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1 Hypothesis Testing  

1.1 Null Hypotheses and Test Statistics  

Statistical tests of hypotheses begin by specifying a single "default" hypothesis, called the null 

hypothesis, and then check whether the data collected is unlikely under this hypothesis. There is 

also an alternative hypothesis, which is the alternative to the null hypothesis. 

Notation.  The null and alternative hypothesis are denoted by  and  (or ), respectively.

Ex. 1.1.1  Suppose we toss a coin  times to see if the coin is biased. Let  be the number of 

heads in  trials. We assume  has a binomial distribution with  and let  be the 

probability of a head. If the coin is not biased, ; if it is biased, then .

The null hypothesis for this problem is "the coin is not biased", i.e., .

The alternative hypothesis for this problem is "the coin is biased", i.e., .

Intuitively, values  supports  whereas  close to  or  provide evidence 

against . To measure the strength of the evidence against , we use a test statistic.

Def. 1.1.2  A test statistic or discrepancy measure is a function of the data  which 

measures the degree of "agreement" between the data  and the null hypothesis .

Notation. Once we observed , the observed value of  is denoted .

Remark.   is a function of , so it is a random variable. We usually define  so that  

represents the best possible agreement between the data and , and large values of  indicate 

poor agreement.

1.2 p-Values  

Computing  only tells us the probability of ; it does not tell us how much 

evidence we have for or against the . Instead, we care about the probability of observing a 

value of  greater than or equal to the observed if  were true.

Ex. 1.2.1  Let . Suppose  tosses come up heads, so . The probability 

 represents the probability of observing   heads or  heads, not the validity of . 

Instead, we want to know what's the probability of  or larger happening given 

 is true. Therefore, we want to know  where 

. We can calculate this as
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How do we interpret this? Suppose we take a large number of coins that are entirely fair and toss 

each one  times. The result above tells us that about  of those experiments would also 

observe a value of  greater than equal to the  that we saw in our case! This 

doesn't prove that our coin is not biased, but it does suggest that there is little evidence base on 

the observed data to support the alternative hypothesis. 

The probability  above is called the p-value of the test of hypothesis.

Def. 1.2.2  The -value of the test hypothesis  using test statistic  is .

In other words, the -value is the probability of observing a value of the test statistic greater 

than or equal to the observed value of the test statistic assuming  is true. 

Remark. 

1. We do not want  because we want to know the probability that, if  were 

true, we'd see something at least as extreme/unusual as we actually observed.

2. A small -value tells us that if  is true, it would be unlikely to have observed data at 

least as surprising as the data we actually observed. Thus, small -values provide evidence 

against .

1.3 Statistical Tests of Hypotheses  

Algorithm. 1.3.1  Here is a step-by-step guide through our hypothesis test:

1. Assume that  will be tested using data .

2. Adopt a test statistic , for which large values of  are less consistent with .

3. Let  be the corresponding observed value of . 

4. Calculate -value: .

5. Draw a conclusion based on the -value.

Remark.  You will learn how to pick an appropriate test statistic and carry out the -value 

calculation in Section 2 and 3. To draw a conclusion based on the -value, see Section 1.4.

1.4 Interpreting the -Value  

If , the observed value of , is large, and consequently the -value  is small, then 

one of the following two statements is true:

1.  is true but by chance we have observed an outcome that does not happen very often 

when  is true. 

2.  is false.
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The problem is, there is no specific threshold for -values where if the -value is smaller then we 

can conclude  is false, and if the -value is larger than we can conclude  is true. -values 

should only be interpreted in terms of their fundamental definition.

We do, nonetheless, provide interpretation guidelines to be used within the course.

Note. 1.4.1 (Interpreting -Values)  In general, values that are less than  are small 

which indicate that the observed data are providing strong evidence against ; values that are 

greater than  are large which indicate that we have not observed anything unusual when  is 

true, so there is no evidence based on the observed data to suggest that  is false.

