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1 Maximum Flow Problem  

1.1 Maximum Flow Problem  

Def. 1.1.1  Given a digraph , constraints , nodes  as source and sink, 

we wish to maximize the total flow from  to .

Remark. We may think of the maximum flow problem as the problem of sending liquid across a 

system of pipes. The flow on arc  is the amount of liquid flowing through pipe  during one 

unit of time. The capacity of the corresponding pipe is . The flow conservation constraints 

indicate there is no loss of liquid, i.e., what comes in comes out (except for the source and the 

sink).

Remark.  Note that we can turn this into an MCFP by adding an arc from sink  to source , 

which turns the digraph into a closed network.

1.2 Residual Digraph  

Def. 1.2.1  Let  be an -path of . 

An arc  is a forward arc if  is directed from  to ; otherwise, it is a backward arc. 

The residual capacity  of the -dipath  is 

A path  is an augmenting path of  is an -dipath and . 

Def. 1.2.2  Let  be an -flow and  be an augmenting path. We say that  is obtained 

from  by pushing flow along  if  is defined as follows, for all , 

Lemma. 1.2.3  Let  be an -flow and let  be obtained by pushing flow along an augmenting 

path . Then  is an -flow and . In particular,  is not maximum.

Proof.  Trivial. 

Def. 1.2.4  Given , capacities  and flow , its corresponding residual digraph  is define as 

.

For each arc , 
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If , then add  with residual  (forward arcs). 

If , then add  with residual  (backward arc). 

Remark.  Some intuition on arcs in the residual digraph:

: we can push  units on this arc.

: we can reduce  units on this arc.

Ex. 1.2.5  The left figure represents a flow for a digraph  with arc labels . Consider 

the path . Since , path  is an augmenting path. We can push one unit 

of flow to obtain the  represented on the right figure.

The right figure is the residual digraph  for  on the left. Observe  has an -dipath 

 and  has a corresponding augmenting path .

Note there is a one-to-one correspondence between incrementing paths  of  and -dipaths  

of the residual digraph . In particular,  has an augmenting path iff  has an -dipath. 

1.3 Ford-Fulkerson  

Algorithm. 1.3.1 (Ford-Fulkerson)

0. Initialization. Let  for all .

1. Residual Graph. Construct the residual graph  for the current flow.

2. Push.  If  contains an -dipath , push additional flow  along . Go back to 1.
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3. Termination. Let  be the set of nodes reachable from  in . STOP.  is the maximum 

flow and  is the minimum cut.

Remark.  Will FF terminate?

If  is integral, then at each step we increase flow by at least 1. By induction, it terminates. 

If  is rational, we can multiply  by the GCD of all denominators and make it integral.

If  is irrational, then it is possible that it does not terminate.

Remark.  The runtime for FF is pseudo-polynomial, i.e., it is a polynomial in the numeric values 

of your input.

1.4 Edmonds-Karp  

Algorithm. 1.4.1 (Edmonds-Karp)

0. Initialization. Let  for all .

1. Residual Graph. Construct the residual graph  for the current flow.

2. Push.  Pick an augmenting path  in  with the fewest number of arcs, push additional 

flow  along . Go back to 1.

3. Termination. Let  be the set of nodes reachable from  in . STOP.  is the maximum 

flow and  is the minimum cut.

Remark.  Since we pick an augmenting path in  with the fewest number of arcs, the algorithm 

is guaranteed to terminate with at most  iterations.

Remark.  The algorithm terminates when there is no augmenting path in , i.e., there exists an 

-cut  that is empty in . For arcs out of , there are no forward version in , so 

the flow is at capacity; for arcs into , there are no backward version in , so the flow is . 

We cannot do any better than this because an -cut limits the amount of flows by the sum of 

the capacities of the leaving arcs. Thus, FF/EK terminates with a maximum flow. We will 

provide a formal proof in the next section.

1.5 Max-Flow Min-Cut Theorem  

Prop. 1.5.1  Given , nodes , capacities , the value of any -flow is at most the 

capacity of any -cut.

Proof.  For any -flow  and any -cut , the net flow of  is equal to the net flow of  (as 

the net flows on other nodes are  by the problem setting). The value of flow  is

Thus the value of any -flow is at most the capacity of . 
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Thm. 1.5.2 (Max-Flow Min-Cut)  Given , nodes , capacities , the max value 

of an -flow is equal to the minimum capacity of an -cut.

