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1 Shortest Dipath Problem  

1.1 Overview  

1.1.1 Problem  

Given a dipath , arc costs , two distinct nodes , we wish to find a 

minimum cost -dipath.

1.1.2 LP Formulation  

We can formulate this as a transshipment problem, where  (supply node),  (demand 

node), and  for all .

Note that solutions to this LP are not guaranteed to be an -dipath (they are -diwalks). 

However, if  has no negative dicycles, then finding a shortest -dipath is equivalent to finding 

a shortest -diwalk.

1.1.3 Dual LP  

The dual LP is identical to the one for TP.

As a remark, feasible potentials correspond to feasible solutions to the dual of the linear 

programming relaxation of the shortest path problem.

1.1.4 Characteristic Vector of a Path  

Let  be an -dipath. We can represent it with , called the characteristic vector of , 

where

In other words,  if and only if  is an arc in .

Note that:

1. , as it is not used at all.

2. , as exactly one arc is leaving  (except ).
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3. , as exactly one arc is entering  (except ).

Moreover, , where  denotes the scalar product  and is an integer. 

Thus, every -dipath  correspond to a (integral) feasible solution  of (P) of values . 

However, not all integral feasible solutions to (P) correspond to -dipath. Each feasible solution 

to (P) corresponds to an -diwalk.

Theorem  If  is an integral feasible solution to LP, then  is a sum of the characteristic vector 

of an -dipath and a collection of dicycles.

Proof.  

Consider the set of active arcs  in . 

We first show the existence of an -dipath. 

Let  be an -cut. The net flow of  is  (because the net flow of  is  and the net 

flow of all other nodes in  are zero by construction), so there must be at least one arc in  

with non-zero flow (i.e., it is in ). Since this holds true for every -cut, there exists an -

dipath  using arcs of .

We now show the (possible) existence of a collection of dicycles.

Consider the flow obtained by removing the characteristic vector of  from the integral feasible 

solution: . Since  both satisfy the flow constraints, we get 

 for all .

Consider the set of active arcs  in . 

If , then we are done, as  was an -dipath. 

Suppose . Take a longest dipath  in . Since , there is an 

arc  for some . Moreover,  cannot be outside of the path since we took a longest 

dipath. This forms a dicycle  .

Removing this cycle from flow , we get , which also satisfies 

 for all  and the sum of all flows have decreased by at least 1. By 

induction, we are done. 

Let  be an optimal integral solution to our LP. If  is the characteristic vector of an -dipath, 

then we are done. Else,  where  is an -dipath and 's are dicycles. 

If there are no negative dicycles, then , so  is an optimal solution in the form of 

an -path. Otherwise, the LP is unbounded. This can be summarized into the following 

corollary.

Corollary  If there are no negative dicycles, then our LP formulation has an optimal solution 

that is the characteristic vector of an -dipath.
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1.2 Potentials and Optimality Conditions  

Recall from TP, 

1. The dual solution  is called a node potential.

2. Given a node potential , the reduced cost of arc  is . 

3. A node potential is feasible if  for all . 

Given a node potential , if an arc  satisfies , we call it an equality arc.

Note that for any dicycle , .

Proposition (1)  Let  be a digraph with weights  with no negative dicycle. 

Let  be an -diwalk with . Then there exists an -dipath  with . 

Proof.  By theorem, each  can be decomposed into an -dipath and a collection of dicycles 

 and . Since  for all , we have 

. 

Proposition (2)  Let  be a digraph with weights  with no negative dicycle. 

Let  be a shortest -dipath and  be a shortest -diwalk. Then .

Proof.  Since -dipath is an -diwalk, . By proposition (1), there exists an -

dipath  such that . Then . 

Lemma (3)  Let  be a digraph with weights  and feasible potentials . 

Let  be an -diwalk. Then . Moreover,  iff every arc of  is an 

equality arc.

