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Notation. We will use the following notations throughout this chapter.

* Yi,...,Y,: random variables representing potential observations in a random sample.
* Yi,...,Yn: actual (observed) data points, realization of random variables Y1, ..., yy.
e u: mean of the Gaussian distribution, parameter of interest.

e ¢: standard deviation of the Gaussian distribution, parameter of interest.
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1 Statistical Models and Estimation

In choosing a model for data collected in an empirical study in the analysis of PPDAC, we
actually need to consider two probability models:

1. Attribute Model: A model for variation in the population or process being studied which
includes the attributes which are to be estimated.

2. Sampling Model: A model which takes into account how the data were collected and
which is constructed in conjunction with the model in (1).

We use these two models to estimate the unknown attributes in the population or process based
on the observed data and to determine the uncertainty in these estimates.

To check the adequacy of a chosen model, we could (1) compare a relative frequency histogram of
observed data with the p.d.f. of the assumed model, (2) compare observed frequencies with
expected frequencies calculated using the assumed model, (3) compare the empirical c.d.f. with
the c.d.f. of assumed model, or (4) examine a Gaussian Q-Q plot.
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2 Estimators and Sampling Distributions

We've seen (in Chapter 2) how to choose a model, estimate parameters, and check model fit. We
are now going to investigate properties of the estimates, or more precisely, the process by which
we obtain estimates. For this, we need to think about the idea of repeated sampling.

2.1 Repeated Sampling

Let § := % > i1 ¥i be the maximum likelihood estimate of p, the population mean of a Gaussian
distribution. Note that i = g depends on the specific sample we take and would vary as we take

samples repeatedly.
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Assuming taking samples is a random event, we can think of our estimate for sample mean g = g

as a realization of a random variable ¥ := % > 1 Yi. Our sample mean is therefore a probability
distribution that itself has a mean and a variance. We now provide a formal statement.

Prop. 2.1.1 Assume Y; ~ G(p,0) for ¢ = 1,...,n are independent and let yy,...,y, be data
observed. We could estimate the unknown population mean p using the maximum likelihood
estimate i = . Moreover, there is a random variable associated with sample mean y:

1 & — 1 & o
y=—>  y — Y =— KNG(/,L,—).

We will introduce point estimate and point estimator and generalize the relationship between y

and Y in the next section.

2.2 Point Estimate and Point Estimator

Recall the following definition from Chapter 2.

Def. 2.2.1 A point estimate of 0 is a function 6 = 9(y1,...,yn) of the observed data used to
estimate the unknown parameter 6.
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Since estimates vary as we take repeated samples, we can associate with the point estimate
6 = 9(y1,-..,yn) a random variable 6 = 9(Y1,...,Y,). For example, the random variable
associated with 8 = Yy = %ZLI Y isf =Y = % Y.

Def. 2.2.2 A point estimator is a random variable which is a function 8 = g(Y1,...,Y,) of the
random variables Y7,...,Y,.

We can view an estimator as a rule that tells us how to process the data to obtain an estimate of

an unknown parameter 6, i.e., the numerical value 6 = 9(y1,-..,yn) is the value obtained using

the rule @ for a particular observed dataset y1,...,Yn.

Notation. We use 6 to denote the point estimate and 0 to denote the point estimator for 6.

2.3 Sampling Distribution of an Estimator

Since 0 is a random variable, it has a distribution. In other words, if € is a discrete random
variable, then it has a probability function; if 8 is a continuous random variable, then it has a
probability density function.

Def. 2.3.1 The distribution of an estimator 8 is called its sampling distribution.

Knowing the sampling distribution of our estimator, we can then answer questions such as What
15 the probability that I will draw a sample that will result in a point estimate fi that is within 1

unit of the true mean pu?
We restate the second part Prop 2.1.1 in terms of sampling distribution of an estimator:

Prop. 2.3.2 In general, if Y; ~ G(u,0) for i = 1,...,n, then the sampling distribution of our

rco)

Remark. The probability we draw a sample that yields an estimate fi that is close to u

estimator fi = Y is given by

e ... increases as m increases,
e ... decrease as o increases,
e ... does not change with pu.

Since the probability does not depend on u, we can compute it exactly if we know o and n!

2.4 Gaussian Data with Known Standard Deviation

Prop. 2.4.1 In general, if we have Y; ~ G(u,0), using estimator ji = 17, we can transform the
problem into a standard normal. That is,
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where Z ~ G(0,1).

Ex. 2.4.2 Form=0.1,0 =05, and n =49, P(|a — pu| <0.1)=P(-14 < Z <1.4) =0.838.
That is, with a sample size of 49, we would expect our sample estimate & to be within 0.1 unit of
the true p 83.8% of the time.

To summarize, when sampling from a Gaussian distribution to estimate population mean u, we

can make use of the result that the sampling distribution of our estimator i = Y follows a
Gaussian distribution

— o
Y ~G — .
(%)
The probability we draw a sample that results in a point estimate i that is within a given

distance m of the true value pu depends on o and n but not u. Thus, if we know or are prepared
to specify o, we can compute these probabilities directly.

