
Maximum Flow Min Cut

CO 351: Network Flow Theory

David Duan, 2019 Fall

Contents

1 Maximum Flow Problem

1.1 Maximum Flow Problem

1.2 Residual Digraph

1.3 Ford-Fulkerson

1.4 Edmonds-Karp

1.5 Max-Flow Min-Cut Theorem

1.6 Flows with Lower Bounds

2 Applications: Max-Flow Min-Cut

2.1 Flow Decomposition

2.2 Menger's Theorem

2.3 Konig's Theorem

3 Application: Maximum Flow

3.1 Matrix Rounding

3.2 Maximum Closure

4 Preflow-Push Algorithm

4.1 Preflow and Residual Graph

4.2 Preflow Push Algorithm

4.3 Correctness of Preflow Push

4.4 Termination

5 Global Minimum Cut

5.1 Global Minimum Cut Problem

5.2 Generic Algorithm for Minimum s-Cut

5.3 Preparation for Hao-Orlin

5.4 Hao-Orlin Algorithm

af://n0
af://n2
af://n3

5.5 Correctness

5.6 Termination

6 Global Min Cut in Undirected Graphs

6.1 Karger's Algorithm

af://n6

1 Maximum Flow Problem

1.1 Maximum Flow Problem

Def. 1.1.1 Given a digraph , constraints , nodes as source and sink,

we wish to maximize the total flow from to .

Remark. We may think of the maximum flow problem as the problem of sending liquid across a

system of pipes. The flow on arc is the amount of liquid flowing through pipe during one

unit of time. The capacity of the corresponding pipe is . The flow conservation constraints

indicate there is no loss of liquid, i.e., what comes in comes out (except for the source and the

sink).

Remark. Note that we can turn this into an MCFP by adding an arc from sink to source ,

which turns the digraph into a closed network.

1.2 Residual Digraph

Def. 1.2.1 Let be an -path of .

An arc is a forward arc if is directed from to ; otherwise, it is a backward arc.

The residual capacity of the -dipath is

A path is an augmenting path of is an -dipath and .

Def. 1.2.2 Let be an -flow and be an augmenting path. We say that is obtained

from by pushing flow along if is defined as follows, for all ,

Lemma. 1.2.3 Let be an -flow and let be obtained by pushing flow along an augmenting

path . Then is an -flow and . In particular, is not maximum.

Proof. Trivial.

Def. 1.2.4 Given , capacities and flow , its corresponding residual digraph is define as

.

For each arc ,

af://n6
af://n7
af://n12

If , then add with residual (forward arcs).

If , then add with residual (backward arc).

Remark. Some intuition on arcs in the residual digraph:

: we can push units on this arc.

: we can reduce units on this arc.

Ex. 1.2.5 The left figure represents a flow for a digraph with arc labels . Consider

the path . Since , path is an augmenting path. We can push one unit

of flow to obtain the represented on the right figure.

The right figure is the residual digraph for on the left. Observe has an -dipath

 and has a corresponding augmenting path .

Note there is a one-to-one correspondence between incrementing paths of and -dipaths

of the residual digraph . In particular, has an augmenting path iff has an -dipath.

1.3 Ford-Fulkerson

Algorithm. 1.3.1 (Ford-Fulkerson)

0. Initialization. Let for all .

1. Residual Graph. Construct the residual graph for the current flow.

2. Push. If contains an -dipath , push additional flow along . Go back to 1.

af://n48

3. Termination. Let be the set of nodes reachable from in . STOP. is the maximum

flow and is the minimum cut.

Remark. Will FF terminate?

If is integral, then at each step we increase flow by at least 1. By induction, it terminates.

If is rational, we can multiply by the GCD of all denominators and make it integral.

If is irrational, then it is possible that it does not terminate.

Remark. The runtime for FF is pseudo-polynomial, i.e., it is a polynomial in the numeric values

of your input.

1.4 Edmonds-Karp

Algorithm. 1.4.1 (Edmonds-Karp)

0. Initialization. Let for all .

1. Residual Graph. Construct the residual graph for the current flow.

2. Push. Pick an augmenting path in with the fewest number of arcs, push additional

flow along . Go back to 1.

3. Termination. Let be the set of nodes reachable from in . STOP. is the maximum

flow and is the minimum cut.

Remark. Since we pick an augmenting path in with the fewest number of arcs, the algorithm

is guaranteed to terminate with at most iterations.