Proof.  Let  be a maximum -flow. Then there is no -dipath in the residual digraph  (by 

termination of FF). This implies there is an empty -cut  in . 

For ,  is not an arc in , so . 

For ,  is not an arc in , so . 

Therefore, the value of -flow  is . By the previous 

proposition,  is a max -flow, and  is a minimum capacity -cut. 

Cor. 1.5.3  FF does give a max -flow given it terminates.

Proof.  Since FF terminated, there is no -dipath in the residual digraph , so our flow have 

used up the capacity of some cut  in . By Max-Flow Min-Cut, the capacity of the min cut 

equals the max flow, so the resulting flow is indeed optimal.  

1.6 Flows with Lower Bounds  

We now introduce non-negative lower bounds  for the arcs. That is, a flow must satisfy 

 for all .

Algorithm. 1.6.1 (Modified FF)  Given a feasible flow, we form the residual digraph , 

where for the backward arcs, we put residual  instead of  because we want to limit how 

much flow we could reduce. The rest of the algorithm is exactly the same.

Prop. 1.6.2  For any -flow  and any -cut , the value of  is at most 

. 

Proof.  For any -flow  and any -cut , we have , so

Thus the value of any -flow is at most . 

Cor. 1.6.3  Algorithm 1.6.1 finds a maximum -flow for the maximum flow problem with 

lower bounds.

Proof.  At the end of FF, there is no -dipath in , so there is an empty -cut . The 

net outflow of  at termination is . By Prop. 1.6.2, FF finds a maximum -

flow.  

Thm. 1.6.3 (Generalized Max-Flow Min-Cut)  Given , , , and nodes , 

there is a maximum -flow  whose value is the same as the minimum value of 

 provided there is a feasible solution.

af://n96


Prop. 1.6.4 (Feasibility Characterization)  The network is infeasible if and only if there is 

an -cut  such that .

Proof. If , by Prop. 1.6.2, the maximum flow  is negative, a contradiction. 

Now suppose the network is feasible. Then we cannot have -cut  with 

 because that sets an upper bound for the flow, again a contradiction.  
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2 Applications: Max-Flow Min-Cut  

2.1 Flow Decomposition  

Prop. 1.6.1 (Flow Decomposition)  Given , , and integer capacities, if  is an 

-flow of value  and  is integral, then  is the sum of characteristic vectors of  -dipaths 

and any number of dicycles.

Proof.  When  (i.e.,  is a circulation), then  is the sum of characteristic vectors of 

dicycles. If , then there is an -dipath . (Proof: see shortest dipath notes.)  is an 

-flow of value . We are done by induction on . 

2.2 Menger's Theorem  

Def. 2.2.1   disconnects  from  is there is no -dipath in .

Given a digraph , , how many arcs do we need to remove to disconnect  from ?

Thm. 2.2.2  (Menger's Theorem, Arc-Disjoint Version)  Given , nodes , 

the maximum number of arc-disjoint -dipaths is equal to the minimum number of arcs that 

disconnects  from .

Proof.  If there are  arc-disjoint -dipaths, then we must remove at least one arc from each 

dipath. The inequality  is thus trivial. We want to prove equality. 

We apply max-flow min-cut with capacity . By max-flow min-cut, there exists an -flow 

with the same value as the capacity of an -cut , say . We may assume that  is integral 

as  is integral. By the flow decomposition,  is the sum of  -dipaths and some dicycles. Since 

, each arc is used on at most  -dipath. Hence, these -dipaths are all arc disjoint. If we 

remove all  arcs in , then  is disconnected from .  

Assume , how many nodes do we have to remove to disconnect  from ?

Thm. 2.2.3 (Menger's Theorem, Node-Disjoint Version)  If  is not an arc, then the 

maximum numbers of node-disjoint -dipaths is equal to the minimum number of node whose 

removal disconnect  from . We call this an -separating set of nodes.

Proof.  We transform the node-disjoint case into arc-disjoint case. For every node , generate two 

nodes  and  with a single edge between them. Arcs of the form  maps to  with 

 and all other arcs have capacity . 
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Then we can simply apply Menger's Theorem for arc-disjoint paths and conclude the proof: min-

cut cannot use arcs with  and thus only newly created edges, which correspond to an -

separator. 