2.5 Non-Gaussian Data
Recall the Central Limit Theorem from Stat 230:

Thm. 2.5.1 (CLT) Let Yy,...,Y, be independent and identically distributed (i.i.d.) random
variables with E[Y;] = pu and Var(Y;) = o2 for i = 1,...,n. Define

_ Y-
N

Then for sufficiently large n, Z, has an approximately G(0,1) distribution.

Zn

In other words, if we have random variables that are independent and identically distributed,
then given our sample size is large enough, we can take observations from any probability
distribution and transform then into a standard normal distribution!

Ex. 2.5.2 For binomial data with n trials and y successes, the estimator § =Y /n has E(f) =

and Var(0) = 6(1 — 6)/n. By the Normal approximation to the Binomial, we have

6—0
6(1—0)

n

~ N(0,1) approximately.

We could use this, for example, to determine how large n should be to ensure that
P(—0.03 <0 — 6 <0.03) > 0.95 for all § € [0, 1].
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2.6 Standard Deviation of the Sampling Distribution

The following results should be quite intuitive.

Prop. 2.6.1 We have seen that sd(Y) ~ o/ /7.

1. A larger sample size n will decrease sd(?) and more of our sample estimates will be close
to the true value .

2. A small population standard deviation o will decrease sd(?) and more of our sample
estimates will be close to the true value p.

3. The shape of our distribution will affect how many of our sample estimates will be close to
the true value u, but predicting how is trickier.

4. The true mean p does not affect how many of our sample estimates are close to the true p.
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3 Interval Estimation

Suppose that for a certain population we are interested in estimating € using point estimate

6 = 9(y1,...,yn) given observed data y1,...,y,. To quantify the uncertainty in our estimate, we
try to give an interval of values for 6 which are "supported" by the data. Intuitively, if we could
see the sampling distribution, we could tell which values are more/less plausible for p.

3.1 Likelihood Intervals

Recall the following definition from Chapter 2.

Def. 3.1.1 The relative likelihood function is defined as

where 0 < R(A) < 1 for all § € Q and R(f) = 1.

Given this definition, we can do things like obtaining an interval of value for the unknown
parameter which are "reasonable" given the observed data.

Def 3.1.2 A 100p% likelihood interval for the parameter 6 is the set {6 : R(0) > p}.

The intuition is that values of 6 that result in large values of L(6) (and hence R(6), because the
denominator for R(6) is a constant) are more plausible. For example, if R(6y) = 0.5, then the

data are half as likely if 8 = 6y than if 0 = 0 , the MLE of 8. We can think of a 50% likelihood
interval as being the values of 6 for which the data are at worst half as likely as they would be if

0=20.

Remark. The set {6 : R(6) > p} is not necessarily an interval unless R(6) is unimodal, but this is
the case for all models that we will consider in this course.

Prop 3.1.3 We now provide some general guidelines for interpreting a likelihood interval.

e Values of 0 inside a 10% likelihood interval are plausible given the observed data.
e Values of 6 inside a 50% likelihood interval are very plausible given the observed data.
e Values of 8 outside a 10% likelihood are implausible given the observed data.

e Values of 8 outside a 1% likelihood interval are very implausible given the observed data.
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As the sample size n increases, the graph of the relative likelihood function R(6) becomes more
"concentrated" around 6. Consequently, likelihood intervals becomes narrower as the sample size
increases. Both these statements reflect the fact that larger data sets contain more information

about the unknown parameter 6.

3.2 Log Relative Likelihood Function
Recall the following definition from Chapter 2.

Def. 3.2.1 The log relative likelihood function is given by r() = log[R(6)] = £(8) — £(8) for
6 € Q where £(6) = log|[L(0)].

Remark.

1. The maximum value of () is log(1) = 0. (e.g., the right diagram below.)

R(8)
ey

2. If R(0) is unimodal, then 7(0) is unimodal, and both graphs attain their maximum value at
the MLE of 6.

3. However, R(0) and r(0) differ in shape: R(6) looks bell-shaped while r(6) resembles a
quadratic function of 6.

Prop. 3.2.2 Since R(A) > p <= r(0) > log(p), we can plot 7(#) and draw a line at
r(0) = log(p) to obtain an 100p% likelihood interval for 6.
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4 Confidence Intervals and Pivotal Quantities

4.1 Interval Estimator

Recall that we can view a sample (point) estimator as a realization of a random variable called a
(point) estimator, because point estimates will vary depending on the sample we take. Now,
likelihood intervals, which are interval estimates of an unknown parameter 6, also varies
depending on the sample. This motivates the concept of an "interval estimator".

Def. 4.1.1 An interval estimator [L(Y),U(Y)] is a function (a rule) which can be used to

construct an interval of plausible values for the unknown parameter 6.

Just like point estimators, we can view an interval estimator as a rule that tells us how to process
the data to obtain an interval estimate of an unknown parameter 6, i.e., the interval estimate
[L(y),U(y)] is the value obtained using the rule for a particular observed dataset y = (y1,...,Yn)-

Remark. Both L(Y) and U(Y') are random variables; L(y), U(y) are their realizations.

