
Shortest Dipath Problem

CO 351: Network Flow Theory

David Duan, 2019 Fall

Contents

1 Shortest Dipath Problem

1.1 Overview

1.1.1 Problem

1.1.2 LP Formulation

1.1.3 Dual LP

1.1.4 Characteristic Vector of a Path

1.2 Potentials and Optimality Conditions

1.3 Ford's Algorithm

1.3.1 Sub-Paths Optimality

1.3.2 Rooted Trees

1.3.3 Ford's Algorithm

1.3.4 Predecessor Digraph

1.3.5 Termination of Ford's Algorithm

1.4 The Bellman-Ford Algorithm

1.4.1 The B-F Algorithm

1.4.2 Proof of Correctness

1.5 Dijkstra's Algorithm

1.5.1 Motivation

1.5.2 Details

1.5.3 The Algorithm

1.5.4 Correctness

1.5.5 Runtime

1.6 Applications

1.6.1 Network Reliability

af://n0
af://n2
af://n3

1.6.2 Currency Exchange

af://n6

1 Shortest Dipath Problem

1.1 Overview

1.1.1 Problem

Given a dipath , arc costs , two distinct nodes , we wish to find a

minimum cost -dipath.

1.1.2 LP Formulation

We can formulate this as a transshipment problem, where (supply node), (demand

node), and for all .

Note that solutions to this LP are not guaranteed to be an -dipath (they are -diwalks).

However, if has no negative dicycles, then finding a shortest -dipath is equivalent to finding

a shortest -diwalk.

1.1.3 Dual LP

The dual LP is identical to the one for TP.

As a remark, feasible potentials correspond to feasible solutions to the dual of the linear

programming relaxation of the shortest path problem.

1.1.4 Characteristic Vector of a Path

Let be an -dipath. We can represent it with , called the characteristic vector of ,

where

In other words, if and only if is an arc in .

Note that:

1. , as it is not used at all.

2. , as exactly one arc is leaving (except).

af://n6
af://n7
af://n8
af://n10
af://n14
af://n18

3. , as exactly one arc is entering (except).

Moreover, , where denotes the scalar product and is an integer.

Thus, every -dipath correspond to a (integral) feasible solution of (P) of values .

However, not all integral feasible solutions to (P) correspond to -dipath. Each feasible solution

to (P) corresponds to an -diwalk.

Theorem If is an integral feasible solution to LP, then is a sum of the characteristic vector

of an -dipath and a collection of dicycles.

Proof.

Consider the set of active arcs in .

We first show the existence of an -dipath.

Let be an -cut. The net flow of is (because the net flow of is and the net

flow of all other nodes in are zero by construction), so there must be at least one arc in

with non-zero flow (i.e., it is in). Since this holds true for every -cut, there exists an -

dipath using arcs of .

We now show the (possible) existence of a collection of dicycles.

Consider the flow obtained by removing the characteristic vector of from the integral feasible

solution: . Since both satisfy the flow constraints, we get

 for all .

Consider the set of active arcs in .

If , then we are done, as was an -dipath.

Suppose . Take a longest dipath in . Since , there is an

arc for some . Moreover, cannot be outside of the path since we took a longest

dipath. This forms a dicycle .

Removing this cycle from flow , we get , which also satisfies

 for all and the sum of all flows have decreased by at least 1. By

induction, we are done.

Let be an optimal integral solution to our LP. If is the characteristic vector of an -dipath,

then we are done. Else, where is an -dipath and 's are dicycles.

If there are no negative dicycles, then , so is an optimal solution in the form of

an -path. Otherwise, the LP is unbounded. This can be summarized into the following

corollary.

Corollary If there are no negative dicycles, then our LP formulation has an optimal solution

that is the characteristic vector of an -dipath.

af://n46

1.2 Potentials and Optimality Conditions

Recall from TP,

1. The dual solution is called a node potential.

2. Given a node potential , the reduced cost of arc is .

3. A node potential is feasible if for all .

Given a node potential , if an arc satisfies , we call it an equality arc.