2.3 Konig's Theorem  

Thm. 2.3.1 (Konig)  In a bipartite graph, .

Proof.  Observe that  holds trivially since we can take one vertex per edge in the 

matching to obtain a lower bound. Now, let  be a bipartition of  and create  with edges 

. Each newly created edge has capacity . We then orient the edges from  to ; original 

edges have capacity .

Apply Menger's Theorem, the minimum  cannot use  arcs, so . 
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3 Application: Maximum Flow  

3.1 Matrix Rounding  

Suppose we want to round the matrix  elements either by taking the ceiling/floor so 

that the sum of the columns , , and sum of rows , , are floored/ceilinged. 

We can describe this as an instance of an -flow problem.

Algorithm 3.1.1  To transform this into a maximum flow problem:

1. Let  be dummy nodes and create nodes  for .

2. Add an arc from  to  with  and .

3. All arcs  have lower bound  and capacity floor/ceiling .

4. All arcs  have lower bound  and capacity floor/ceiling .

We can solve this problem using maximum flow algorithm.

3.2 Maximum Closure  

Def. 3.2.1  A closure is a set of nodes  such that .

Suppose we are given a set of tasks, each with some benefit (positive or negative). However, to 

perform some task, you need to also perform other tasks dependent on it.

Form a digraph  with node weights ; an arc  represents "if we take  we 

must also take ". Our goal is to find a closure with maximum total weight.

Algorithm 3.2.2  To transform this into a maximum flow problem:

1. Add nodes  and .

2. Add arcs  with capacity  if .

3. Add arcs  with capacity  if .

4. Original arcs have capacity 

Ex. 3.2.3  Applying Algorithm 3.2.2. to the left digraph: 
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We have the following observations.

Lemma. 3.2.4  An -cut  in the new graph has finite capacity if and only if  is a 

closure in the original.

Proof.  There exists an arc in  with infinite capacity if and only if such an arc existed in the 

original graph.  

Lemma. 3.2.5  The weight of the closure is .

Proof.  There is an arc from  to every  with  and an arc from every  with  to . 

Note that nodes not in the closure (e.g., 10) are included in both and thus gets cancelled.   

Lemma 3.2.6    is a constant, and  is the capacity of an -cut.

Proof.   is the sum of positive weights;  is a cut by inspection .  

Thus, to maximize the weight of closure , we minimize , i.e., find the 

minimum cut. We can solve this problem using maximum flow.
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4 Preflow-Push Algorithm  

Recall FF/EK does "global adjustments", i.e., pushes  (the minimum available flow) along 

an augmenting path, which is sometimes inefficient. For example, in the following case, we can 

only push 1 unit of flow at a time using FF/EK:

The preflow-push algorithm, on the other hand, makes "local adjustments"; we introduce a 

different parameter called height for each node, and keep the height so that we always push flow 

downwards but not too steeply.

4.1 Preflow and Residual Graph  

An -preflow is a flow that (1) satisfies capacity constraints and (2) in-flow is greater than or 

equal to the out-flow for each intermediate node. If in-flow is greater than out-flow, we call the 

extra amount excess.

Def. 4.1.1   We call  an -preflow if it satisfies  and  for all 

. The excess at  is .

We define the residual graph same as before.

(Def. 1.2.4)  Given , , , its corresponding residual digraph  is define as 

.

For each arc , 

If , then add  with residual . 

If , then add  with residual  (backward arc). 

We define a height function  for each node . We say a height is compatible when no arc 

in  is pointing down too steeply.

Def. 4.1.2  A set of height  is compatible with a preflow  if

1.  - high node; source.
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2.  - low node; sink.

3.  for all  - for each arc in the residual graph, it head is at most 1 

lower than its tail.

You can think of embedding the digraph in  and only allowing changes with "gentle" slopes.

4.2 Preflow Push Algorithm  

Algorithm. 4.2.1 (Preflow-Push)

0. Initialization. 

a. Set  and  for every .

b. Set preflow  with  for every  and  otherwise.

1. While there exists  with excess, i.e., :

a. If there exists  where , push  on .

b. Otherwise, increment  by . (This is sometimes called a relabel operation.)

Remark.  Observe that FF/EK always maintains feasibility and works towards optimality; PP 

starts from an infeasible flow and works towards feasibility while maintaining some optimality 

conditions.