4.2 Coverage Probability

To determine how "good" one interval estimator is, we look at the interval's coverage probability.
Intuitively, an interval is good if it has a high probability containing the true (but known) 6.

Def. 4.2.1 The coverage probability for the interval estimator [L(Y),U(Y)] is
P(6 < [L(Y),U(Y)]) = PIL(Y) <6 <U(Y)],
i.e., the probability that the random interval [L(Y),U(Y)] contains the true value of 6.

Remark. The interval [L(Y),U(Y)] above is a random interval as it takes on specific values
depending on the sample we draw.

4.3 Confidence Interval

We now introduce one of the most critical concept of Stat 231. To estimate 6, we want to
construct an interval with high coverage probability, e.g., 90%, 95%, or 99%. We call these
intervals "confidence intervals".

Def. 4.3.1 A 100p% confidence interval for a parameter 0 is an interval estimate [L(y), U(y)] s.t.
P(6 € [L(Y),U(Y)]) = PIL(Y) <6 < U(Y)] = p,
The value p is called the confidence coefficient for the confidence interval.

Warning. Since 6 is an unknown CONSTANT associated with the population, it is NOT a
random variable and therefore does NOT have a distribution. For an observed set of data y, both
L(y) and U(y) are all numerical values. Thus, it is NOT VALID to say that the probability that
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6 lies in the interval [L(y), U(y)] is equal to p since 6 is a constant. This is the most common
mistake when interpreting a confidence interval.

Remark. Approach Def. 4.3.1 with extreme caution!

e Suppose p = 0.95. If we draw repeated independent random samples from the same
population and each time we construct the interval [L(y), U(y)] based on the observed data
y, then this equation tells us that we should expect 95% of these constructed intervals to
contain the true but unknown value of € (and the rest 5% will not contain 6).

e The correct way to use a confidence interval in a sentence: we are 95% confident that the

true value of 0 is contained in the interval we have constructed.

Ex. 4.3.2 (Gaussian CI) Suppose we want to estimate p for a Gaussian distribution. Assume
o= 1. (We will find out what to do when o is unknown later. Hint: ¢ distribution.) If

Y1,Ys,...,Y, is a random sample from a G(u, 1) distribution, then

refo)

We know that if we draw an observation from this sample, there is a 95% chance it will lie inside

[_1.96 +1.96]
vl

In other words,

1.96  — 1.96
P(,u—— <Y g,w—) = 0.95.
4D 4D

Rearranging this equation, we have

— 196 — 1.96
P(,ue <Y ——,Y+—)> =0.95.
Vn Vn

Now, if we draw a sample and observe sample mean ¥, then

(,_ 196 1.96)
Uy Sy

is a 95% confidence interval for the unknown mean pu.

Remark. Observe that the width of the confidence interval decreases as m increases. Intuitively,
as our sample size increases, we have more certainty about our estimate, which is reflected in a

narrower confidence interval.

Remark. We can plug in actual data to get numeric values. For example, if we define n = 16 and
observe ¥ = 3.4, then a 95% confidence interval for p is



34— ——,34+
V16 V16

Again, we CANNOT say P(u € [2.91,3.89]) = 0.95 because u is constant; we can only say that
we are 95%_confident that the interval [2.91, 3.89]_contains the true but unknown value of u.

1. 1.
< %6 ﬂ) = [2.91,3.89).

We summarize this example into the following proposition.

Prop. 4.3.3 (Gaussian CI) If Y},Ys,...,Y, is a random sample from a G(u,1) distribution
with known standard deviation but unknown mean, then

— 196 — 1.96
P(,uE(Y— Y + )>:0.95
4D N&D

and

(_ ~ 196 - 1.96)
Y \/ﬁ’y Jn

is a 95% confidence interval for u. We say that we are 95% confident that this interval contains
the true but unknown value of u.

4.4 Pivotal Quantity for Confidence Construction

This following definition implies that probability statements such as P(Q < a) and P(Q > b)
depends on a and b but not on 8 or any other unknown information.

Def. 4.4.1 A pivotal quantity Q@ = Q(Y;0) is a function of the data Y and the unknown
parameter @ such that the distribution of the random variable @ is complete known.

actual data

P unknown
N
Q= ~ G(0,1)

distribution completely known

Remark. We say this is completely known because there are no unknown parameters in G(0,1).
The following example shows how to construct a confidence interval using a pivotal quantity.

