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Notation. We will use the following notations throughout this chapter. 

: random variables representing potential observations in a random sample.

: actual (observed) data points, realization of random variables .

: mean of the Gaussian distribution, parameter of interest.

: standard deviation of the Gaussian distribution, parameter of interest.

af://n17


1 Statistical Models and Estimation  

In choosing a model for data collected in an empirical study in the analysis of PPDAC, we 

actually need to consider two probability models:

1. Attribute Model: A model for variation in the population or process being studied which 

includes the attributes which are to be estimated.

2. Sampling Model: A model which takes into account how the data were collected and 

which is constructed in conjunction with the model in (1).

We use these two models to estimate the unknown attributes in the population or process based 

on the observed data and to determine the uncertainty in these estimates.

To check the adequacy of a chosen model, we could (1) compare a relative frequency histogram of 

observed data with the p.d.f. of the assumed model, (2) compare observed frequencies with 

expected frequencies calculated using the assumed model, (3) compare the empirical c.d.f. with 

the c.d.f. of assumed model, or (4) examine a Gaussian Q-Q plot.
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2 Estimators and Sampling Distributions  

We've seen (in Chapter 2) how to choose a model, estimate parameters, and check model fit. We 

are now going to investigate properties of the estimates, or more precisely, the process by which 

we obtain estimates. For this, we need to think about the idea of repeated sampling.

2.1 Repeated Sampling  

Let  be the maximum likelihood estimate of , the population mean of a Gaussian 

distribution. Note that  depends on the specific sample we take and would vary as we take 

samples repeatedly.

Assuming taking samples is a random event, we can think of our estimate for sample mean  

as a realization of a random variable . Our sample mean is therefore a probability 

distribution that itself has a mean and a variance. We now provide a formal statement.

Prop. 2.1.1  Assume   for  are independent and let   be data 

observed. We could estimate the unknown population mean   using the maximum likelihood 

estimate . Moreover, there is a random variable associated with sample mean  :

We will introduce point estimate and point estimator and generalize the relationship between  

and  in the next section.

2.2 Point Estimate and Point Estimator  

Recall the following definition from Chapter 2.

Def. 2.2.1  A point estimate of  is a function  of the observed data used to 

estimate the unknown parameter .
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Since estimates vary as we take repeated samples, we can associate with the point estimate 

 a random variable . For example, the random variable 

associated with  is .

Def. 2.2.2  A point estimator is a random variable which is a function  of the 

random variables .

We can view an estimator as a rule that tells us how to process the data to obtain an estimate of 

an unknown parameter , i.e., the numerical value  is the value obtained using 

the rule  for a particular observed dataset . 

Notation.  We use  to denote the point estimate and  to denote the point estimator for .

2.3 Sampling Distribution of an Estimator  

Since  is a random variable, it has a distribution. In other words, if  is a discrete random 

variable, then it has a probability function; if  is a continuous random variable, then it has a 

probability density function. 

Def. 2.3.1  The distribution of an estimator  is called its sampling distribution.

Knowing the sampling distribution of our estimator, we can then answer questions such as What 

is the probability that I will draw a sample that will result in a point estimate  that is within 1 

unit of the true mean ?

We restate the second part Prop 2.1.1 in terms of sampling distribution of an estimator:

Prop. 2.3.2  In general, if  for , then the sampling distribution of our 

estimator  is given by

Remark.  The probability we draw a sample that yields an estimate  that is close to 

... increases as  increases,

... decrease as  increases,

... does not change with .

Since the probability does not depend on , we can compute it exactly if we know  and !

2.4 Gaussian Data with Known Standard Deviation  

Prop. 2.4.1  In general, if we have , using estimator , we can transform the 

problem into a standard normal. That is, 
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where .

Ex. 2.4.2  For ,  and , . 

That is, with a sample size of 49, we would expect our sample estimate  to be within 0.1 unit of 

the true   of the time.

To summarize, when sampling from a Gaussian distribution to estimate population mean , we 

can make use of the result that the sampling distribution of our estimator  follows a 

Gaussian distribution

The probability we draw a sample that results in a point estimate  that is within a given 

distance  of the true value  depends on  and  but not . Thus, if we know or are prepared 

to specify , we can compute these probabilities directly.

