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1 Minimum Cost Flow Problem  

1.1 Overview  

1.1.1 Problem  

Given digraph , node demands , arc costs , arc capacities , we 

want to find a feasible flow  satisfying node demands and capacity constraints while minimizing 

the total cost.

We assume  for all . Otherwise, we can just remove the arc with negative capacity 

without affecting the problem. 

1.1.2 LP Formulation  

We just need to take capacity constraints into consideration (on top of the TP LP):                          

Adding slack variables  for each , we turn the LP into SEF:

Expressing the constraints in matrix form, we have

See the following example for more information.

1.1.3 Example  

Consider the following MCFP ((cost, capacity) for each arc):
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The corresponding constraint matrix:

We can divide the  constraint matrix into four parts:

1. Top-left : incidence matrix. This is what we've been dealing with in TP for the 

past two weeks. You should be familiar with this already.

2. Top-right : zero matrix. The columns in this sub-matrix correspond to the slack 

variables for capacity constraints. They have nothing to do with the nodes and thus it's a 

zero matrix.

3. Bottom-left : identity matrix. This is the " " part of the capacity constraint 

 for .

4. Bottom-right : identity matrix. This is the " " part of the capacity constraint 

 for .

1.1.4 Dual LP  

Recall each column in the original LP corresponds to a constraint in the dual LP. 
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We write the constraints in matrix form:

and call the constraint matrix . The primal LP and dual LP are thus: (let )

Since there are two categories of primal constraints: demand constraints (the first  of them) 

and capacity constraints (the last  of them), we write  where  correspond to the 

demand constraints and  to the capacity constraints. 

Next, observe the dual constraints can be written as  

Recall the RHS of dual constraints comes from the objective function, and -constraints 

correspond to slack variables. Since slack variables do not contribute to the objective function, 

the RHS corresponding to them is a zero vector.

We now write constraints from matrix form back to explicit equations. 

We deal with the first  rows/constraints of  first. Suppose a row corresponds to an arc . 

The entry corresponding to  and  in  equal  and , respectively, and the entry in  

corresponding to  equals , so we have  for each . 

We now deal with the rest  rows/constraints of . Suppose a row corresponds to an arc . 

The only non-zero entry in this row is the entry in  corresponding to . Thus, we have  

for each . However, we want to keep all variables non-negative, so we flip the signs of  

for all  (we can do this because it corresponds to slack variables and only show up in the dual 

LP), so that the second constraint becomes  for each  and the first constraint 

becomes  for each .

Finally, since we have flipped the signs of 's, the objective function is . The dual is 

thus

1.2 Basis  
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Lemma 1.  The constraint matrix has rank .

Recall from TP that the incidence matrix has rank . Observe the  capacity constraints 

are linearly independent, so we can extend the basis by adding them in. The rank of this matrix 

is thus . 

Lemma 2.  For each arc , at least one of  and  is in the basis.

Recall non-basic variables are set to zero. Suppose for some ,  and  are both non-basic, 

so . Then there is no way to satisfy the capacity constraint of . For example, if 

 in Example 1.1.4, then there is no way to satisfy . 

Therefore, for each arc , there are three possibilities:

1. Only  is in the basis. (The arc has flow equal to capacity.)

2. Only  is in the basis. (The arc does not have flow at all.)

3. Both  and  are in the basis. (The arc has positive flow, but less than its capacity.)

Lemma 3.  There exist  case-3 arcs.

Let  denote the number of case-3 arcs. There are  arcs in total, so  arcs are case 1 and 

2. Since both  and  are in the basis, each case-3 arc generates two basic variables. Recall the 

size of basis is , so there exist  basic variables. Counting the number of 

basic variables in two ways and solving for , we get 

. 

Lemma 4.  Case-3 arcs cannot form a cycle.

Consider a cycle . Suppose all three arcs are case-3, i.e., columns corresponding to 

 are all in the basis. However, the columns of the submatrix corresponding 

to these three arcs (shown above) are linearly dependent. A subset of a basis cannot be linearly 

dependent. Contradiction. 

Since there are  nodes in total and there are  case-3 arcs which contains no cycles, it 

follows that these case-3 arcs correspond to a spanning tree. 



As a warning, do not confuse spanning tree with the basis; the basis is more complicated than the 

tree. We could have two different bases corresponding to the same spanning tree. 

We summarize the above derivation into the following theorem:

Theorem  A tree flow in MCFP consists of a spanning tree  and a feasible flow  where all 

arcs not in  satisfies .

Case 1:  is in the basis .

Case 2:  is in the basis .

Case 3:  both in the basis .

1.3 Complementary Slackness Conditions  

Recall the primal and dual LP for MCFP:

The CS conditions are thus:

1. .

2. .

But these conditions are too complicated to work with. We will simplify them a bit.

Recall from TP, the reduced cost . We can rewrite the dual constraint as 

, or , with . The objective function contains  where , so 

maximizing  is equivalent to minimizing . Therefore, we have .

We can rewrite the CS conditions base on this fact. If , we must have , or 

. Thus, we can rewrite (1) as . 

Next, observe

Thus, (2) is equivalent to saying . 

Theorem  The optimality conditions for MCFP are:
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1. .

2. .

3. .

In words, if the reduced cost for an arc is negative, we use up its capacity; if the reduced cost for 

an arc is positive, we will not use it at all; if an arc is used but not to its full capacity, its reduced 

cost must be zero. 