Proof.  Suppose  where  and . Since  is feasible, 

 for all . Adding them up, we get 

. Subtracting  from both 

sides, we get . For the second part, observe that  iff 

 holds for all .  

Let  be a digraph with weights . By lemma (3), every -diwalk has 

length/cost at least , so to prove that  is a shortest -diwalk, it suffices to show that 

, or equivalently, every arc of  is an equality arc. Hence, we get the following 

theorem:

Theorem (4)  Let  be a digraph with weight . An -dipath  is shortest if 

there exists feasible potentials  such that all arcs of  are equality arcs. 

Lemma (5)  Let  be a digraph with weight . If  has a negative dicycle then 

 has no feasible potentials.

Proof.  Let  be feasible potentials and  be a dicycle. Now  is a 

-diwalk, so we must have . Hence,  has no negative dicycle. 
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Lemma (6)  Let  be a digraph with weight  and suppose all nodes can be 

reached from . For every , let  be the length of the shortest -dipath in . If  

has no negative dicycles, then  are feasible potentials.

Proof.  Suppose  are not feasible potentials. Then there exists  such that . 

Let  be a shortest -dipath in . By definition of , . Let  be the -diwalk 

obtained by adding  to the end of . It follow from proposition (1) that  contains an -

dipath  where . But , so  is not the 

length of the shortest -dipath in , a contradiction.  

Theorem (7)  Let  be a dipath with weights . Then there exists a feasible 

potential iff there are no negative dicycles in .

Proof.  If  has a negative dicycle, by Lemma (5), there are no feasible potentials. Suppose  has 

no negative dicycle. Construct  by adding a new node  and arcs from  to all nodes of  with 

weight zero. Observe that every node of  is reachable from  and  has no negative dicycles. 

It follows from Lemma (6) that  (obtained by computing the length of the shortest -paths in 

) is a feasible potential for . Then it is a feasible potential for  as well. 

Theorem (8)  Let  be a digraph with weight  and suppose all nodes can be 

reached from . Suppose  has no negative dicycles. If  is a shortest -dipath, then there 

exists a feasible potential  such that every arc of  is an equality arc.

Proof.  Consider the feasible potential defined in Lemma (6). Then  

and Lemma (3) implies that every arc of  is an equality arc.  

1.3 Ford's Algorithm  

1.3.1 Sub-Paths Optimality  

Theorem  Let  be a digraph with arc cost  with no negative dicycle. If 

 is a shortest -dipath, then  is a shortest -dipath.

Proof.  Since there are no negative dicycles, the LP has an optimal integral solution 

corresponding to a characteristic vector of an -dipath. Then there is a optimal dual solution 

 where all arcs of  are equality arcs by CS conditions.

Let . Then  is still feasible for the dual LP of the shortest -dipath problem. 

Any arc in  is also in , so all the arcs of  are equality arcs. Thus the CS conditions are 

satisfied for -dipath problem. It follows that  is an optimal solution. 

1.3.2 Rooted Trees  

A tree  is rooted at , if for all , the unique -path in  is an -dipath. 

Let  and . 
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1. There is an -dipath in  for all  iff there exists a spanning tree in  rooted at .

2. Let  be a spanning tree in . Then  is rooted at  iff  and  for 

.

In a spanning tree  of  rooted at , for each node  other than , its predecessor, denoted , is 

the unique node  such that  is an arc in .

1.3.3 Ford's Algorithm  

Ford's algorithm allows us to find shortest -dipath for all  in one go. 

We assume that every node can be reached from  via a dipath. The algorithm tries to produce a 

feasible potential  and a rooted spanning tree  at , so that the arcs of  are 

all equality arcs. 

At each step, we keep track of the potential and predecessor of each node.

Algorithm

1. Initialization.

a. Set  and  for all .

b. Set predecessor  for all .

2. Correction. While  is not feasible, i.e., there exists an arc with negative reduced cost,

a. Find  where .

b. Set  (which makes  an equality arc as ) and .