4.3 Correctness of Preflow Push  

Lemma. 4.3.1  If preflow  and height  are compatible, then  has no -dipath.

Proof.  Suppose not, so an -dipath exists. Let  in  and 

. Adding all these inequalities gives , so  and 

thus , a contradiction as there are  nodes in the path but only  nodes in the 

digraph. 

Cor. 4.3.2  If  is a feasible flow with compatible heights , then  is a maximum flow.

Proof.  Since  is compatible with , by Lemma. 4.3.1,  has no -dipath. Since there is no 

augmenting path in  (no extra flow is available) and  is feasible, it follows that  is an optimal 

solution.  

Thm. 4.3.3  The algorithm maintains a preflow and a height function that are compatible with 

each other.

Proof.  At initialization, we have a preflow  where  for every  and  otherwise.

By construction,  and . 

Also,  for arcs in , so only  is in . Observe . 
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For arcs  where , , so . Now .Thus, the 

preflow and height are compatible at initialization. Now suppose there exists  

with excess, i.e., .  

Consider a push operation, i.e., when there exists  satisfying , we push 

flow  along . Since we are pushing the minimum between excess and residual, it is 

always true that  and . (Exactly one of these two becomes equality, 

depending on whether we push  or .) 

If we push residual, then . The only possible new arc in  is  but  

so we are fine.

If we push excess, then . Then , so the only possible new arc is also  and as 

above we are fine

Thus, the preflow and height are compatible after a push operation.

Consider a relabel operation, i.e., when every  satisfies , we increment 

 by one. Then before relabeling, it must be that every  satisfies . 

When we add  to , we have  for all arcs . Thus, the preflow and 

height are compatible after a relabel operation.  

Note that if the algorithm terminates, Thm. 4.3.3 guarantees the correctness of the algorithm. 

4.4 Termination  

We now try to bound the number of push and relabel operations, thus showing that the 

algorithm terminates after a maximum number of iterations.

To bound the number of relabel operations, we bound the maximum value of , so that the 

number of relabel operations is finite.

Lemma. 4.4.1  If  has excess, i.e., , then there is a -dipath in .

Proof.  We show the contrapositive: let  be the set of all nodes  with no -dipath in  

and we show that . Suppose , i.e., there exists  where  and . 

But then  could reach  via . Thus, . Then 

Cor. 4.4.2  Throughout the algorithm,  for all . 

Proof.  Suppose that at some point in the algorithm the height  increases to . Since a 

relabel operation only occurs when there is excess, this implies that . By compatibility, 

height decreases by at most 1 in each arc resulting in , a contradiction.  ??

Cor. 4.4.3  The total number of relabel operations is at most .
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Proof.  There are  nodes in , each can have at most  relabel operations (from  to 

), so the overall upper bound is . 

Def. 4.4.4  We perform a saturating push if we push  on arc  and a non-saturating 

push if we push .

Remark.  Observe if we perform a saturating push on , then  so  disappears from 

 and  is in .

Prop. 4.4.5  The number of saturating pushes throughout the algorithm is at most .

Proof.  Suppose we have a saturating push on , then before the push, . Observe 

 disappears from  as . In order to push on  again, we need to first push flow on 

. To do so, we need to relabel  at least twice to obtain . Thus, between two 

saturated pushes on the same edge ( ), at least two relabel operations need to occur. By Cor. 

4.4.2, the maximum number of relabel operations on node  cannot exceed , so up to  

saturating pushes are possible on . There are  arcs in  (counting both forward and 

backward), so the number of saturating pushes is . 

Prop. 4.4.6  The number of non-saturating pushes throughout the algorithm is  .

Proof.  Define the function  which counts the total height for nodes with excess, i.e.,

At initialization,  (because nodes with excess all have height zero) and the function never 

becomes negative (as we are adding up non-negative heights). We will determine the effect on 

 for each type of operation.

Each relabel operation is done on a node with excess, so  goes up by one. There are  

relabel operations by Cor. 4.4.3, so the maximum increases for relabeling is  throughout 

the algorithm.

Each saturating push (i.e., push ) on  decreases  and increases . If  before 

the push, we add  to  after the push. By Lemma. 4.4.1, , so we add 

at most  over the algorithm. By Prop. 4.4.5, there are no more than  saturating 

pushes, so the maximum increase from saturating pushes is .

