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1 Simple Linear Regression  

1.1 Least Squares Estimate  

It is conventional to find the fitted line  which minimizes the sum of squares of the 

distances between the observed points and the fitted line. 

Def. 1.1.1  The method of least squares minimizes the sum of the squares of the residuals, the 

difference between an observed value and the fitted value provided by a model. Estimates of  

and , denoted  and , are called the least squares estimate (LSE).

Prop. 1.1.2  The least squares estimate for  and  are

Proof.  We can find  an  which minimizes the squared residuals 

 by solving the simultaneous equations

Substitute  from (1) into (2), we get

Rearrange the equality, we get (1: Cancel  then multiply by ):

and use  to find .  

Cor. 1.1.3  Let  be the sample correlation between  and . Then

Proof.  This follows directly from the definition of sample correlation and Prop. 1.1.2:
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Ex. 1.1.4  Say we want to explore the relationship between Stat 230 and Stat 231 final grades. 

Suppose we determined  and  using calculations in Note 1.1.2. The 

fitted is therefore . For example, if your final grade in Stat 230 was , 

then the least squares estimate of your final grade in Stat 231 is 

.

We will use this example throughout this section.

1.2 Simple Linear Regression  

Ex. 1.2.1  Since not everyone who obtains a score of  in Stat 230 obtains a score of  in 

Stat 231, we want a statistical model that captures the uncertainty. More generally, it should 

model the variability in final grades for each Stat 230 final grade .

Let  be the Stat 231 final grade of a student drawn at random and  denote the Stat 231 

grade of a randomly chosen student who got a  in Stat 230. Assume  where  

represents the mean Stat 231 final grade for students in the study population who obtained a 

final grade of  in Stat 230. We could then use this model along with the observed data for 

students who got a  in Stat 230 to obtain point and interval estimates for the mean . 

Observe there exists a (roughly) linear relationship between Stat 230 and Stat 231 marks, i.e., the 

relationship between  and  doesn't seem to vary much as  changes. Thus, instead of having a 

different model for each "population" (one  for each ), we can take advantage of the 

apparent relationship between  and  and propose a single model for ALL Stat 230 grades.

Let  represent the me mean Stat 231 final grade for students in the study population who 

obtained a final grade of  in Stat 230. We assume this takes a liner form in : . 

For data , , we assume the model  for  

independently and where the  ( ) are assumed to be known constants.

This model is usually referred to as a simple linear regression model. Note we assumed that the 

standard deviation  does not depend on .

Note. 1.2.1 (Interpretation of Parameters)  There are three unknown parameters in a 

simple linear regression model:  . 

The parameter  represents the mean value of the response variate in the study population 

of individuals for whom their explanatory variate takes the value zero.

The parameter  represents the increase in the mean value of the response variate in the 

study population for one unit increase in the value of the explanatory variate.

Recall we assumed   for , so   represents the variability in 

the response variate  in the study population for each value of the explanatory variate .

Remark.  In our example,  represents the increase in the mean Stat 231 final grade in the study 

population for one mark increase in Stat 230 final grade. Be careful with the language here and 

try to avoid words like "change".
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1.3 Likelihood Function for  and  

In Section 1.1, we derived estimates for  and  using differentiation to minimize the squared 

residuals. We could also use maximum likelihood estimates. 

Recall if we observed data from a distribution with p.d.f.  for , then the likelihood 

function  based on the observed data  is 

Since our model is  for  independently where the  (

) are known constants, the likelihood function is

Assume (for now) that  is known and ignoring constants with respect to  and . To maximize 

, we would minimize , but this is exactly the least squares problem! 

Thus, we get the following theorem, which states that the maximum likelihood estimates are 

equivalent to the least squares estimates for simple linear regression models.

Thm. 2.3.1  For the model  for  independently where the 's are 

known constants, the MLE of  and  (often called the regression parameters) are given by

which are also the least squares estimates.

We have see that for a specific ,  gives a point estimate of the mean response for an 

individual with observed explanatory variate . To express uncertainty in this estimate, we want 

to consider both estimators for  and . 