An important observation is that  never increases: by setting  where 

 to begin with, we are decreasing . 

1.3.4 Predecessor Digraph  

At any point in the algorithm, the predecessor digraph, denoted , is one where  

and .

Proposition  Through the algorithm,  for all arcs .

Proof.  Let  be arbitrary and  be its predecessor. When a correction takes place with an 

arc whose head is , . Until the predecessor of  is changed again, the reduced cost stays 

non-positive, and only  can change (due to connecting other arcs). By observation above,  

can only decrease, so  only decreases. 

Lemma  Let  be a digraph with weights  and feasible potentials . Let 

 be an -diwalk. Then . Moreover,  iff every arc of  is an 

equality arc.
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Proof.  Let  where  and . Since  is feasible,  for all 

. Adding them up, we get 

. Subtracting  from both sides, we get . For the second 

part, observe that  iff  holds for all .  

Lemma  Let  be a digraph with weight . If  has a negative dicycle then  

has no feasible potentials.

Proof.  Let  be feasible potentials and  be a dicycle. Now  is a 

-diwalk, so we must have . Hence,  has no negative dicycle. 

Proposition  If  contains a dicycle (at any point in the algorithm), then  contains a 

negative dicycle and the algorithm does not terminate.

Proof.  Suppose we produce a dicycle  in  by connecting the 

arc . Then it must be true that in the previous iteration, . By 

proposition above,  for all  throughout the algorithm, so 

 for . Since  is a dicycle, adding up these inequalities 

cancel out 's and we are left with 

i.e.,  is a negative dicycle. It follows from previous lemma that there cannot be a feasible 

potential, so the algorithm never terminates.  

Proposition  If  has a predecessor (at any point in the algorithm), then  contains a negative 

dicycle and the algorithm does not terminate.

Proof.  Exercise.

1.3.5 Termination of Ford's Algorithm  

Proposition  Suppose the algorithm terminates. Then  is a spanning tree of shortest dipaths 

rooted at . Furthermore,  is the cost of a shortest -dipath.

Proof.  Since the algorithm terminates,  cannot contain a cycle and  does not have a 

predecessor. So  is a rooted spanning tree. Since all nodes other than  has a predecessor, 

 for all  and  is rooted at . Now, all arcs in  are equality arcs, because 

 for all  and  is impossible since  is feasible (by termination). 

For , let  be the unique -dipath in . Consider the LP formulation of the shortest 

-dipath problem:  is feasible for the primal and  is feasible for the dual. Since all arcs in  are 

equality arcs, CS conditions hold, so  is optimal and the objective of the dual is 

, i.e.,  is the cost of a shortest -dipath.  

1.4 The Bellman-Ford Algorithm  
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The idea is to go through arcs in "passes".

1.4.1 The B-F Algorithm  

Algorithm

1. Initialization.

a. Set  and  for all .

b. Set predecessor  for all .

c. Set the counter .

2. Correction. While ,

a. For each , if , set  and .

b. Increment .

Note that if a feasible potential is found, then everything from Ford's algorithm applies here, and 

we have an optimal rooted tree. Else, if we have an infeasible potential after  steps, we 

show that we have a negative dicycle.

1.4.2 Proof of Correctness  

Let  denote the cost of a shortest -dipath. 

Proposition  Suppose  does not have any negative dicycle. Then at any point in the algorithm 

.

Proof.  The claim is clearly true at the initialization. If , then there exists a dipath from  

to  using . For each of these arcs , . Adding up all inequalities  for all arcs  in 

this -dipath, we obtain . Since  is the cost of a shortest -dipath, 

 and we are done.  

Theorem  Suppose no negative dicycles exist. After the th iteration, if there is a shortest -

dipath using at most  arcs, then .

Proof.  We do an induction on . When  (initialization), trivial. Assume that this is true 

after the th iteration. We want to show this still holds after th iteration.

