.
	Define: residual capacity, augmenting path.
	Given D=(N,A), capacities c, and flow x, define the residual graph D'.

	Ford-Fulkerson and Max-Flow Min-Cut
	Describe Ford-Fulkerson algorithm.
	Under what condition will FF terminate?
	Describe Edmonds-Karp algorithm. What's the key difference between EK and FF?
	Given D=(N,A), nodes s and t, capacities c, show the value of any s,t-flow is at most the capacity of any s,t-cut.
	Use (6) to prove MFMC: Given D=(N,A), nodes s and t, capacities c, show the maximum value of any s,t-flow is equal to the minimum capacity of an s,t-cut.
	As a corollary of MFMC, show that FF gives a s,t-flow when it terminates.

	Maximum Flow with Lower Bounds
	Modify FF to solve the maximum flow with lower bound problem.
	Similar to (6): Show the value of any s,t-flow is at most c(\delta(S)) - \ell(\delta(\bar S)).
	Similar to (7): State the generalized MFMC using the above result.
	Prove D is infeasible iff there is an s,t-cut \delta(S) s.t. c(\delta(S)) - \ell(\delta(\bar S)) < 0.

	Combinatorial Applications
	Prove flow decomposition: Given D = (N, A), s,t, and integer capacities, if x is an s,t-flow of value k and x is integral, then x is the sum of characteristic vectors of k s,t-dipaths and any number of dicycles.
	Prove Menger's Theorem (Arc-Disjoint Version): Given D = (N,A), nodes s,t, the maximum number of arc-disjoint s,t-dipaths is equal to the minimum number of arcs that disconnects s from t.
	Prove Menger's Theorem (Node-Disjoint Version): If st is not an arc, then the maximum numbers of node-disjoint s,t-dipaths is equal to the minimum number of node whose removal disconnect s from t. (Hint: Apply transformation)
	Prove Konig's Theorem: In a bipartite graph, \nu(G) = \tau(G).

	Real-Life Applications
	Describe how we could solve the matrix rounding problem using max flow.
	Describe how we could solve the maximum closure problem using max flow.

	Preflow-Push Algorithm
	What is the drawback of FF? What is the intuition behind PFP? 
	What is the definition for s,t-preflow and excess at v \in N?
	Given D = (N,A), capacities c, flow x, describe the residual digraph.
	What does it mean for a set of heights to be compatible with a preflow x?
	Describe the preflow-push algorithm.

	Correctness of Preflow-Push
	Prove: If preflow x and height h are compatible, then D' has no s,t-dipath.
	Prove: If x is a feasible flow with compatible heights h, then x is a max flow.
	Prove: The algorithm maintains a preflow and a height function that are compatible with each other.

	Termination of Preflow-Push
	Prove: If u has excess, i.e., e(u) > 0, then there is a u,s-dipath in D'.
	Prove: Throughout the algorithm, h(u) \leq 2|N| - 1 for all u \in N.
	Prove: The total number of relabel operations is at most 2|N| \times |N| = 2|N|^2.
	Define: Saturating push, non-saturating push.
	Prove: The number of saturating pushes throughout the algorithm is at most 2|N||A|.
	Prove: The number of non-saturating pushes throughout the algorithm is \leq 4|N|^2|A|.
	Prove: PFP terminates in 2|N|^2+2|N|^2|A| + 4|N|^2|A| = 8|N|^2|A| \approx 8|N|^4 operations.


	Global Minimum Cut
	Global Minimum Cut
	Describe the global min cut problem. What's the motivation for an efficient algorithm?
	Define: X,t-cut, s-cut.
	Describe the generic algorithm for minimum s-cut. 
	Prove: The generic algorithm above solves the minimum s-cut problem.

	Hao-Orlin
	Define: X-preflow.
	What does it mean for height h to be compatible with an X-preflow?
	Define: level, cut level.
	Prove: If \delta(S) is an X,t-cut with \delta_{D'}(S) = \varnothing and e(v) = 0 for all v \in N\setminus (S \cup \{t\}) then \delta(S) is a minimum X,t -cut.
	Prove: If \ell is a cut level and e(v) =0 for all v with h(v) < \ell, except t, then \{v:h(v) \geq \ell\} is a min X,t-cut.
	Describe the Hao-Orlin algorithm.

	Correctness of Hao-Orlin
	Prove: The non-empty levels less than |N| are consecutive.
	Prove: The X-preflow and height h are always compatible.
	Prove:  h(v) \leq |N| -2 for all v \notin X.
	Prove:  \ell is always a cut level.
	The stored cuts in each iteration are minimum X,t-cuts.

	Global Min Cut in Undirected Graphs (Karger's Algorithm)
	Describe Karger's algorithm. What's the intuition?
	Prove: Let \delta(S^*) be a global min cut. The probability that the algorithm produces \delta(S^*) is \geq \frac{1}{\binom{|V|}{2}}. 
	Prove: The probability that that algorithm produces \delta(S^*) after k|V|^2 runs is at least 1-e^{-2k} where k \geq 1. 