Each non-saturating push (i.e., push ) on  makes  positive but . At worst, we 

need to add  to  and we subtract  from . By the choice of  (i.e., while 

condition), , so  decreases by at least . We have argued that  

throughout the algorithm, so the number of non-saturating pushes (which decreases  by 

) is therefore at most .  

Cor. 4.4.7  Preflow-push terminates in  

operations.



Proof.  Note that . See Prop. 4.4.6 proof. 
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5 Global Minimum Cut  

5.1 Global Minimum Cut Problem  

Def. 5.1.1  Given  and capacity , we want to find a global (non-trivial) minimum 

cut, i.e., partition  into two disjoint sets  and , where  is 

minimized. 

Remark. (Brute-Force)  Run maximum flow algorithm on every possible pair , which 

requires  calls to maximum flow.

Remark. (Improvement)  Fix . Observe it must reside on either side of a global minimum 

cut, i.e., either  or  where  is the global minimum cut. Thus, we just need to run 

maximum flow algorithm on all -cuts and -cuts for all . There are  

choices of  so this requires  calls to maximum flow. 

5.2 Generic Algorithm for Minimum -Cut  

The Hao-Orlin algorithm is a modification of preflow-push algorithm and solves the global 

minimum cut problem efficiently.

Def. 5.2.1  Given  and , an -cut has the form  where  and . In 

other words, if  is an -cut and , then  and . 

Def. 5.2.2  Given , an -cut has the form  where  and . In other words, if 

 is an -cut and , then  and . 

We can reduce the global minimum cut problem to minimum -cut problem. By remark from 

Section 5.1, if a global minimum cut contains , then we are good. Otherwise, reverse all arcs and 

we will find the global minimum cut. Thus, to solve global minimum cut, we just solve minimum 

-cut twice for a fixed . 

Algorithm. 5.2.3 (Generic Algorithm for Minimum -Cut)

1. Initialize .

2. While , pick , find a min -cut, add  to .

3. Output the minimum over all cuts found.

Prop. 5.2.4  The generic algorithm above solves the minimum -cut problem.

Proof.  Let  be a minimum -cut. Consider the first time we pick some  not in . 

Immediately before this step, . The algorithm gives us a minimum -cut . But 

 is also an -cut and  is also an -cut, so they have the same capacity. 

5.3 Preparation for Hao-Orlin  
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We define an -preflow to be a flow where every node not in  has a non-negative excess (and 

allow nodes in  to have negative excess).

Def. 5.3.1  For , an -preflow is a flow where  for .

The definition for compatible height is similar to preflow-push (with (1) and (2) is modified).

Def. 5.3.2  Height  are compatible with an -preflow if

 for all .

 for all .

We define two more terms for Hao-Orlin.

Def. 5.3.3  A level , denoted , consists of all nodes with height .

Def. 5.3.4  A cut level is a level  where no arc goes from  to  in .

Lemma. 5.3.5  If  is an -cut with  and  for all  

then  is a minimum -cut. 

Proof.  Take any -cut . Note the flow out of  is equal to the flow into . The net 

flow out of  is . The net flow into  is equal to

Since , all out-arcs of  are full and all in-arcs of  are empty, so

Next,  for all  tells us

Consider the flow . Since  for every  and we see that for this particular  we 

have , then  achieves the minimum (lower bound) and hence  is a minimum 

-cut.  

Cor. 5.3.6  If  is a cut level and  for all  with , except , then  is 

a min -cut.

Proof.  Consider , the set of nodes at or above level . If  is a cut level, there 

is no arc going from level  to level  in , so  is an -cut with . Combine 

this with  for all  with  except , we see that  is indeed a minimum -cut. 
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5.4 Hao-Orlin Algorithm  

We run preflow push algorithm, maintaining a cut level  while getting rid of excess on nodes 

below . When we succeed,  is the desired min -cut by Cor. 5.3.6.

Note the algorithm keeps non-empty levels consecutive (except ) at step (2 a(ii)).

Algorithm. 5.4.1 (Hao-Orlin)

1. Initialization.

a. Initialize  and pick .

b. Initialize   and  for all other .

c. Initialize  .

d. Send as much flow out of  as possible.