Remark.  We will focus on the following four steps for each unknown parameter :

1. Derive the maximum likelihood point estimator.

2. Find an appropriate pivotal pivotal quantity related to the estimator.

3. Construct confidence intervals using the pivotal quantity from step 2.

4. Test hypotheses related to the parameter of interest using the pivotal quantity from step 2.

1.4 Exploring the Slope  

1.4.1 Estimator: Slope  

From Section 1.3, the point estimate of  is 
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The corresponding estimator is

1.4.2 Pivotal Quantity: Slope  

Since this is a linear combination of Gaussian random variables , by CLT, if  

for  independently where the 's are known constants, then the least squares 

estimator of  has distribution

Since  is usually unknown, we estimate it using the mean squared error

Note that  is not the MLE of , but we use it to estimate  because  where

It can also be shown that . Recall if  and  independently, 

then . We can thus derive the following pivotal quantity to construct confidence 

intervals and test hypothesis for :

Warning.  Note we have  degrees of freedom here because the two unknowns  and  

determine the MLE of  and . Do not confuse this with the earlier chi-squared examples with 

 degrees of freedom!

1.4.3 Confidence Interval: Slope  

Using the pivotal quantity above, we can find  such that  for , so

We can rearrange this to help us find a  confidence interval for : 
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Hence, a  confidence interval for  is given by

where  and .

1.4.4 Testing of Hypothesis: Slope  

Define the test statistic for  using the pivotal quantity above:

We know if  is true, then . To test , the -value is

Remark.  There are a few interesting hypotheses.

1. : "hypothesis of no linear relationship between the variates  and ". 

2. : "hypothesis of perfect linear relationship between the variates  and ". 

1.5 Exploring the Mean Response  

1.5.1 Estimator: Mean Response  

Recall the point estimate for  is

The corresponding estimator is 

1.5.2 Pivotal Quantity: Mean Response  

Let  for . It can be shown that:
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where  and . Equivalently, 

Since we don't know , we use

to construct confidence intervals for .

1.5.3 Confidence Interval: Mean Response  

A -confidence interval for , i.e., the mean response at  is 

where  and .  

1.5.4 Confidence Interval: Intercept  

Since , a  confidence interval for  is given by

Note if  is large in magnitude (i.e., the  are typically large), the confidence interval for  will 

be very wide. This will be concerning if the value  is a value of interest, but often it is not. 

1.6 Confidence Interval for an Individual Response  at  

The confidence interval for  we constructed in Section 1.5 answered the following question: 

Based on my population of  observations, what is a plausible range of values for the average Stat 

231 grade of all students who scored  in Stat 231? The question we will now consider is: Based 

on my population of  observations what is a plausible range of values for the Stat 231 grade of a 

new student who scored  in Stat 230?

Let  represent a potential observation for given value of . We then have  where 

 independent of . We have established that  and 
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We now want the distribution of , the error in the point estimator of . 

Rewrite it as , since  is independent of 

 (because it is not connected to the existing sample), the equation above is therefore the sum 

of independent, normally distributed random variables, so it is also normally distributed. 

Let's calculate its mean and variance:

Therefore, we get

Using a similar argument, 

Since we don't know , we use

The corresponding interval is 

where  and . We call this a  prediction interval instead of a 

confidence interval, because here  is not a parameter by a "future" observation.

Remark.  Compare the  prediction interval for a future observation  and the  

confidence interval for : the only different is the extra " " inside the square root.
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2 Gaussian Response Models and Model Checking  

2.1 Gaussian Response Models  

The simple linear models mentioned above belongs to a larger family of models.

Def. 2.1.1  A Gaussian response model is of the form  for  

independently where the ,  are assumed to be known constants (possibly vectors).

Observe we assumed that the mean  depends on the explanatory variate  but the 

standard deviation  does not. 

We can also write this as  where ,  independently. 

Framed this way,  is the sum of two components:

1.  is a deterministic component (i.e., not a random variable).

2.  is a random component (i.e., is a random variable).

In many examples, the deterministic component takes the form 

so that  is a linear function of a vector of explanatory variates  for 

unit  and the unknown parameters . We call these models linear regression models, 

in which the  are the regression coefficients and the  are called covariates.