Remark. The algorithm terminates when there is no augmenting path in , i.e., there exists an

-cut that is empty in . For arcs out of , there are no forward version in , so

the flow is at capacity; for arcs into , there are no backward version in , so the flow is .

We cannot do any better than this because an -cut limits the amount of flows by the sum of

the capacities of the leaving arcs. Thus, FF/EK terminates with a maximum flow. We will

provide a formal proof in the next section.

1.5 Max-Flow Min-Cut Theorem

Prop. 1.5.1 Given , nodes , capacities , the value of any -flow is at most the

capacity of any -cut.

Proof. For any -flow and any -cut , the net flow of is equal to the net flow of (as

the net flows on other nodes are by the problem setting). The value of flow is

Thus the value of any -flow is at most the capacity of .

af://n68
af://n81

Thm. 1.5.2 (Max-Flow Min-Cut) Given , nodes , capacities , the max value

of an -flow is equal to the minimum capacity of an -cut.

Proof. Let be a maximum -flow. Then there is no -dipath in the residual digraph (by

termination of FF). This implies there is an empty -cut in .

For , is not an arc in , so .

For , is not an arc in , so .

Therefore, the value of -flow is . By the previous

proposition, is a max -flow, and is a minimum capacity -cut.

Cor. 1.5.3 FF does give a max -flow given it terminates.

Proof. Since FF terminated, there is no -dipath in the residual digraph , so our flow have

used up the capacity of some cut in . By Max-Flow Min-Cut, the capacity of the min cut

equals the max flow, so the resulting flow is indeed optimal.

1.6 Flows with Lower Bounds

We now introduce non-negative lower bounds for the arcs. That is, a flow must satisfy

 for all .

Algorithm. 1.6.1 (Modified FF) Given a feasible flow, we form the residual digraph ,

where for the backward arcs, we put residual instead of because we want to limit how

much flow we could reduce. The rest of the algorithm is exactly the same.

Prop. 1.6.2 For any -flow and any -cut , the value of is at most

.

Proof. For any -flow and any -cut , we have , so

Thus the value of any -flow is at most .

Cor. 1.6.3 Algorithm 1.6.1 finds a maximum -flow for the maximum flow problem with

lower bounds.

Proof. At the end of FF, there is no -dipath in , so there is an empty -cut . The

net outflow of at termination is . By Prop. 1.6.2, FF finds a maximum -

flow.

Thm. 1.6.3 (Generalized Max-Flow Min-Cut) Given , , , and nodes ,

there is a maximum -flow whose value is the same as the minimum value of

 provided there is a feasible solution.

af://n96

Prop. 1.6.4 (Feasibility Characterization) The network is infeasible if and only if there is

an -cut such that .

Proof. If , by Prop. 1.6.2, the maximum flow is negative, a contradiction.

Now suppose the network is feasible. Then we cannot have -cut with

 because that sets an upper bound for the flow, again a contradiction.

af://n109

2 Applications: Max-Flow Min-Cut

2.1 Flow Decomposition

Prop. 1.6.1 (Flow Decomposition) Given , , and integer capacities, if is an

-flow of value and is integral, then is the sum of characteristic vectors of -dipaths

and any number of dicycles.

Proof. When (i.e., is a circulation), then is the sum of characteristic vectors of

dicycles. If , then there is an -dipath . (Proof: see shortest dipath notes.) is an

-flow of value . We are done by induction on .

2.2 Menger's Theorem

Def. 2.2.1 disconnects from is there is no -dipath in .

Given a digraph , , how many arcs do we need to remove to disconnect from ?

Thm. 2.2.2 (Menger's Theorem, Arc-Disjoint Version) Given , nodes ,

the maximum number of arc-disjoint -dipaths is equal to the minimum number of arcs that

disconnects from .

Proof. If there are arc-disjoint -dipaths, then we must remove at least one arc from each

dipath. The inequality is thus trivial. We want to prove equality.

We apply max-flow min-cut with capacity . By max-flow min-cut, there exists an -flow

with the same value as the capacity of an -cut , say . We may assume that is integral

as is integral. By the flow decomposition, is the sum of -dipaths and some dicycles. Since

, each arc is used on at most -dipath. Hence, these -dipaths are all arc disjoint. If we

remove all arcs in , then is disconnected from .

Assume , how many nodes do we have to remove to disconnect from ?