2. Loop.  While ,

a. While there exists low node  with excess, i.e.,  and :

i. If there exists  where , push  on .

ii. Otherwise, 

i. If  is the only node with , do not relabel. Instead, set  .

ii. Otherwise, to maintain a cut level, relabel and reset .

b. When no node satisfies  and , store the cut  (this is a 

min -cut by Cor. 5.3.6.) 

i. Add  to . Set . 

ii. Send as much flow out of  as possible (so that  ). 

iii. Pick  with lowest height.

iv. Reset cut level by setting  because we want a non-trivial -cut (if  is 

too low, you might not be able to find another node so you end up with a trivial 

cut).

3. Pick the minimum cut amongst the stored cuts. This is your global minimum cut.

5.5 Correctness  

Lemma. 5.5.1  The non-empty levels less than  are consecutive.

Proof.  Initially,  is at level  and everything else is at level , so the claim is trivially 

true at initialization. We do not relabel  when  is the only node of height ; this keeps non-

empty levels consecutive. Transitioning to a new iteration, we move  with lowest height to  

meaning the non-empty levels remain consecutive.  

Prop. 5.5.2  The -preflow and height  are always compatible. 
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Proof.  for all  follows from the algorithm.  for all  

follows from PFP during an iteration. At the end of each iteration, we move  to  and push all 

flow out of . Thus, we have  for all .

It remains to show that . Initially,  and . When we 

move  to , the next , call it , has height  or , since non-empty levels are 

consecutive. Originally, . We add  to  after the move and might add  to , 

so this inequality is true after this move. 

Lemma. 5.5.3    for all .

(Idea: Consider the worst case, where we put a single node on each of the levels.)

Proof.  Recall . There are  nodes not in . Since the non-empty 

levels are consecutive, the highest level not in  is .  

Lemma. 5.5.4    is always a cut level.

Proof.  When , level  is empty, so it is automatically a cut level. We change  to 

something else when we want to relabel , but  is the only node with its height. We want to 

relabel  because  and no neighbour of  is one level below  in . Thus, no arcs goes 

from  to level . Thus,  is a cut level and we can set .  

Prop. 5.5.5  The stored cuts in each iteration are minimum -cuts.

Key.  It suffices to show that  is always a cut level, because then our corollary from before 

applies.

Proof.   is always a cut level, so Cor. 5.3.6 applies. Thus, Hao-Orlin produces a min -cut. 

5.6 Termination  

Relabel operation:  so in total  operations.

Saturating and non-saturating pushes: same as before.

Level setting operations: at most number of relabel operations  (number of iterations).

Overall: the runtime is roughly the same as preflow-push.

(Termination of Hao-Orlin is not on the exam.)
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6 Global Min Cut in Undirected Graphs  

Consider the undirected graph  with edge capacities .

6.1 Karger's Algorithm  

Idea.

1. Pick one edge at random and contract it.

2. Keep track of vertices each contracted vertex represents.

3. Do this until two vertices remains.

4. Output the cut represented by these two vertices.

In general, edges with small capacities are more likely to be in a minimum cut, so we will try to 

lower the probability that these edges are selected. Thus, we set probability of an edge gets 

selected proportional to its capacity.

Algorithm. 6.1.1  

While , pick  with probability  and contract . Repeat.

Thm. 6.1.2  Let  be a global min cut. The probability that the algorithm produces  is

Proof.  Consider the probability we pick an edge in  in the first step. The denominator is 

 and the numerator is . 

Consider the cuts of the form  for . Each edge  appears in two such cuts  

and . Since  is a global minimum cut, 

So the probability that an edge in  is selected is

The probability that  survives the first contraction is thus at least . 

Now suppose we have contracted  edges and  is still intact. We have  vertices left 

and say the graph is . We want to find the probability of selecting an edge in . 

af://n374
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The numerator is ; the denominator is . Now, each node represents several nodes 

(because of contractions):

So, the probability is at most 

The probability that  survives this contraction is at least 

The largest possible  is  (since we finish when we have  vertices, so in the last step, we 

have  vertices left).

Overall, the probability that  survives all contractions is

We expect the algorithm to produce a minimum cut if it runs  times. 

Cor. 6.1.3  The probability that that algorithm produces  after  runs is at least 

 where . 

Proof.  We use . The probability of failure is at most

Ex. 6.1.4  Let . Then . So after  times we have a  chance 

of getting a global min cut.
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