Note that for any dicycle , .

Proposition (1) Let be a digraph with weights with no negative dicycle.

Let be an -diwalk with . Then there exists an -dipath with .

Proof. By theorem, each can be decomposed into an -dipath and a collection of dicycles

 and . Since for all , we have

.

Proposition (2) Let be a digraph with weights with no negative dicycle.

Let be a shortest -dipath and be a shortest -diwalk. Then .

Proof. Since -dipath is an -diwalk, . By proposition (1), there exists an -

dipath such that . Then .

Lemma (3) Let be a digraph with weights and feasible potentials .

Let be an -diwalk. Then . Moreover, iff every arc of is an

equality arc.

Proof. Suppose where and . Since is feasible,

 for all . Adding them up, we get

. Subtracting from both

sides, we get . For the second part, observe that iff

 holds for all .

Let be a digraph with weights . By lemma (3), every -diwalk has

length/cost at least , so to prove that is a shortest -diwalk, it suffices to show that

, or equivalently, every arc of is an equality arc. Hence, we get the following

theorem:

Theorem (4) Let be a digraph with weight . An -dipath is shortest if

there exists feasible potentials such that all arcs of are equality arcs.

Lemma (5) Let be a digraph with weight . If has a negative dicycle then

 has no feasible potentials.

Proof. Let be feasible potentials and be a dicycle. Now is a

-diwalk, so we must have . Hence, has no negative dicycle.

af://n46

Lemma (6) Let be a digraph with weight and suppose all nodes can be

reached from . For every , let be the length of the shortest -dipath in . If

has no negative dicycles, then are feasible potentials.

Proof. Suppose are not feasible potentials. Then there exists such that .

Let be a shortest -dipath in . By definition of , . Let be the -diwalk

obtained by adding to the end of . It follow from proposition (1) that contains an -

dipath where . But , so is not the

length of the shortest -dipath in , a contradiction.

Theorem (7) Let be a dipath with weights . Then there exists a feasible

potential iff there are no negative dicycles in .

Proof. If has a negative dicycle, by Lemma (5), there are no feasible potentials. Suppose has

no negative dicycle. Construct by adding a new node and arcs from to all nodes of with

weight zero. Observe that every node of is reachable from and has no negative dicycles.

It follows from Lemma (6) that (obtained by computing the length of the shortest -paths in

) is a feasible potential for . Then it is a feasible potential for as well.

Theorem (8) Let be a digraph with weight and suppose all nodes can be

reached from . Suppose has no negative dicycles. If is a shortest -dipath, then there

exists a feasible potential such that every arc of is an equality arc.

Proof. Consider the feasible potential defined in Lemma (6). Then

and Lemma (3) implies that every arc of is an equality arc.

1.3 Ford's Algorithm

1.3.1 Sub-Paths Optimality

Theorem Let be a digraph with arc cost with no negative dicycle. If

 is a shortest -dipath, then is a shortest -dipath.

Proof. Since there are no negative dicycles, the LP has an optimal integral solution

corresponding to a characteristic vector of an -dipath. Then there is a optimal dual solution

 where all arcs of are equality arcs by CS conditions.

Let . Then is still feasible for the dual LP of the shortest -dipath problem.

Any arc in is also in , so all the arcs of are equality arcs. Thus the CS conditions are

satisfied for -dipath problem. It follows that is an optimal solution.

1.3.2 Rooted Trees

A tree is rooted at , if for all , the unique -path in is an -dipath.

Let and .

af://n73
af://n74
af://n78

1. There is an -dipath in for all iff there exists a spanning tree in rooted at .

2. Let be a spanning tree in . Then is rooted at iff and for

.

In a spanning tree of rooted at , for each node other than , its predecessor, denoted , is

the unique node such that is an arc in .