Thm. 2.2.3 (Menger's Theorem, Node-Disjoint Version) If is not an arc, then the

maximum numbers of node-disjoint -dipaths is equal to the minimum number of node whose

removal disconnect from . We call this an -separating set of nodes.

Proof. We transform the node-disjoint case into arc-disjoint case. For every node , generate two

nodes and with a single edge between them. Arcs of the form maps to with

 and all other arcs have capacity .

af://n109
af://n110
af://n113

Then we can simply apply Menger's Theorem for arc-disjoint paths and conclude the proof: min-

cut cannot use arcs with and thus only newly created edges, which correspond to an -

separator.

2.3 Konig's Theorem

Thm. 2.3.1 (Konig) In a bipartite graph, .

Proof. Observe that holds trivially since we can take one vertex per edge in the

matching to obtain a lower bound. Now, let be a bipartition of and create with edges

. Each newly created edge has capacity . We then orient the edges from to ; original

edges have capacity .

Apply Menger's Theorem, the minimum cannot use arcs, so .

af://n124
af://n129

3 Application: Maximum Flow

3.1 Matrix Rounding

Suppose we want to round the matrix elements either by taking the ceiling/floor so

that the sum of the columns , , and sum of rows , , are floored/ceilinged.

We can describe this as an instance of an -flow problem.

Algorithm 3.1.1 To transform this into a maximum flow problem:

1. Let be dummy nodes and create nodes for .

2. Add an arc from to with and .

3. All arcs have lower bound and capacity floor/ceiling .

4. All arcs have lower bound and capacity floor/ceiling .

We can solve this problem using maximum flow algorithm.

3.2 Maximum Closure

Def. 3.2.1 A closure is a set of nodes such that .

Suppose we are given a set of tasks, each with some benefit (positive or negative). However, to

perform some task, you need to also perform other tasks dependent on it.

Form a digraph with node weights ; an arc represents "if we take we

must also take ". Our goal is to find a closure with maximum total weight.

Algorithm 3.2.2 To transform this into a maximum flow problem:

1. Add nodes and .

2. Add arcs with capacity if .

3. Add arcs with capacity if .

4. Original arcs have capacity

Ex. 3.2.3 Applying Algorithm 3.2.2. to the left digraph:

af://n129
af://n130
af://n144

We have the following observations.

Lemma. 3.2.4 An -cut in the new graph has finite capacity if and only if is a

closure in the original.

Proof. There exists an arc in with infinite capacity if and only if such an arc existed in the

original graph.

Lemma. 3.2.5 The weight of the closure is .

Proof. There is an arc from to every with and an arc from every with to .

Note that nodes not in the closure (e.g., 10) are included in both and thus gets cancelled.

Lemma 3.2.6 is a constant, and is the capacity of an -cut.

Proof. is the sum of positive weights; is a cut by inspection .

Thus, to maximize the weight of closure , we minimize , i.e., find the

minimum cut. We can solve this problem using maximum flow.

af://n170

4 Preflow-Push Algorithm

Recall FF/EK does "global adjustments", i.e., pushes (the minimum available flow) along

an augmenting path, which is sometimes inefficient. For example, in the following case, we can

only push 1 unit of flow at a time using FF/EK:

The preflow-push algorithm, on the other hand, makes "local adjustments"; we introduce a

different parameter called height for each node, and keep the height so that we always push flow

downwards but not too steeply.

4.1 Preflow and Residual Graph

An -preflow is a flow that (1) satisfies capacity constraints and (2) in-flow is greater than or

equal to the out-flow for each intermediate node. If in-flow is greater than out-flow, we call the

extra amount excess.

Def. 4.1.1 We call an -preflow if it satisfies and for all

. The excess at is .

We define the residual graph same as before.

(Def. 1.2.4) Given , , , its corresponding residual digraph is define as

.

For each arc ,

If , then add with residual .

If , then add with residual (backward arc).

We define a height function for each node . We say a height is compatible when no arc

in is pointing down too steeply.

Def. 4.1.2 A set of height is compatible with a preflow if

1. - high node; source.

af://n170
af://n174

2. - low node; sink.

3. for all - for each arc in the residual graph, it head is at most 1

lower than its tail.

You can think of embedding the digraph in and only allowing changes with "gentle" slopes.

4.2 Preflow Push Algorithm

Algorithm. 4.2.1 (Preflow-Push)

0. Initialization.

a. Set and for every .

b. Set preflow with for every and otherwise.

1. While there exists with excess, i.e., :

a. If there exists where , push on .

b. Otherwise, increment by . (This is sometimes called a relabel operation.)