2.5 Non-Gaussian Data  

Recall the Central Limit Theorem from Stat 230:

Thm. 2.5.1 (CLT)  Let  be independent and identically distributed (i.i.d.) random 

variables with  and  for . Define

Then for sufficiently large ,  has an approximately  distribution.

In other words, if we have random variables that are independent and identically distributed, 

then given our sample size is large enough, we can take observations from any probability 

distribution and transform then into a standard normal distribution!

Ex. 2.5.2  For binomial data with  trials and  successes, the estimator  has  

and . By the Normal approximation to the Binomial, we have

We could use this, for example, to determine how large  should be to ensure that 

 for all .
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2.6 Standard Deviation of the Sampling Distribution  

The following results should be quite intuitive.

Prop. 2.6.1  We have seen that .

1. A larger sample size  will decrease  and more of our sample estimates will be close 

to the true value .

2. A small population standard deviation  will decrease  and more of our sample 

estimates will be close to the true value .

3. The shape of our distribution will affect how many of our sample estimates will be close to 

the true value , but predicting how is trickier.

4. The true mean  does not affect how many of our sample estimates are close to the true . 
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3 Interval Estimation  

Suppose that for a certain population we are interested in estimating  using point estimate 

 given observed data . To quantify the uncertainty in our estimate, we 

try to give an interval of values for  which are "supported" by the data. Intuitively, if we could 

see the sampling distribution, we could tell which values are more/less plausible for .  

3.1 Likelihood Intervals  

Recall the following definition from Chapter 2. 

Def. 3.1.1  The relative likelihood function is defined as

where  for all  and .

Given this definition, we can do things like obtaining an interval of value for the unknown 

parameter which are "reasonable" given the observed data.

Def 3.1.2  A  likelihood interval for the parameter  is the set . 

The intuition is that values of  that result in large values of  (and hence , because the 

denominator for  is a constant) are more plausible. For example, if , then the 

data are half as likely if  than if , the MLE of . We can think of a  likelihood 

interval as being the values of  for which the data are at worst half as likely as they would be if 

.

Remark.  The set  is not necessarily an interval unless  is unimodal, but this is 

the case for all models that we will consider in this course.

Prop 3.1.3  We now provide some general guidelines for interpreting a likelihood interval.

Values of  inside a  likelihood interval are plausible given the observed data.

Values of  inside a  likelihood interval are very plausible given the observed data.

Values of  outside a  likelihood are implausible given the observed data.

Values of  outside a  likelihood interval are very implausible given the observed data.
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As the sample size  increases, the graph of the relative likelihood function  becomes more 

"concentrated" around . Consequently, likelihood intervals becomes narrower as the sample size 

increases. Both these statements reflect the fact that larger data sets contain more information 

about the unknown parameter .

3.2 Log Relative Likelihood Function  

Recall the following definition from Chapter 2. 

Def. 3.2.1  The log relative likelihood function is given by  for 

 where . 

Remark.  

1. The maximum value of  is . (e.g., the right diagram below.)

2. If  is unimodal, then  is unimodal, and both graphs attain their maximum value at 

the MLE of . 

3. However,  and  differ in shape:  looks bell-shaped while  resembles a 

quadratic function of .

Prop. 3.2.2  Since , we can plot  and draw a line at 

 to obtain an  likelihood interval for .
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4 Confidence Intervals and Pivotal Quantities  

4.1 Interval Estimator  

Recall that we can view a sample (point) estimator as a realization of a random variable called a 

(point) estimator, because point estimates will vary depending on the sample we take. Now, 

likelihood intervals, which are interval estimates of an unknown parameter , also varies 

depending on the sample. This motivates the concept of an "interval estimator".

Def. 4.1.1  An interval estimator   is a function (a rule) which can be used to 

construct an interval of plausible values for the unknown parameter .

Just like point estimators, we can view an interval estimator as a rule that tells us how to process 

the data to obtain an interval estimate of an unknown parameter , i.e., the interval estimate 

 is the value obtained using the rule for a particular observed dataset . 

Remark.  Both  and  are random variables;  are their realizations.