Ex. 4.4.2 (CI Construction using PQ) Consider Ex. 4.3.2 again. Suppose Y1,Ys,...,Y, is
a random sample from G(u, o) distribution where E(Y;) = p is unknown but sd(Y;) = o is

unknown. The maximum likelihood estimator for p is fi = Y with sampling distribution

o)

Observe @) defined below has a completely known distribution, so @) is a pivotal quantity.
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Yi
Q=Q(Y;u) = £~ 6,1)

o/

We can use pivotal quantities to construct confidence intervals. Take n = 16 and o = 1, we have

Y —p
Pl -1.96 < <1.96 | = 0.95.
1/v/16

Rearranging the inequality inside the brackets,

— 196 — 1.96
P(ue (y _ L9 —)> — 0.95.
v 16 v/ 16
Thus, if we take a sample and observe a sample mean of g, then a 95% CI for p based on our
sample will be

(_ 1.96 _ L 1.96)
Yy — 'Y .
116 v 16

We summarize the example into the following proposition.

Prop. 4.4.3 (CI Construction Using PQ) In general, we can use a pivotal quantity to
construct a confidence interval as follows:

1. Determine numbers a and b such that Pla < Q(Y;6) < b] = p.
2. Re-express the inequality a < Q(Y;6) < b in the form L(Y) < 6 < U(Y), then

p=Pla<Q(Y;0) <t = PIL(Y) < 0 < U(Y)| = P(9 € [L(Y),U(Y)))

so the coverage probability of interval [L(Y),U(Y)] is equal to p as desired.
3. For observed data y, the interval [L(y), U(y)] is a 100p% CI for 6.

4.5 Pivotal Quantity for Confidence Interval (Gaussian)
We can simplify Prop. 4.4.3 when the distribution assumed is Gaussian since it's symmetric.

Ex. 4.5.1 (CI Construction Using PQ; Gaussian) Suppose we want to construct a 95%
confidence interval for y of a Gaussian distribution with known o.

Y —p

o/ \/n

Q=Q(Y;u)=

~ G(0,1)

First, we want to find values a and b such that

v _
P(a§ “gb)—oga
o/\/n
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Since @ is a pivotal quantity, we can find a and b for any probability p (0.95 in this case). There
is an infinite number of values of a and b satisfying the equation, e.g., (—1.8,2.2). Since the
normal distribution is symmetric, we choose a = —1.96 an b = 1.96 which gives the narrowest
confidence interval. Our confidence interval (for this example) is therefore symmetric about the
point estimate [, so we want to find

Y —p
Pl —-a< <a| =0.95.
o/\/n

By normal tables, P(Z < —1.96) = P(Z > 1.96) = 0.025 so a = 1.96.

Next, using a = 1.96 from step 1, we solve the inequality for p:

Y —u — o — o
<196 — Y —1.96— <u <Y +1.96—.
o/\/n n NG

—1.96 <
Therefore, a 95% confidence interval for y based on the observed data y;,ys, ...,y iS

g g
y—1.96—, 7+ 1.96— | .
(s - ﬁ)

We summarize the example into the following proposition.

Prop. 4.5.2 (CI Construction Using PQ; Gaussian) We can construct a 100p% confidence
interval for y for Gaussian data where o is known as follows:

1. User normal tables to find a such that P(—a < Z < a) = p where Z ~ (0,1), or
equivalently, P(Z < a) = (1 + p)/2.

2. A 100p% confidence interval for p is then § + a(o/4/n).
Remark. Some useful values from normal tables:

* 90%: a = 1.645.
* 95%: a = 1.960.
* 99%: a = 2.576.

Prop. 4.5.3 For a Gaussian distribution, a 100p% confidence interval for u is of the form
point estimate + (distribution table value) x sd(estimator).
Such an interval is often called a "two-sided, equal-tailed" confidence interval.

Remark. We will encounter other examples of two-sided, equal-tailed confidence intervals in this
course. Also, not all confidence intervals are symmetric.

Remark. We can also use R instead of normal tables. Be familiar with the commands as you will
be expected to interpret the results on exams.



e The command pnorm(a, mu, sigma) will return P(Y < a) where Y ~ G(u, o). If we don't

specify p and o, R assumes p =0 and o = 1.
o e.g., pnorm(3.5, 1, 2) = 0.8943502: P(Y < 3.5) = 0.8943502 given Y ~ G(1,2).
° e.g., pnorm(1.644854) = 0.95: P(Y < 1.644854) = 0.95 given Y ~ G(0,1).

e The command gnorm(q, mu, sigma) returns a value a such that P(Y < a) = ¢ where
Y ~ G(u,0). If we don't specify p and o, R assumes ¢ = 0 and o =1,

° e.g., qnorm(0.9, 1, 2) = 3.563103: P(Y < 3.563) = 0.9 given Y ~ G(1,2).
° e.g., qnorm(0.95) = 1.644854: P(Y < 1.644954) = 0.95 given Y ~ G(0,1).

¢ To remember what they do, pnorm tells us a probability and gqnorm tells us a quantile

(actual value).

4.6 Approximate Pivotal Quantities and Confidence Intervals

Note that for most statistical models, it is not possible to find exact pivotal quantities or
confidence intervals for 6.

Def. 4.6.1 An asymptotic or approximate pivotal quantities is a random variable
Qn = Qn(}/la .- '7Yn§0)
such that as n — 00, the distribution of @), ceases to depend on @ or other unknown information.