Remark.  We do NOT use terms like "reject" or "fail to reject" or say something is "statistically 

significant" in Stat 231. Instead, we focus on the interpretation of -values in terms of the 

probabilities they represent. 

Ex. 1.4.2  Consider an experiment with  coin tosses. Again, let  and define 

the test statistic . Suppose we observed  heads, so . By 

definition, the -value is  assuming , i.e.,

Instead of computing , we could use the Gaussian approximation of binomial. 

Recall for  , if  is large, by CLT,

Thus,

Using the chart above, we see there's evidence against  based on the observed data. 

Remark.  To test other , we just have to define a suitable discrepancy measure , then 

compute  for our sample.



Note. 1.4.3 ( -Hacking)  It is common in the scientific literature to see  used as the 

determinant of whether a hypothesis is or isn't rejected. However, this can lead to what's known 

as -hacking, or data dredging: repeating experiments (or being selective with one's results) to 

falsely engineer a "significant" result. For example, I could perform  experiments, where in each 

experiment I tossed the coin  times. Even if  is true, I'd still expect one of those  

experiments to result in a -value below . If I just present the  experiment where I get a 

significant -value and don't mention the other , my result would be considered surprising. 

This is considered as -hacking. 
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2 Hypothesis Testing for Gaussian Parameters  

Suppose that  models a variate  in some population or process. A random sample  

 is selected and we want to test hypotheses concerning one of the two parameters  

and . Recall the following estimators of  and  from previous sections:

2.1 Testing Mean Hypotheses with Unknown Standard Deviation  

Recall the pivotal quantity

which was used to construct confidence intervals for . We will use this to construct a test of 

hypothesis for  when  is unknown. 

Suppose we wish to test the hypothesis , where , against the alternative 

hypothesis that . Values of  which are either larger than  or smaller than  provide 

evidence against . Thus, we use the test statistic

We obtain the -value using the fact that if  is true, then

Prop. 2.1.1  Let  be the observed value of  in a sample with mean  and 

standard deviation , then

Remark.  Since values of  which are larger or smaller than  provide evidence against the null 

hypothesis, this test is called a two-sided test of hypothesis. (See Cor. 2.1.6 for one-sided test of 

hypothesis.)
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Ex. 2.1.2  An inexpensive weight scale is tested by taking 10 weights of a known kg weight. 

Assume , , where th measurement and  represents the mean 

measurement in repeated weights of the kg weight using the scale. Let . Suppose

We can compute our test statistic:

Our -value is thus (  below)

Thus, there is no evidence against  based on the observed data and we conclude there 

is no evidence the scale is under- or over-weighing.

Ex. 2.1.3  Suppose we repeat the experiment with another scale. Let . Suppose

Then

and our -value is (  below)

There is evidence against  and we conclude there is strong evidence the scale is under- 

or over-weighing.

Note. 2.1.4 (Statistical Significance vs. Practical Significance)  Although there is strong 

evidence against  for the second scale, the degree of bias in its measurement is not necessarily 

large enough be of practical concern. For example, a  confidence interval for the mean  is 

given by  (note:  comes from the fact that 

 given ). Thus, the bias in measuring the kg weight is fairly small 

(about  to ) and is not significant in practice.

If the evidence against  is "statistically significant" (for some significance level, say ), the 

size of the -value does NOT imply how "wrong"  is. The -value just tells us how surprised 

we'd be by these data if the null hypothesis were true. A confidence interval, however, does 

indicate the magnitude and direction of the departure from . If strong evidence against  is 

found in a particular direction then this might suggest conducting further experiments to 

investigate this evidence. 

To summarize, do not mix the following:



Statistical significance: if our -value is small (e.g., ), then we have found evidence 

against .

Practical significance: look at the confidence interval and point estimate. If the size of the 

deviation from  is small, we may not consider this of practical significance.