Remark. Observe that FF/EK always maintains feasibility and works towards optimality; PP

starts from an infeasible flow and works towards feasibility while maintaining some optimality

conditions.

4.3 Correctness of Preflow Push

Lemma. 4.3.1 If preflow and height are compatible, then has no -dipath.

Proof. Suppose not, so an -dipath exists. Let in and

. Adding all these inequalities gives , so and

thus , a contradiction as there are nodes in the path but only nodes in the

digraph.

Cor. 4.3.2 If is a feasible flow with compatible heights , then is a maximum flow.

Proof. Since is compatible with , by Lemma. 4.3.1, has no -dipath. Since there is no

augmenting path in (no extra flow is available) and is feasible, it follows that is an optimal

solution.

Thm. 4.3.3 The algorithm maintains a preflow and a height function that are compatible with

each other.

Proof. At initialization, we have a preflow where for every and otherwise.

By construction, and .

Also, for arcs in , so only is in . Observe .

af://n199
af://n217

For arcs where , , so . Now .Thus, the

preflow and height are compatible at initialization. Now suppose there exists

with excess, i.e., .

Consider a push operation, i.e., when there exists satisfying , we push

flow along . Since we are pushing the minimum between excess and residual, it is

always true that and . (Exactly one of these two becomes equality,

depending on whether we push or .)

If we push residual, then . The only possible new arc in is but

so we are fine.

If we push excess, then . Then , so the only possible new arc is also and as

above we are fine

Thus, the preflow and height are compatible after a push operation.

Consider a relabel operation, i.e., when every satisfies , we increment

 by one. Then before relabeling, it must be that every satisfies .

When we add to , we have for all arcs . Thus, the preflow and

height are compatible after a relabel operation.

Note that if the algorithm terminates, Thm. 4.3.3 guarantees the correctness of the algorithm.

4.4 Termination

We now try to bound the number of push and relabel operations, thus showing that the

algorithm terminates after a maximum number of iterations.

To bound the number of relabel operations, we bound the maximum value of , so that the

number of relabel operations is finite.

Lemma. 4.4.1 If has excess, i.e., , then there is a -dipath in .

Proof. We show the contrapositive: let be the set of all nodes with no -dipath in

and we show that . Suppose , i.e., there exists where and .

But then could reach via . Thus, . Then

Cor. 4.4.2 Throughout the algorithm, for all .

Proof. Suppose that at some point in the algorithm the height increases to . Since a

relabel operation only occurs when there is excess, this implies that . By compatibility,

height decreases by at most 1 in each arc resulting in , a contradiction. ??

Cor. 4.4.3 The total number of relabel operations is at most .

af://n240

Proof. There are nodes in , each can have at most relabel operations (from to

), so the overall upper bound is .

Def. 4.4.4 We perform a saturating push if we push on arc and a non-saturating

push if we push .

Remark. Observe if we perform a saturating push on , then so disappears from

 and is in .

Prop. 4.4.5 The number of saturating pushes throughout the algorithm is at most .

Proof. Suppose we have a saturating push on , then before the push, . Observe

 disappears from as . In order to push on again, we need to first push flow on

. To do so, we need to relabel at least twice to obtain . Thus, between two

saturated pushes on the same edge (), at least two relabel operations need to occur. By Cor.

4.4.2, the maximum number of relabel operations on node cannot exceed , so up to

saturating pushes are possible on . There are arcs in (counting both forward and

backward), so the number of saturating pushes is .

Prop. 4.4.6 The number of non-saturating pushes throughout the algorithm is .

Proof. Define the function which counts the total height for nodes with excess, i.e.,

At initialization, (because nodes with excess all have height zero) and the function never

becomes negative (as we are adding up non-negative heights). We will determine the effect on

 for each type of operation.

Each relabel operation is done on a node with excess, so goes up by one. There are

relabel operations by Cor. 4.4.3, so the maximum increases for relabeling is throughout

the algorithm.

Each saturating push (i.e., push) on decreases and increases . If before

the push, we add to after the push. By Lemma. 4.4.1, , so we add

at most over the algorithm. By Prop. 4.4.5, there are no more than saturating

pushes, so the maximum increase from saturating pushes is .

Each non-saturating push (i.e., push) on makes positive but . At worst, we

need to add to and we subtract from . By the choice of (i.e., while

condition), , so decreases by at least . We have argued that

throughout the algorithm, so the number of non-saturating pushes (which decreases by

) is therefore at most .