Ex. 4.6.2 (Approx. CI for Binomial) Recall that for a binomial experiment, ¥ ~ Bin(n, 6)
and the point estimator of 6 is

6 =

S|

For large n, the approximate sampling distribution of 0 = Y/nis

6—0
0(1—0)

n

~ G(0,1) approximately

by the Central Limit Theorem. It can also be shown for large n that

Qn = Lé{ ~ G(0,1) approximately
70-0)

n

Note the 8 in the denominator, in contrast to the previous expression.

Now @, is an approximate pivotal quantity which can be used to construct approximate
confidence intervals for 6. To obtain a 95% confidence interval,
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0 —
095~ P | -1.96 < ———— < 1.96

095~P |6 —1.96

So an approximate 95% confidence interval for 6 is

~

6 +1.96

Note the relationship between a point estimate 6 and 7 and a point estimator 8 and Y.

4.7 Sample Size Calculation

We have seen that confidence intervals for a parameter get narrower as the sample size n
increases. When designing a study, researchers need to choose a sample size on the basis of:

* How narrow they would like a confidence interval to be, and

e How much they can afford to spend (time and money).

To do this, we carry out a sample size calculation.

Ex. 4.7.1 (Sample Size Calculation) Suppose we plan to select n units at random to
estimate 6. The approximate 95% confidence interval for 8 is given by

~ ~

0+ 1.96

which has width

We might specific that we want a 95% confidence interval of width < 2/, i.e.,
6(1 -6 1.96\2%. .
1.96 ¥ or n> <$) 0(1—9).
n

A criterion that's widely used to choose the sample size n large enough so that the approximate
95% confidence interval is no wider than 2 x 0.03, i.e., choose n such that

1.96\2 - .
=) 4(1 - 8).
<003> ( )
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Because 6 is a proportion, we know 0 < 6 < 1, so RHS of

1.96\2 . R
) 4(1—6
(0.03) ( )

takes its largest value when 6 = 0.5. We can therefore take a worst-case approach by taking

1.962
> (Z=2) 0.5 %05 =1067.1
n_(0'03)0 % 0.5 6

that if n = 1068 then the approximate 95% confidence interval for 8 will have width less than
0.03 for all values of 8.

Remark. "This poll is accurate to within 3 percentage points 19 times out of 20." This really

means that the estimate given is the center of an approximate 95% confidence interval 6 + ¢ for
which £ = 0.03.

Remark. As an exercise, show that for £ = 0.05 you only need n = 395 while for £ = 0.02 you
need n = 2401. Also think how do these results change if you want a 99% (or 90%) confidence
interval?
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5 Chi-Squared Distribution

Remark. We only cover key properties for chi-squared distribution in this section. More algebraic
details can be found in the course note.

5.1 Properties of Chi-Squared Distribution

Note. 5.1.1 The chi-squared distribution is parameterized by its degrees of freedom, often
denoted k. We would write Y ~ Xz or x*(k). The value of k affects the shape of the resulting
probability density function.

fi'(m) Xf-
0.5 5

047

L L |

O D= W=

0.3 1

T T T T T

0.21

0.1

Nf——mp—r-——
o 1 2 3 4 5 6 7 8 *

Prop. 5.1.2 If Wy, W,,..., W, are independent random variables satisfying W; ~ XZ,-’ then

S:ZT/Vi NXQEki'
i=1

In other words, the sum of several chi-squared random variables also follows a chi-squared
distribution, with degrees of freedom equal to the sum of the degrees of freedom of the
component distributions.

Ex. 5.1.3 W; NX%,WQ NX?,) = Wi+ Wy ~ X%.
Prop 5.1.4 Chi-squared is related to the standard normal:

e If Z~ G(0,1), then 7 =W ~ X%- In other words, the square of a standard normal has a
chi-squared distribution with 1 degree of freedom.

o If Zy,Zs,...,2, ~G(0,1), then S = >"" | Z? ~ x2. In other words, the sum of n squared
standard normal distributions is chi-squared with n degrees of freedom.

Ex. 5.1.5 If W ~ x2, then

e P(W>w)=P(Z>\/w)+ P(Z< —y/w)=2[1—-P(Z < ,/w)] where Z ~ G(0,1).
e P(W <w)=P(Z< /w)+ P(Z>—\/w)=2[P(Z < /w)] —1 where Z ~ G(0,1).

33

Make sure you understand how this is derived! Draw diagrams if necessary.
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Prop. 5.1.6 If W ~ x2, then W ~ Ezp(2). In other words, a chi-squared distribution with 2
degrees of freedom is the same as an exponential distribution with parameter 2.

Ex. 5.1.7 For example, W ~ X% = P(W>w)= e w2,

This one involves some dirty algebra. If you write out the c.d.f. of X%, you will see that it is the
same as the c.d.f. for exponential(2). Details omitted.

We now show how to get numeric values in a chi-squared distribution. By Prop. 7.5.1, a 100p%

confidence interval for o2 is

(n—1)s* (n—1)s
b a

where a and b are chosen such that P(W < a) = (1 —p)/2 and P(W <b) = (1+p)/2.