4.2 Coverage Probability  

To determine how "good" one interval estimator is, we look at the interval's coverage probability. 

Intuitively, an interval is good if it has a high probability containing the true (but known) .

Def. 4.2.1  The coverage probability for the interval estimator  is

i.e., the probability that the random interval  contains the true  value of .

Remark.  The interval  above is a random interval as it takes on specific values 

depending on the sample we draw.

4.3 Confidence Interval  

We now introduce one of the most critical concept of Stat 231. To estimate , we want to 

construct an interval with high coverage probability, e.g., , , or . We call these 

intervals "confidence intervals".

Def. 4.3.1  A  confidence interval for a parameter  is an interval estimate  s.t.

The value  is called the confidence coefficient for the confidence interval.

Warning.  Since  is an unknown CONSTANT associated with the population, it is NOT a 

random variable and therefore does NOT have a distribution. For an observed set of data , both 

 and  are all numerical values. Thus, it is NOT VALID to say that the probability that 
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 lies in the interval  is equal to  since  is a constant. This is the most common 

mistake when interpreting a confidence interval.

Remark.  Approach Def. 4.3.1 with extreme caution!

Suppose . If we draw repeated independent random samples from the same 

population and each time we construct the interval  based on the observed data 

, then this equation tells us that we should expect  of these constructed intervals to 

contain the true but unknown value of  (and the rest  will not contain ).

The correct way to use a confidence interval in a sentence: we are  confident that the 

true value of  is contained in the interval we have constructed.

Ex. 4.3.2 (Gaussian CI)  Suppose we want to estimate  for a Gaussian distribution. Assume 

. (We will find out what to do when  is unknown later. Hint: t distribution.) If 

 is a random sample from a  distribution, then  

We know that if we draw an observation from this sample, there is a  chance it will lie inside 

In other words,  

Rearranging this equation, we have 

Now, if we draw a sample and observe sample mean , then  

is a  confidence interval for the unknown mean .  

Remark.  Observe that the width of the confidence interval decreases as  increases. Intuitively, 

as our sample size increases, we have more certainty about our estimate, which is reflected in a 

narrower confidence interval.

Remark.  We can plug in actual data to get numeric values. For example, if we define  and 

observe  , then a  confidence interval for  is



Again, we CANNOT say  because  is constant; we can only say that 

we are  confident that the interval  contains the true but unknown value of .

We summarize this example into the following proposition.

Prop. 4.3.3 (Gaussian CI)  If  is a random sample from a  distribution 

with known standard deviation but unknown mean, then

and

is a  confidence interval for . We say that we are  confident that this interval contains 

the true but unknown value of .

4.4 Pivotal Quantity for Confidence Construction  

This following definition implies that probability statements such as  and  

depends on  and  but not on  or any other unknown information.

Def. 4.4.1  A pivotal quantity  is a function of the data  and the unknown 

parameter  such that the distribution of the random variable  is complete known. 

Remark.  We say this is completely known because there are no unknown parameters in . 

The following example shows how to construct a confidence interval using a pivotal quantity.

Ex. 4.4.2 (CI Construction using PQ)  Consider Ex. 4.3.2 again. Suppose  is 

a random sample from  distribution where  is unknown but  is 

unknown. The maximum likelihood estimator for  is  with sampling distribution

Observe  defined below has a completely known distribution, so   is a pivotal quantity.
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We can use pivotal quantities to construct confidence intervals. Take  and  , we have 

Rearranging the inequality inside the brackets,

Thus, if we take a sample and observe a sample mean of , then a  CI for  based on our 

sample will be

We summarize the example into the following proposition.

Prop. 4.4.3 (CI Construction Using PQ)  In general, we can use a pivotal quantity to 

construct a confidence interval as follows:

1. Determine numbers  and  such that .

2. Re-express the inequality  in the form , then

so the coverage probability of interval  is equal to   as desired.

3. For observed data , the interval  is a  CI for . 

4.5 Pivotal Quantity for Confidence Interval (Gaussian)  

We can simplify Prop. 4.4.3 when the distribution assumed is Gaussian since it's symmetric.

Ex. 4.5.1 (CI Construction Using PQ; Gaussian)  Suppose we want to construct a  

confidence interval for  of a Gaussian distribution with known .   