Pick  which has a shortest -dipath that uses at most  arcs. If there is a shortest -

dipath that uses at most  arcs, by induction hypotheses, . By proposition,  will not 

change. 

Suppose there is a shortest -dipath that uses  arcs, say . Since no 

negative dicycle exists,  is a shortest -dipath that uses  arcs. By induction,  

after the th iteration and this does not change after the -th iteration. 

Consider . 
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If , this means that . 

If , this means that . 

Contradiction. This cannot happen.

If , this means that the algorithm will correct the arc  in the th 

iteration so . 

We are done by induction. 

Corollary  At the end of Bellman-Ford, if  is feasible, then  for all . Otherwise, 

you can conclude there exists a negative dicycle.

Proof.  Bellman-Ford runs  iterations. Any shortest -dipath could use at most  

arcs. If  is feasible, then there are no negative dicycles. By the theorem above,  for all 

. If not, then there exists a negative dicycle.

1.5 Dijkstra's Algorithm  

When there are no negative costs, we can apply a greedy algorithm. 

1.5.1 Motivation  

If there are no negative arcs,  is a feasible potential for the dual. We wish to raise potentials 

by  for non-tree nodes while maintaining feasibility.

1.5.2 Details  

Let  be our current tree.

1. : both  and  increases by , so  stays the same.

2. : we do not change the potentials, so  stays the same.

3. :  increases and that does not affect feasibility of the potentials.

4. :  decreases by ; thus choose  to be minimum among all such 

arcs.

Now, the arc which determined the minimum becomes an equality arc and we can add it to .

1.5.3 The Algorithm  

1. Initialize  and .

2. While  is not a spanning tree,

a. Pick  such that .

b. Update  for all .

c. Add  and  to .
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1.5.4 Correctness  

By our work above,  is always feasible. This includes at initialization as we do not have negative 

costs. All arcs in  are equality arcs. In addition, the algorithm produces a spanning tree rooted 

at . Thus, the same LP argument gives that it must be a tree of shortest -dipaths for all 

.

1.5.5 Runtime  

By taking advantage of the greedy approach, Dijkstra runs in  which is faster 

than Bellman-Ford.

1.6 Applications  

1.6.1 Network Reliability  

Given   A network  where each arc  is assigned an associated reliability . 

Think of this as a probability that  is operational. 

Goal  For a given dipath , the reliability of  is . Our goal is to maximize 

reliability amongst all -dipaths.

Notice that  and  is strictly increasing so it suffices to compare 

logarithms of reliability. We also make this a minimization problem by having negative arc costs: 

let  denote the cost of arc .

Exercise. Modify Dijkstra's algorithm to solve this problem without taking logs.

1.6.2 Currency Exchange  

Given  We have a set of currencies. There is an exchange rate  representing how much does  

unit of currency  converts into currency .

Goal  Exchange a series of currencies back to the original one so that we make a profit.

Solution  Since we can make some profit, the following inequality must hold:

Label each arc with cost . We can just run Bellman-Ford.

 

 

 

 

af://n196
af://n198
af://n200
af://n201
af://n206


 

 

 


	Shortest Dipath Problem
	CO 351: Network Flow Theory
	David Duan, 2019 Fall
	Shortest Dipath Problem
	Overview
	Problem
	LP Formulation
	Dual LP
	Characteristic Vector of a Path

	Potentials and Optimality Conditions
	Ford's Algorithm
	Sub-Paths Optimality
	Rooted Trees
	Ford's Algorithm
	Predecessor Digraph
	Termination of Ford's Algorithm

	The Bellman-Ford Algorithm
	The B-F Algorithm
	Proof of Correctness

	Dijkstra's Algorithm
	Motivation
	Details
	The Algorithm
	Correctness
	Runtime

	Applications
	Network Reliability
	Currency Exchange