—— 99% -
- 95% ~

CHI-SQUARED | = P S T~

DISTRIBUTION | - T~

QUANTILES _— _— 90% N ~_ ~_

-——————-——————
1 0.000 0.001 0.016 2.706 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 0.446 3.219 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 1.005 4.642 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.649 5.989 7.779 9.488 11143 13.277 14.860
5 0.412 0.554 0.831 1.146 1.610 2.343 7.289 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 3.070 8.558 10.645 12.592 14449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 3.822 9.803 12.017 14.067 16.013 18.475 20.278
8 1.344 1.647 2.180 2.733 3.490 4.594 11.030 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4,168 5.380 12.242 14.684 16.919 19.023 21.666 23.589
10 2.156 2,558 3.247 3.940 4.865 6.179 13.442 15.987 18.307 20483 23.209 25.188
11 2.603 3.054 3.816 4.575 5.578 6.989 14.631 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 7.807 15.812 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 8.634 16.985 19.812 22.362 24,736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 9.467 18.151 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 10.307 19.311 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9312 11.152 20.485 23.542 26.296 28,845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.002 21.615 24.769 27.587 30191 33.409 35.718
18 6.265 7.015 8.231 9.391 10.865 12.857 22.760 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 13.716 23.900 27.204 30.144 32.852 36.191 38.582
20 7434 8.260 9.591 10.851 12.443 14,578 25.038 28.412 31.410 34170 37.566 39.997
25 10.520 11.524 13.120 14.611 16.473 18.940 30.675 34.382 37.652 40.646 44.314 46.928
30 13.787 14.953 16.791 18.493 20.599 23.364 36.250 40.256 43.773 46.979 50.892 53.672

Some useful numbers:

* p=09 = a=0.05b=0.95.
* p=095 = a =0.025,b = 0.975.
e p=10.99 = a = 0.005,b = 0.995.

Remark. We can also use R instead of probability tables. Be familiar with the commands as you
will be expected to interpret the results on exams.

e The command pchisq(w, df) will return P(W < w) where W ~ Xﬁf‘ We must specify df;

there is no default.



© e.g., pchisq(0.4844186, 4) = 0.025: P(W < 0.4844186) = 0.025 given W ~ 2.

e The command qchisq(q, df) returns a value w such that P(W < w) = ¢ where W ~ X?if‘
We must specify df; there is no default.
° e.g., qchisq(0.025, 4) = 0.4844186: P(W < 0.4844186) = 0.025 given W ~ x3.
e To remember what they do, pchisq tells us a probability and gchisq tells us a quantile

(value).
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6 Likelihood Intervals and Confidence Intervals

Recall a likelihood interval gives values of 6 such that R(6) > p and a confidence interval gives
values of 6 such that P[L(Y) < § < U(Y)] = q. Both of them give us plausible values of  but via
different methods. We now look at how they relate.

6.1 Likelihood Ratio Statistic

We show that likelihood intervals are also confidence intervals. Recall the relative likelihood
function is defined as

where 0 < R(A) <1 for all # € Q and R(d) = 1.

Def. 6.1.1 The random variable

A(9) = —QIOgI%] - —2log[§((g;.§))]

where § = (Y is the maximum likelihood estimator is called the likelihood ratio statistic.

Prop. 6.1.2 The distribution of A(f) converges to a x? distribution as n — oo.

Thus, we can use A() as an approximate pivotal quantity to obtain an approximate confidence
interval for 6.

6.2 Likelihood Interval vs. Confidence Interval

Thm. 6.2.1 A 100p% likelihood interval is an approximate 100¢% confidence interval where
q=2P(Z < \/—2logp) —1 and Z ~ N(0,1).
Proof. A 100p% likelihood interval is defined by {6 : R(6) > p} which can be rewritten as

R I | Rt
0: — >ppr=460:—-2log — | < —2logp
L(0) L(6)

By Prop. 6.1.2, the confidence coefficient for this interval can be approximated by

P[A(F) < —2logp| = P{—210g [%} < —2logp}

~ P(W < —2logp) where W ~ 32
= P(|Z] < \/—2logp) where Z ~ N(0,1)

=2P(Z < /—2logp) — 1. Ex.5.1.5 O
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Ex. 6.2.2 We show that a 10% likelihood interval is an approximate 97% confidence interval.
q=2P(Z < ,/—2log(0.1)) — 1 where Z ~ G(0,1)
=2P(Z <2.15) — 1 =0.96844 ~ 0.97. |

Thm. 6.2.3 If a is a value such that p = 2P(Z < a) — 1 where Z ~ N(0, 1), then the likelihood
interval {0 : R(0) > e/ 2} is an approximate 100p% confidence interval.

Proof. The confidence coefficient corresponding to the interval {9 : R(0) > e’/ 2} is

P L—?) > e /2| = P{—210g [M] < a2}
L(0) L(6)
~ P(W < a?) where W ~ x?
=2P(Z<1)-1 where Z ~ N(0,1)
=p. U

Ex. 6.2.4 We show that a 15% likelihood interval for 8 is an ~ 95% confidence interval for 6.