First, we want to find values  and  such that    
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Since  is a pivotal quantity, we can find  and  for any probability  (  in this case). There 

is an infinite number of values of  and  satisfying the equation, e.g., . Since the 

normal distribution is symmetric, we choose  an  which gives the narrowest 

confidence interval. Our confidence interval (for this example) is therefore symmetric about the 

point estimate , so we want to find    

By normal tables,  so .   

Next, using  from step 1, we solve the inequality for :   

Therefore, a  confidence interval for  based on the observed data  is   

We summarize the example into the following proposition.

Prop. 4.5.2 (CI Construction Using PQ; Gaussian)  We can construct a  confidence 

interval for  for Gaussian data where  is known as follows:

1. User normal tables to find  such that  where , or 

equivalently, .

2. A  confidence interval for  is then .

Remark.  Some useful values from normal tables:

: .

: .

: .

Prop. 4.5.3  For a Gaussian distribution, a   confidence interval for  is of the form

Such an interval is often called a "two-sided, equal-tailed" confidence interval.

Remark.  We will encounter other examples of two-sided, equal-tailed confidence intervals in this 

course. Also, not all confidence intervals are symmetric.

Remark.  We can also use R instead of normal tables. Be familiar with the commands as you will 

be expected to interpret the results on exams.



The command pnorm(a, mu, sigma) will return  where . If we don't 

specify  and , R assumes  and . 

e.g., pnorm(3.5, 1, 2) = 0.8943502:  given .

e.g., pnorm(1.644854) = 0.95:  given .

The command qnorm(q, mu, sigma) returns a value  such that  where 

. If we don't specify  and , R assumes  and . 

e.g., qnorm(0.9, 1, 2) = 3.563103:  given .

e.g., qnorm(0.95) = 1.644854:  given . 

To remember what they do, pnorm tells us a probability and qnorm tells us a quantile 

(actual value).

4.6 Approximate Pivotal Quantities and Confidence Intervals  

Note that for most statistical models, it is not possible to find exact pivotal quantities or 

confidence intervals for . 

Def. 4.6.1  An asymptotic or approximate pivotal quantities is a random variable

such that as , the distribution of  ceases to depend on  or other unknown information.

Ex. 4.6.2 (Approx. CI for Binomial)  Recall that for a binomial experiment,  

and the point estimator of  is

For large , the approximate sampling distribution of  is 

by the Central Limit Theorem. It can also be shown for large  that

Note the  in the denominator, in contrast to the previous expression.

Now  is an approximate pivotal quantity which can be used to construct approximate 

confidence intervals for . To obtain a  confidence interval, 
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So an approximate  confidence interval for  is 

Note the relationship between a point estimate  and  and a point estimator  and .

4.7 Sample Size Calculation  

We have seen that confidence intervals for a parameter get narrower as the sample size  

increases. When designing a study, researchers need to choose a sample size on the basis of:

How narrow they would like a confidence interval to be, and

How much they can afford to spend (time and money).

To do this, we carry out a sample size calculation.

Ex. 4.7.1 (Sample Size Calculation)  Suppose we plan to select  units at random to 

estimate . The approximate  confidence interval for  is given by

which has width 

We might specific that we want a  confidence interval of width , i.e., 

A criterion that's widely used to choose the sample size  large enough so that the approximate 

 confidence interval is no wider than , i.e., choose  such that 
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Because  is a proportion, we know , so RHS of 

takes its largest value when . We can therefore take a worst-case approach by taking 

 that if  then the approximate  confidence interval for  will have width less than 

 for all values of .

Remark.  "This poll is accurate to within  percentage points  times out of ." This really 

means that the estimate given is the center of an approximate  confidence interval  for 

which . 

Remark.  As an exercise, show that for  you only need  while for  you 

need  Also think how do these results change if you want a  (or ) confidence 

interval?
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5 Chi-Squared Distribution  

Remark.  We only cover key properties for chi-squared distribution in this section. More algebraic 

details can be found in the course note.

5.1 Properties of Chi-Squared Distribution  

Note. 5.1.1  The chi-squared distribution is parameterized by its degrees of freedom, often 

denoted . We would write  or . The value of  affects the shape of the resulting 

probability density function.