1.3.1 Economic Interpretation  

We could dual potentials as price of goods and reduced costs as the outcome for buying one unit 

at , transporting through , then selling at . If , we make a profit, so we send as much 

as we can, i..e, . If , we suffer a loss, so we don't use it, i.e., .

1.4 Network Simplex For MFCP  

0. Find initial tree flow  with spanning tree .

1. Find potentials  such that  for all .

2. Find an non-basic arc  where either

a.  and , or

b.  and .

If no such arc exists, the current solution is optimal.

3. Let  be the unique cycle in .

a. If (2a) occurs, orient  in the direction of .

b. If (2b) occurs, orient  in the opposite direction from .

4. Find . 

5. Push flow  along .

6. Update tree and go back.

1.5 Feasibility Characterization  

Theorem  An MCFP is infeasible if and only if there exists  such that  or 

.

Intuition.  

: Total demand is more than total capacity of in-arcs; too much demand, not 

enough transporting power.

: Total supply is more than total capacity of out-arcs; too much supply, not 

enough transporting power.
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Proof.

: We know from linear programming that an MCFP is feasible if and only if its corresponding 

auxiliary MCFP has optimal value 0.

We use the same auxiliary digraph as TP. Suppose our MCFP is infeasible. Then the auxiliary 

MCFP has optimal value greater than 0. Take  to be a feasible tree flow and set potentials  

with  and all other potentials are either  or . Define  and  as before. We will show 

that  satisfies . 

Consider  from  to  and  from  to . By CS conditions, 

, so all arcs going from  to  are at capacity. 

, so there is no in-flow from  to . Since there is 

also no arc from  to ,  has no in-flow at all.

Since the AUX MCFP has optimal value greater than 0 and , there must also be some flow 

leaving  for . Then

: Suppose there exists  st . Suppose for a contradiction that there is a 

feasible flow , then (the middle equality comes from A2)

which contradicts the hypothesis . 

1.6 Applications for TP/MCFP  

1.6.1 Minimum Cost Perfect Matching (MCPM)  

Recall the following from graph theory: An undirected graph  is bipartite if 

, , and all edges join  to . A matching is a subset of edges with no common 

endpoints. A matching is perfect if it uses all vertices. 

Given a bipartite graph , , , and edge costs , we want to 

find a perfect matching in  of minimum total cost. 

We will formulate this as a MCFP:

Direct each edge from  to . 

Set the capacity for each arc to be 1. 
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Set  as supply nodes with  and  as demand nodes with .

Arc costs stay the same.

We want to show a correspondence between optimal solutions to MCFP and MCPM.

Lemma.  If a MCFP has an optimal solution, and all capacities and node demands are integers, 

then there exists an integral optimal solution.

Proof.  Check network simplex. Since the node demands are integers, we have an integral basic 

feasible solution. But the capacities are also integers, so at each iteration, we remain integral. 

For our MCFP formulation, by lemma, there exists an integer-valued optimal solution . Then 

for each arc ,  or . The set of active arcs  is a perfect 

matching because each node is incident with exactly one edge (supply = 1 so only one arc can be 

chosen). Also, any perfect matching corresponds to an integral flow. Hence, our MCFP solves the 

MCPM problem. 

1.6.2 Airline Scheduling  

A plane visits cities  in this order. 

There are  passengers from city  to city  ( ).

The ticket costs are  .

The plane has capacity .

Our goal is to maximize ticket costs subject to plane capacity.

The arcs between nodes represent the path of the plane with capacity , cost 0.

Cost 0: We need to make the trip anyway, so we consider the cost as 0.

Capacity : the plane has capacity , so each trip has  people at most.
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Each node  takes passengers from  to , either through the plane, or through other means.

 cost from node  to node : make money (negative since minimization).

 cost from node  to node : passengers not taking the plane, no gain.

For example, 

: The number of people going from city 1 to 4.

: The number of people city 2 gets from city 1.

The arc from node  to node : the amount of people going from city 1 to city 2. 

We don't care about the capacity for this arc, e.g., we can set it to , because at 

most there are  people will be using this path.

1.6.3 Catering  

A caterer requires  clean napkins for each day .

They can buy new ones from the store for a cost of .

Used napkins can be washed in two ways:

1-day service for a cost of  each.

2-day service for a cost of  each.

Used napkins can be kept in storage for free.

We want to minimize the total cost of napkins. 

For example, napkins required for day 3 can come from the following sources:

1. Dirty napkins from day 1 after a 2-day wash: .

2. Dirty napkins from day 2 after an 1-day wash: .

3. Buy clean napkins from store: .

af://n210


1.6.4 Matrix with Consecutive 1's  

Suppose we have the following LP

where the matrix has a special property: each column has consecutive 1's and all other entries are 

0's. For example, consider

Let's say  has  rows. Add slack variables:

Add a redundant row of all zeros:

In the order , subtract the -th constraint. (Subtract 4th from 5th, then 3rd 

from 4th, 2nd from 3rd, etc.) We get

Observe  becomes an incidence matrix! The entry with "1" in  corresponds to the topmost 

"1" in  and "-1" in  corresponds to the entry one below the bottommost "1". 

Also, the demands add up to zero:

af://n236


We now provide an scenario for this matrix to appear. Suppose you are running a manufacturing 

company. You must contract a storage company for  units of storage for the periods 

. Let  = cost of 1 unit of storage from period  to period . You want to know how 

much capacity to acquire at what times and for how many periods.
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