0.95 = 2P(Z < 1.96) — 1 where Z ~ N(0,1),
e~ (196)°/2 _ —19208 (3 1465 ~ 0.15 m

6.3 Approximate Confidence Intervals for Binomial

The intervals are only approximately equivalent and can be numerically quite different. For
example, for data y from a binomial distribution with (n, ), we can obtain an approximate 95%
confidence interval using two methods:

e A 15% likelihood interval.

, 6(1—0) ,
e 0 +1.96 — where 0 = y/n.

In general, if 6 is close to 0.5 or n is large, then the likelihood interval will be fairly accurate
about 6 and there will be little difference in the two approximate confidence intervals. If 0 is

close to 0 or 1 and n is not large, however, the likelihood interval will not be symmetric about 0
and the two approximate confidence intervals will not be similar. By inspection, you should be
able to tell which interval is better supported by the data.
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7 Confidence Intervals for Parameters in G(u, o)

Suppose Y1,Y3,...,Y, is a random sample from a G(u, o) distribution where u and o are both
unknown. We use the following estimators for u and o

n—1 i=1

Note that we use sample variance as the estimator for o2 instead of 6% = % S (Y —Y)?
because S? is unbiased (no overestimate or underestimate), i.e., E[S?] = o?.

Recall from section 4, if we know o, we could use the pivotal quantity
Y —p
S/\/n

and derive a 100% confidence interval for p as

7+a-2
NG

where P(—a < Z < a)=p and Z ~ G(0,1).

However, o is unknown, so we cannot use this result. Luckily, we can simply replace o with S and
obtain the random variable which turns out to also be a pivotal quantity; it has a new
distribution: student's t distribution.

7.1 Student's ¢t Distribution

Note. 7.1.1 The student's t distribution (or simply ¢ distribution) has two parameters, ¢t and k.
We call k the degree of freedom of the distribution.

Notation. We write T ~ t(k;) to indicate that the random variable T" has a t distribution with k

degrees of freedom.
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Comparing the p.d.f. for ¢ distribution with that for G(0,1), we see that:

* Both are unimodal and symmetric about 0.
e For small k, the ¢ distribution has larger tails (i.e., higher values for extreme values).

* For large k, the ¢ distribution is very similar to G(0,1).

As a remark, the t distribution arises as a result of the following proposition.

Prop. 7.1.2 Suppose Z ~ G(0,1) and U ~ x? independently. Let

Then T has a student's t distribution with k degrees of freedom.

Remark. We can look up t tables given p and df (degree of freedom):

Student t Quantiles 4%
df\ p 0.6 0.7 0.8 0.9 Tgs\ W 0.99 [Tss\ 0999  0.9995

1 03249 0.7265 13764 3.0777 | 6.3138) 12.7062 | 31.8205 | 63.6567 | 318.3088 636.6192
2 0.2887 0.6172 1.0607 1.8856 | 2.9200| 4.3027| 6.9646 | 9.9248 | 22.3271 31.5991
3 0.2767 0.5844 09785 1.6377 | 2.3534| 3.1824| 4.5407 | 5.8409| 10.2145 12.9240
4 0.2707 0.5686 0.9410 15332 | 2.1318]| 2.7764| 3.7469| 4.6041( 7.1732 8.6103
5 0.2672 0.5594 0.9195 14758 | 2.0150| 2.5706| 3.3649| 4.0321| 5.8934  6.8688
6 0.2648 0.5534 0.9057 1.4398 | 1.9432| 2.4469| 3.1427| 3.7074| 5.2076  5.9588
7 0.2632 0.5491 0.8960 1.4149 | 1.8946| 2.3646| 2.9980| 3.4995( 4.7853 5.4079
8 0.2619 0.5459 0.8889 1.3968 | 1.8595| 2.3060| 2.8965| 3.3554| 4.5008  5.0413
9 0.2610 0.5435 0.8834 13830 | 1.8331| 2.2622| 2.8214| 3.2498| 4.2968  4.7809
10 0.2602 0.5415 0.8791 13722 | 1.8125] 2.2281| 2.7638| 3.1693( 4.1437  4.5869
11  0.2596 0.5399 0.8755 1.3634 | 1.7959| 2.2010| 2.7181| 3.1058( 4.0247  4.4370
12 0.2590 0.5386 0.8726  1.3562 | 1.7823] 2.1788| 2.6810| 3.0545( 3.9296  4.3178
13 0258 0.5375 0.8702 1.3502 | 1.7709] 2.1604| 2.6503| 3.0123( 3.8520 4.2208
14 02582 05366 0.8681 1.3450 | 1.7613\ 2.1448] 2.6245| 29768 3.7874  4.1405
15 0.2579 05357 0.8662 1.3406 1\ 1.753Y _L]j_lfl) 26025 \_2.9467/ 3.7328 4.0728

90% Cl 95% CI 99% CI



Remark. We can also use R instead of ¢ tables. Be familiar with the commands as you will be
expected to interpret the results on exams.

e The command pt(t, df) will return P(T < t) where T' ~ tq¢. We must specify df; there is

no default.
o e.g., pt(1.812461, 10) = 0.95: P(T < 1.812461) = 0.95 given T ~ t1¢.

e The command qt(q, df) returns a value ¢t such that P(T' < t) = g where T ~ t4;. We must
specify df; there is no default.