Prop. 5.1.2  If  are independent random variables satisfying  , then

In other words, the sum of several chi-squared random variables also follows a chi-squared 

distribution, with degrees of freedom equal to the sum of the degrees of freedom of the 

component distributions.

Ex. 5.1.3   .

Prop 5.1.4  Chi-squared is related to the standard normal:

If , then . In other words, the square of a standard normal has a 

chi-squared distribution with  degree of freedom. 

If , then . In other words, the sum of  squared 

standard normal distributions is chi-squared with  degrees of freedom.

Ex. 5.1.5  If , then

 where .

 where .

Make sure you understand how this is derived! Draw diagrams if necessary.
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Prop. 5.1.6  If , then . In other words, a chi-squared distribution with  

degrees of freedom is the same as an exponential distribution with parameter . 

Ex. 5.1.7  For example, . 

This one involves some dirty algebra. If you write out the c.d.f. of , you will see that it is the 

same as the c.d.f. for exponential( ). Details omitted.

We now show how to get numeric values in a chi-squared distribution. By Prop. 7.5.1, a  

confidence interval for  is

where  and  are chosen such that  and .

Some useful numbers:

.

.

.

Remark.  We can also use R instead of probability tables. Be familiar with the commands as you 

will be expected to interpret the results on exams.

The command pchisq(w, df) will return  where . We must specify ; 

there is no default.



e.g., pchisq(0.4844186, 4) = 0.025:  given .

The command qchisq(q, df) returns a value  such that  where . 

We must specify ; there is no default.

e.g., qchisq(0.025, 4) = 0.4844186:  given . 

To remember what they do, pchisq tells us a probability and qchisq tells us a quantile 

(value).
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6 Likelihood Intervals and Confidence Intervals  

Recall a likelihood interval gives values of  such that  and a confidence interval gives 

values of  such that . Both of them give us plausible values of  but via 

different methods. We now look at how they relate.

6.1 Likelihood Ratio Statistic  

We show that likelihood intervals are also confidence intervals. Recall the relative likelihood 

function is defined as

where  for all  and .

Def. 6.1.1  The random variable

where  is the maximum likelihood estimator is called the likelihood ratio statistic.

Prop. 6.1.2  The distribution of  converges to a  distribution as .

Thus, we can use  as an approximate pivotal quantity to obtain an approximate confidence 

interval for . 

6.2 Likelihood Interval vs. Confidence Interval  

Thm. 6.2.1  A  likelihood interval is an approximate  confidence interval where 

 and . 

Proof.  A  likelihood interval is defined by  which can be rewritten as 

By Prop. 6.1.2, the confidence coefficient for this interval can be approximated by
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Ex. 6.2.2  We show that a  likelihood interval is an approximate  confidence interval.

Thm. 6.2.3  If  is a value such that  where , then the likelihood 

interval  is an approximate  confidence interval.

Proof.  The confidence coefficient corresponding to the interval  is

Ex. 6.2.4  We show that a  likelihood interval for  is an  confidence interval for .

6.3 Approximate Confidence Intervals for Binomial  

The intervals are only approximately equivalent and can be numerically quite different. For 

example, for data  from a binomial distribution with , we can obtain an approximate  

confidence interval using two methods:

A  likelihood interval.

 where .

In general, if  is close to  or  is large, then the likelihood interval will be fairly accurate 

about  and there will be little difference in the two approximate confidence intervals. If  is 

close to  or  and  is not large, however, the likelihood interval will not be symmetric about  

and the two approximate confidence intervals will not be similar. By inspection, you should be 

able to tell which interval is better supported by the data.
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7 Confidence Intervals for Parameters in  

Suppose  is a random sample from a  distribution where  and  are both 

unknown. We use the following estimators for  and :

Note that we use sample variance as the estimator for  instead of  

because  is unbiased (no overestimate or underestimate), i.e., .

Recall from section 4, if we know , we could use the pivotal quantity

and derive a  confidence interval for  as 

where  and . 

However,  is unknown, so we cannot use this result. Luckily, we can simply replace  with  and 

obtain the random variable which turns out to also be a pivotal quantity; it has a new 

distribution: student's  distribution.