1.3.3 Ford's Algorithm

Ford's algorithm allows us to find shortest -dipath for all in one go.

We assume that every node can be reached from via a dipath. The algorithm tries to produce a

feasible potential and a rooted spanning tree at , so that the arcs of are

all equality arcs.

At each step, we keep track of the potential and predecessor of each node.

Algorithm

1. Initialization.

a. Set and for all .

b. Set predecessor for all .

2. Correction. While is not feasible, i.e., there exists an arc with negative reduced cost,

a. Find where .

b. Set (which makes an equality arc as) and .

An important observation is that never increases: by setting where

 to begin with, we are decreasing .

1.3.4 Predecessor Digraph

At any point in the algorithm, the predecessor digraph, denoted , is one where

and .

Proposition Through the algorithm, for all arcs .

Proof. Let be arbitrary and be its predecessor. When a correction takes place with an

arc whose head is , . Until the predecessor of is changed again, the reduced cost stays

non-positive, and only can change (due to connecting other arcs). By observation above,

can only decrease, so only decreases.

Lemma Let be a digraph with weights and feasible potentials . Let

 be an -diwalk. Then . Moreover, iff every arc of is an

equality arc.

af://n87
af://n108

Proof. Let where and . Since is feasible, for all

. Adding them up, we get

. Subtracting from both sides, we get . For the second

part, observe that iff holds for all .

Lemma Let be a digraph with weight . If has a negative dicycle then

has no feasible potentials.

Proof. Let be feasible potentials and be a dicycle. Now is a

-diwalk, so we must have . Hence, has no negative dicycle.

Proposition If contains a dicycle (at any point in the algorithm), then contains a

negative dicycle and the algorithm does not terminate.

Proof. Suppose we produce a dicycle in by connecting the

arc . Then it must be true that in the previous iteration, . By

proposition above, for all throughout the algorithm, so

 for . Since is a dicycle, adding up these inequalities

cancel out 's and we are left with

i.e., is a negative dicycle. It follows from previous lemma that there cannot be a feasible

potential, so the algorithm never terminates.

Proposition If has a predecessor (at any point in the algorithm), then contains a negative

dicycle and the algorithm does not terminate.

Proof. Exercise.

1.3.5 Termination of Ford's Algorithm

Proposition Suppose the algorithm terminates. Then is a spanning tree of shortest dipaths

rooted at . Furthermore, is the cost of a shortest -dipath.

Proof. Since the algorithm terminates, cannot contain a cycle and does not have a

predecessor. So is a rooted spanning tree. Since all nodes other than has a predecessor,

 for all and is rooted at . Now, all arcs in are equality arcs, because

 for all and is impossible since is feasible (by termination).

For , let be the unique -dipath in . Consider the LP formulation of the shortest

-dipath problem: is feasible for the primal and is feasible for the dual. Since all arcs in are

equality arcs, CS conditions hold, so is optimal and the objective of the dual is

, i.e., is the cost of a shortest -dipath.

1.4 The Bellman-Ford Algorithm

af://n122
af://n126

The idea is to go through arcs in "passes".

1.4.1 The B-F Algorithm

Algorithm

1. Initialization.

a. Set and for all .

b. Set predecessor for all .

c. Set the counter .

2. Correction. While ,

a. For each , if , set and .

b. Increment .

Note that if a feasible potential is found, then everything from Ford's algorithm applies here, and

we have an optimal rooted tree. Else, if we have an infeasible potential after steps, we

show that we have a negative dicycle.

1.4.2 Proof of Correctness

Let denote the cost of a shortest -dipath.

Proposition Suppose does not have any negative dicycle. Then at any point in the algorithm

.

Proof. The claim is clearly true at the initialization. If , then there exists a dipath from

to using . For each of these arcs , . Adding up all inequalities for all arcs in

this -dipath, we obtain . Since is the cost of a shortest -dipath,

 and we are done.