° e.g., qt(0.95, 10) = 1.81264: P(T < 1.81264) = 0.95 given T" ~ t1¢.

e To remember what they do, pt tells us a probability and gt tells us a quantile (value).

7.2 Confidence Interval for Gaussian Mean (0 Unknown)
Let's get back to constructing confidence intervals for parameters of a Gaussian distribution.

Prop. 7.2.1 Suppose Y1,Ys,...,Y, is a random sample from a G(u, o) distribution where
neither p or o is assumed known. Then

Y—uN
NG

Observe the LHS contains unknown parameters (namely i) but its distribution is completely

o1

known, so it is a pivotal quantity. We can leverage this to construct confidence intervals for p

without having to assume o is known!

Thm. 7.2.2 Let a € R satisfy P(—a < T < a) = p. The interval

_ s s
—a—, Yy ta——
<y Vi’ ﬁ)
is a 100p% confidence interval for p.

Proof. The t distribution is symmetric about zero, so we want to look for a value a such that
P(—a < T < a) = p, or equivalently,

1
P(T<a)=—F

where T' ~ t,, 1. Since we are using the pivotal quantity

Y—MN
NG

we set T' to this and rearrange the expression:

tn—la

Y —pu — S — S
Pl —-a< <a|=p = P|Y-a—<u<Y +a— ) =p.
S/\/n
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Now, vy is a realization for Y, so

_ s s
_ a_’ T + a——
(y v’ ﬁ)
as a 100p% confidence interval for p. [J

Remark. Tt is useful to compare this with the case where ¢ is known. For a G(u, o),

e when o is known, a 100p% confidence interval is

where P(Z <az) = (1+p)/2 and Z ~ G(0,1).
e when o is unknown, a 100p% confidence interval is

4D
where P(T < ar)=(1+p)/2and T ~ t,,_1.

Thus, if o = s, then the only difference comes from az vs. ar.

7.3 Quantifying Uncertainty

We now explore the relationship between individual parameters and the width of a confidence

interval. Consider the 95% confidence interval

_ s s
— a_, T + a——
(y NN )
e [f the confidence level increases to 99%, the CI becomes wider, because wider CI means

more likely for the CI to contain the true value.

o [f the sample size increases, then the CI becomes narrower, because we have obtained more

information, so our estimation is more accurate.

e [f the sample standard deviation decreases, then the new CI becomes narrower, because data

points are less likely to be far away from the mean.

e [f the sample mean changes, the new CI has the same width, because the true mean does
not affect the width of a CI.

7.4 Sample Size Calculation Revisited

So far, we've seen two confidence intervals for p, depending on whether or not we know o

Qj:ai or @iai,

v v
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where a is found from either the Z or ¢,,_; distribution. The width, therefore, is

2a,g or 2ai
n NG
There is, however, a small problem: if we don't know o, we need to use the second formula, but
then s depends on our sample, so we can't know it ahead of time for a sample size calculation!
Moreover, there is no "worst-case" value for s, because the larger it is, the wider our confidence
interval will be! Thus, for sample size calculation, we will assume o is known and use the formula

- 1.960 2
Yy+1.96— — n = .
R ( ‘ )

In practice, since we usually don't know o, we would choose n larger than (1.960/£).

7.5 Confidence Interval for Gaussian Variance & Standard Deviation
A confidence interval for o can help inform future sample size calculations.

Recall the point estimator for o?:

It can be shown that

(n—1)5?
Q —= T ~ anl

Observe the random variable @) is a function of data Y; and the unknown parameter o whose
distribution is completely known. Thus, we got another a pivotal quantity which can help us
construct confidence intervals for o and o2.

Prop. 7.5.1 To construct a 100p% confidence interval for 0> when p is unknown,

1. Determine a and b such that P(a < W < b) where W ~ X?z—l' Since the chi-squared
distribution is not symmetric, we find @ and b such that

a. P(W <a)=(1-p)/2, and
b. P(W > b) = (1 — p)/2, or equivalently, P(W < b) = (1 + p)/2.

2. Re-express the inequality into an interval form. Since P(a < W < b) = p with W ~ X%—l
and

(n—1)82 2
0_2 Xn_]_)

we have
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P(ttéﬂéb);n — P(M<a2<w>:p

o b - - a
3. It follows that a 100p% confidence interval for o is

<(n— 1)s? (n— 1)32) .

b ’ a

Remark. (Important) This confidence interval is not symmetric about s2, the point estimator of
o?. This means it is not the narrowest possible interval for a given confidence interval!

Cor. 7.5.2 A 100p% confidence interval for o is

(n—1)s2 [(n—1)s?
b ’ a '
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