Note. 2.1.5 (Relationship between Hypothesis Testing and Interval Estimation)  

Suppose we test  for  data, then

which is a  confidence interval for ! In other words, the -value for testing  is 

greater than or equal to  if and only if the value  is inside a  confidence interval 

for  (assuming we use the same pivotal quantity). 

More generally, suppose we use the same pivotal quantity to construct a confidence interval for a 

parameter  and a test of the hypothesis . The parameter value  is inside a 

 confidence interval for  iff the -value for testing  is greater than . (Or, if 

, then a  confidence interval for  will not contain  and vice versa.)

Cor. 2.1.6 (One-sided Test of Hypothesis for )  Let  be the observed value of 

 in a sample with mean  and standard deviation , then

2.2 Testing Variance Hypotheses with Unknown Mean  

Recall the pivotal quantity
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which was used to construct confidence intervals for . We will use this to construct tests of 

hypothesis for  when  is unknown. 

Suppose we wish to test the hypothesis , where , against the alternative 

hypothesis that .  If  is true, then

Remark. Previously, we have defined our discrepancy measure so that larger values indicate 

evidence against , while smaller values would suggest the data are consistent with . This is 

because our test statistic is an absolute value

and for an observed value , we compute -value as . We could instead have defined 

and for an observed value , compute -value as  + . The absolute 

value formula works because the -distribution is symmetric, so .

The chi-squared distribution is not symmetric about its mean, which makes the determination of 

"large" and "small" values slightly more challenging.

Prop. 2.2.1  Let  be the observed value of  in a sample with unknown mean and 

standard deviation ,

If , then .

If , then . 

where .

Ex. 2.2.2  Suppose we wish to test the hypothesis  given sample size  and  

sample variance . Then the test statistic is

Plug in  and , we get

Given , ; . 

Since the latter is smaller than , the -value for this case is .
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3 Likelihood Ratio Test Statistic  

When a pivotal quantity exists, it is usually straightforward to construct a test of hypothesis as 

we have seen in Section 2. When a pivotal quantity does not exist, then a general method for 

finding a test statistic with good properties can be based on the likelihood function.

3.1 Motivation  

Recall from Chapter 2, we used likelihood functions to gauge the plausibility of parameter values 

in the light of the observed data. We could based a test of hypothesis on a likelihood value or, in 

comparing the probability of two values, a ratio of the likelihood values.

Suppose there are two estimates  and  for . Having some data  at hand, we could take a 

look at the ratio

If this ratio is much greater than one, then the data support the value  more than .

Now suppose we want to test the plausibility of hypothesized value  against an unspecified 

alternative, which is usually the MLE , so we replace  with . Then the resulting ratio is just 

the value of the relative likelihood function at :

If  is close to one, then  is plausible given the observed data, but if  is very small 

and close to zero, then  is not very plausible and this suggests evidence against . 

Therefore, the corresponding random variable

appears to be a natural statistic for testing . 

3.2 Likelihood Ratio Test Statistic  

To determine -values, we need the sampling distribution of  under . Recall the 

likelihood ratio statistic from Chapter 4:
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which is a one-to-one function of . If  is true, then  has approximately 

 distribution. Note that small values or  correspond to large observed values of  

(because of the negation) and therefore large observed value of  indicates evidence against 

the hypothesis . 

Prop. 3.2.1  To determine the -value,

1. Calculate the observed value of , denoted :

where  is the relative likelihood function evaluated at .

2. We can then approximate the -value as

Ex. 3.2.2 (Likelihood Ratio Test Statistic for Binomial Model)  Let's first derive the 

formula for . Recall the relative likelihood function for the binomial is

The likelihood ratio test statistic for testing  is

where  is the maximum likelihood estimator of . The observed value of  is 

where . If  is close to , then  will be close to  and  will be close to . 

Suppose we are given , , and . Then the likelihood ratio statistic for 

testing  is 



Note that  tells us that  is a plausible value of . 

The approximate -value for testing  is

Based on our guideline above, there is no evidence against  based on the data.

Remark.  More examples can be found in course notes.
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