Cor. 4.4.7 Preflow-push terminates in

operations.

Proof. Note that . See Prop. 4.4.6 proof.

af://n264

5 Global Minimum Cut

5.1 Global Minimum Cut Problem

Def. 5.1.1 Given and capacity , we want to find a global (non-trivial) minimum

cut, i.e., partition into two disjoint sets and , where is

minimized.

Remark. (Brute-Force) Run maximum flow algorithm on every possible pair , which

requires calls to maximum flow.

Remark. (Improvement) Fix . Observe it must reside on either side of a global minimum

cut, i.e., either or where is the global minimum cut. Thus, we just need to run

maximum flow algorithm on all -cuts and -cuts for all . There are

choices of so this requires calls to maximum flow.

5.2 Generic Algorithm for Minimum -Cut

The Hao-Orlin algorithm is a modification of preflow-push algorithm and solves the global

minimum cut problem efficiently.

Def. 5.2.1 Given and , an -cut has the form where and . In

other words, if is an -cut and , then and .

Def. 5.2.2 Given , an -cut has the form where and . In other words, if

 is an -cut and , then and .

We can reduce the global minimum cut problem to minimum -cut problem. By remark from

Section 5.1, if a global minimum cut contains , then we are good. Otherwise, reverse all arcs and

we will find the global minimum cut. Thus, to solve global minimum cut, we just solve minimum

-cut twice for a fixed .

Algorithm. 5.2.3 (Generic Algorithm for Minimum -Cut)

1. Initialize .

2. While , pick , find a min -cut, add to .

3. Output the minimum over all cuts found.

Prop. 5.2.4 The generic algorithm above solves the minimum -cut problem.

Proof. Let be a minimum -cut. Consider the first time we pick some not in .

Immediately before this step, . The algorithm gives us a minimum -cut . But

 is also an -cut and is also an -cut, so they have the same capacity.

5.3 Preparation for Hao-Orlin

af://n264
af://n265
af://n269
af://n284

We define an -preflow to be a flow where every node not in has a non-negative excess (and

allow nodes in to have negative excess).

Def. 5.3.1 For , an -preflow is a flow where for .

The definition for compatible height is similar to preflow-push (with (1) and (2) is modified).

Def. 5.3.2 Height are compatible with an -preflow if

 for all .

 for all .

We define two more terms for Hao-Orlin.

Def. 5.3.3 A level , denoted , consists of all nodes with height .

Def. 5.3.4 A cut level is a level where no arc goes from to in .

Lemma. 5.3.5 If is an -cut with and for all

then is a minimum -cut.

Proof. Take any -cut . Note the flow out of is equal to the flow into . The net

flow out of is . The net flow into is equal to

Since , all out-arcs of are full and all in-arcs of are empty, so

Next, for all tells us

Consider the flow . Since for every and we see that for this particular we

have , then achieves the minimum (lower bound) and hence is a minimum

-cut.

Cor. 5.3.6 If is a cut level and for all with , except , then is

a min -cut.

Proof. Consider , the set of nodes at or above level . If is a cut level, there

is no arc going from level to level in , so is an -cut with . Combine

this with for all with except , we see that is indeed a minimum -cut.

af://n309

5.4 Hao-Orlin Algorithm

We run preflow push algorithm, maintaining a cut level while getting rid of excess on nodes

below . When we succeed, is the desired min -cut by Cor. 5.3.6.

Note the algorithm keeps non-empty levels consecutive (except) at step (2 a(ii)).

Algorithm. 5.4.1 (Hao-Orlin)

1. Initialization.

a. Initialize and pick .

b. Initialize and for all other .

c. Initialize .

d. Send as much flow out of as possible.

2. Loop. While ,

a. While there exists low node with excess, i.e., and :

i. If there exists where , push on .

ii. Otherwise,

i. If is the only node with , do not relabel. Instead, set .

ii. Otherwise, to maintain a cut level, relabel and reset .

b. When no node satisfies and , store the cut (this is a

min -cut by Cor. 5.3.6.)

i. Add to . Set .

ii. Send as much flow out of as possible (so that).

iii. Pick with lowest height.

iv. Reset cut level by setting because we want a non-trivial -cut (if is

too low, you might not be able to find another node so you end up with a trivial

cut).