7.1 Student's  Distribution  

Note. 7.1.1  The student's  distribution (or simply  distribution) has two parameters,  and . 

We call  the degree of freedom of the distribution.

Notation.  We write  to indicate that the random variable  has a  distribution with  

degrees of freedom.
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Comparing the p.d.f. for  distribution with that for , we see that:

Both are unimodal and symmetric about .

For small , the  distribution has larger tails (i.e., higher values for extreme values).

For large , the  distribution is very similar to .

As a remark, the  distribution arises as a result of the following proposition.

Prop. 7.1.2  Suppose  and  independently. Let

Then  has a student's  distribution with  degrees of freedom.

Remark.  We can look up  tables given  and  (degree of freedom):



Remark.  We can also use R instead of  tables. Be familiar with the commands as you will be 

expected to interpret the results on exams.

The command pt(t, df) will return  where . We must specify ; there is 

no default.

e.g., pt(1.812461, 10) = 0.95:  given .

The command qt(q, df) returns a value  such that  where . We must 

specify ; there is no default.

e.g., qt(0.95, 10) = 1.81264:  given . 

To remember what they do, pt tells us a probability and qt tells us a quantile (value).

7.2 Confidence Interval for Gaussian Mean (  Unknown)  

Let's get back to constructing confidence intervals for parameters of a Gaussian distribution.

Prop. 7.2.1  Suppose  is a random sample from a  distribution where 

neither  or  is assumed known. Then

Observe the LHS contains unknown parameters (namely ) but its distribution is completely 

known, so it is a pivotal quantity. We can leverage this to construct confidence intervals for  

without having to assume  is known!

Thm. 7.2.2  Let  satisfy . The interval

is a  confidence interval for .

Proof.  The  distribution is symmetric about zero, so we want to look for a value  such that 

, or equivalently, 

where . Since we are using the pivotal quantity

we set  to this and rearrange the expression: 
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Now,  is a realization for , so 

as a  confidence interval for . 

Remark.  It is useful to compare this with the case where  is known. For a , 

when  is known, a  confidence interval is 

where  and . 

when  is unknown, a  confidence interval is 

where  and . 

Thus, if , then the only difference comes from  vs. . 

7.3 Quantifying Uncertainty  

We now explore the relationship between individual parameters and the width of  a confidence 

interval. Consider the  confidence interval 

If the confidence level increases to , the CI becomes wider, because wider CI means 

more likely for the CI to contain the true value.

If the sample size increases, then the CI becomes narrower, because we have obtained more 

information, so our estimation is more accurate.

If the sample standard deviation decreases, then the new CI becomes narrower, because data 

points are less likely to be far away from the mean.

If the sample mean changes, the new CI has the same width, because the true mean does 

not affect the width of a CI.

7.4 Sample Size Calculation Revisited  

So far, we've seen two confidence intervals for , depending on whether or not we know :
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where  is found from either the  or  distribution. The width, therefore, is 

There is, however, a small problem: if we don't know , we need to use the second formula, but 

then  depends on our sample, so we can't know it ahead of time for a sample size calculation! 

Moreover, there is no "worst-case" value for , because the larger it is, the wider our confidence 

interval will be! Thus, for sample size calculation, we will assume  is known and use the formula

In practice, since we usually don't know , we would choose  larger than .

7.5 Confidence Interval for Gaussian Variance & Standard Deviation  

A confidence interval for  can help inform future sample size calculations. 

Recall the point estimator for :

It can be shown that

Observe the random variable  is a function of data  and the unknown parameter  whose 

distribution is completely known. Thus, we got another a pivotal quantity which can help us 

construct confidence intervals for  and .

Prop. 7.5.1  To construct a  confidence interval for  when  is unknown,

1. Determine  and  such that  where . Since the chi-squared 

distribution is not symmetric, we find  and  such that

a. , and

b. , or equivalently, .

2. Re-express the inequality into an interval form. Since  with  

and 

we have 
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3. It follows that a  confidence interval for  is

Remark. (Important)  This confidence interval is not symmetric about , the point estimator of 

. This means it is not the narrowest possible interval for a given confidence interval!

Cor. 7.5.2  A  confidence interval for  is
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