Theorem Suppose no negative dicycles exist. After the th iteration, if there is a shortest -

dipath using at most arcs, then .

Proof. We do an induction on . When (initialization), trivial. Assume that this is true

after the th iteration. We want to show this still holds after th iteration.

Pick which has a shortest -dipath that uses at most arcs. If there is a shortest -

dipath that uses at most arcs, by induction hypotheses, . By proposition, will not

change.

Suppose there is a shortest -dipath that uses arcs, say . Since no

negative dicycle exists, is a shortest -dipath that uses arcs. By induction,

after the th iteration and this does not change after the -th iteration.

Consider .

af://n128
af://n148

If , this means that .

If , this means that .

Contradiction. This cannot happen.

If , this means that the algorithm will correct the arc in the th

iteration so .

We are done by induction.

Corollary At the end of Bellman-Ford, if is feasible, then for all . Otherwise,

you can conclude there exists a negative dicycle.

Proof. Bellman-Ford runs iterations. Any shortest -dipath could use at most

arcs. If is feasible, then there are no negative dicycles. By the theorem above, for all

. If not, then there exists a negative dicycle.

1.5 Dijkstra's Algorithm

When there are no negative costs, we can apply a greedy algorithm.

1.5.1 Motivation

If there are no negative arcs, is a feasible potential for the dual. We wish to raise potentials

by for non-tree nodes while maintaining feasibility.

1.5.2 Details

Let be our current tree.

1. : both and increases by , so stays the same.

2. : we do not change the potentials, so stays the same.

3. : increases and that does not affect feasibility of the potentials.

4. : decreases by ; thus choose to be minimum among all such

arcs.

Now, the arc which determined the minimum becomes an equality arc and we can add it to .

1.5.3 The Algorithm

1. Initialize and .

2. While is not a spanning tree,

a. Pick such that .

b. Update for all .

c. Add and to .

af://n167
af://n169
af://n171
af://n183

1.5.4 Correctness

By our work above, is always feasible. This includes at initialization as we do not have negative

costs. All arcs in are equality arcs. In addition, the algorithm produces a spanning tree rooted

at . Thus, the same LP argument gives that it must be a tree of shortest -dipaths for all

.

1.5.5 Runtime

By taking advantage of the greedy approach, Dijkstra runs in which is faster

than Bellman-Ford.

1.6 Applications

1.6.1 Network Reliability

Given A network where each arc is assigned an associated reliability .

Think of this as a probability that is operational.

Goal For a given dipath , the reliability of is . Our goal is to maximize

reliability amongst all -dipaths.

Notice that and is strictly increasing so it suffices to compare

logarithms of reliability. We also make this a minimization problem by having negative arc costs:

let denote the cost of arc .

Exercise. Modify Dijkstra's algorithm to solve this problem without taking logs.

1.6.2 Currency Exchange

Given We have a set of currencies. There is an exchange rate representing how much does

unit of currency converts into currency .

Goal Exchange a series of currencies back to the original one so that we make a profit.

Solution Since we can make some profit, the following inequality must hold:

Label each arc with cost . We can just run Bellman-Ford.

af://n196
af://n198
af://n200
af://n201
af://n206

	Shortest Dipath Problem
	CO 351: Network Flow Theory
	David Duan, 2019 Fall
	Shortest Dipath Problem
	Overview
	Problem
	LP Formulation
	Dual LP
	Characteristic Vector of a Path

	Potentials and Optimality Conditions
	Ford's Algorithm
	Sub-Paths Optimality
	Rooted Trees
	Ford's Algorithm
	Predecessor Digraph
	Termination of Ford's Algorithm

	The Bellman-Ford Algorithm
	The B-F Algorithm
	Proof of Correctness

	Dijkstra's Algorithm
	Motivation
	Details
	The Algorithm
	Correctness
	Runtime

	Applications
	Network Reliability
	Currency Exchange