3. Pick the minimum cut amongst the stored cuts. This is your global minimum cut.

5.5 Correctness

Lemma. 5.5.1 The non-empty levels less than are consecutive.

Proof. Initially, is at level and everything else is at level , so the claim is trivially

true at initialization. We do not relabel when is the only node of height ; this keeps non-

empty levels consecutive. Transitioning to a new iteration, we move with lowest height to

meaning the non-empty levels remain consecutive.

Prop. 5.5.2 The -preflow and height are always compatible.

af://n309
af://n353

Proof. for all follows from the algorithm. for all

follows from PFP during an iteration. At the end of each iteration, we move to and push all

flow out of . Thus, we have for all .

It remains to show that . Initially, and . When we

move to , the next , call it , has height or , since non-empty levels are

consecutive. Originally, . We add to after the move and might add to ,

so this inequality is true after this move.

Lemma. 5.5.3 for all .

(Idea: Consider the worst case, where we put a single node on each of the levels.)

Proof. Recall . There are nodes not in . Since the non-empty

levels are consecutive, the highest level not in is .

Lemma. 5.5.4 is always a cut level.

Proof. When , level is empty, so it is automatically a cut level. We change to

something else when we want to relabel , but is the only node with its height. We want to

relabel because and no neighbour of is one level below in . Thus, no arcs goes

from to level . Thus, is a cut level and we can set .

Prop. 5.5.5 The stored cuts in each iteration are minimum -cuts.

Key. It suffices to show that is always a cut level, because then our corollary from before

applies.

Proof. is always a cut level, so Cor. 5.3.6 applies. Thus, Hao-Orlin produces a min -cut.

5.6 Termination

Relabel operation: so in total operations.

Saturating and non-saturating pushes: same as before.

Level setting operations: at most number of relabel operations (number of iterations).

Overall: the runtime is roughly the same as preflow-push.

(Termination of Hao-Orlin is not on the exam.)

af://n367
af://n374

6 Global Min Cut in Undirected Graphs

Consider the undirected graph with edge capacities .

6.1 Karger's Algorithm

Idea.

1. Pick one edge at random and contract it.

2. Keep track of vertices each contracted vertex represents.

3. Do this until two vertices remains.

4. Output the cut represented by these two vertices.

In general, edges with small capacities are more likely to be in a minimum cut, so we will try to

lower the probability that these edges are selected. Thus, we set probability of an edge gets

selected proportional to its capacity.

Algorithm. 6.1.1

While , pick with probability and contract . Repeat.

Thm. 6.1.2 Let be a global min cut. The probability that the algorithm produces is

Proof. Consider the probability we pick an edge in in the first step. The denominator is

 and the numerator is .

Consider the cuts of the form for . Each edge appears in two such cuts

and . Since is a global minimum cut,

So the probability that an edge in is selected is

The probability that survives the first contraction is thus at least .

Now suppose we have contracted edges and is still intact. We have vertices left

and say the graph is . We want to find the probability of selecting an edge in .

af://n374
af://n376

The numerator is ; the denominator is . Now, each node represents several nodes

(because of contractions):

So, the probability is at most

The probability that survives this contraction is at least

The largest possible is (since we finish when we have vertices, so in the last step, we

have vertices left).

Overall, the probability that survives all contractions is

We expect the algorithm to produce a minimum cut if it runs times.

Cor. 6.1.3 The probability that that algorithm produces after runs is at least

 where .

Proof. We use . The probability of failure is at most

Ex. 6.1.4 Let . Then . So after times we have a chance

of getting a global min cut.

	Maximum Flow Min Cut
	CO 351: Network Flow Theory
	David Duan, 2019 Fall
	Maximum Flow Problem
	Maximum Flow Problem
	Residual Digraph
	Ford-Fulkerson
	Edmonds-Karp
	Max-Flow Min-Cut Theorem
	Flows with Lower Bounds

	Applications: Max-Flow Min-Cut
	Flow Decomposition
	Menger's Theorem
	Konig's Theorem

	Application: Maximum Flow
	Matrix Rounding
	Maximum Closure

	Preflow-Push Algorithm
	Preflow and Residual Graph
	Preflow Push Algorithm
	Correctness of Preflow Push
	Termination

	Global Minimum Cut
	Global Minimum Cut Problem
	Generic Algorithm for Minimum s-Cut
	Preparation for Hao-Orlin
	Hao-Orlin Algorithm
	Correctness
	Termination

	Global Min Cut in Undirected Graphs
	Karger's Algorithm