2.2 Model Checking  

There are two main assumptions we make for Gaussian linear response models:

1.  (given covariates ) has a Gaussian distribution with standard deviation  which does 

not depend on the covariates.

2.  is a linear combination of known covariates  and the 

unknown regression coefficients . 

We can check the assumptions in the following ways.

2.2.1 Method I: Scatter Plot with Fitted Line  
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A scatter plot of the data with the fitted line superimposed indicates how well the model fits the 

data. We can ask the following two questions to test our hypotheses:

1. Do the points seem to fit reasonably along a straight line? (i.e., is  a linear 

function of ?) 

2. Are the points generally "spread out" to the same extent regardless of ? (i.e., does  

depend on ?)

2.2.2 Method II(a): Residual Plots  

If we have more than one covariate, scatter plots aren't super useful. Instead, we look at residual 

plots. For simple linear regression, define 

the fitted response of  as , and

the residual after the model has been fitted to the data as .

The  can be thought of as observed values of  in the model  where , 

 independently. Then if the model is correct, residuals  should behave roughly like 

a random sample from a  distribution. (It can be shown that the LSE of regression 

parameters implies , i.e., the average of our residuals is always zero.)
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If the model assumptions hold, then a plot of the points  should like more or less within a 

horizontal band or belt around the line  showing no obvious pattern.

2.2.3 Method II(b): Standardized Residual Plots  

Recall the  can be thought of as observed values of  in the model  where 

,  independently. The variance in our residuals depends on , so 

different datasets will result in more/less variable residuals.

Define the standardized residuals

If we plot  instead of , the plot will look the same, but be "scaled". 

In fact, the  values should lie in the range  as they'll be approximately .

We could also plot  where  are the fitted values. Such a plot can be 

used to check the assumption about the form of the mean . 
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If the assumption  is reasonable, then we should see approximately a 

horizontal band around the line . 

The key differences between residual (standard residual) plots and scatter plots are:

1. Residual plots are more general as they can be used when we have more than one covariate.

2. Residual plots can make visualization easier: assessing whether the points lie along a 

horizontal line rather than an angled line.

2.2.4 Method III: Residual QQ Plot  

Since our assumed model (for the standardized residuals) is 

the  should roughly represent a sample from the  distribution. Thus, we could also check 

the Gaussian assumption using a QQ plot. 
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If the model assumptions hold, we should see approximately a straight line.

2.2.5 Summary  

Here is a useful summary for model checking:

1. In plots of the points  or :

a. A distinctive pattern suggests that the assumed form for  may be 

inappropriate.

b. If variability in  (or  is bigger for large values of  than for small values of  

(or vice versa), then there is evidence to suggest that the assumption of constant 

variance  does not hold. 

Both of these can be assessed in a scatter plot as well in the case of simple linear regression, 

but it is usually more difficult to do so.

2. If the points in the Q-Q plot for residuals do not lie on a straight line, this suggests the 

Gaussian assumption may not hold.
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3 Comparing Means of Two Populations  

3.1 Two Sample Gaussian Problem (Equal Variance)  

Suppose for sample sizes  and  we have

It can be shown to be a special case of the Gaussian response model. 

Suppose we want to test the hypothesis . Rewrite this as  so  is 

in the "standard form" .

3.1.1 Estimator: Difference of Sample Means  

Recall the maximum likelihood estimator of  and :

A point estimator of the difference  is thus

3.1.2 Pivotal Quantity: Difference of Sample Means  

Define estimators 

Observe  is the point estimator of  based on only the  and  is the point estimator of  

based on only the .

We define the pooled estimator of variance, which is obtained by "pooling" from the two 

estimators of  from the two samples:

Note that  is not the maximum likelihood estimator of ; we use it because . 

Recall . In the two population case, we have

Using a similar argument as the one population case, we get
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3.1.3 Confidence Interval: Difference of Sample Means  

A  confidence interval for  is therefore given by

where  and .

3.1.4 Hypothesis Testing: Difference of Sample Means  

Suppose  and  are the true values of the population means. We frame our hypothesis test as 

"Suppose , are we surprised by what we observed in our sample?" That is, if the null 

hypothesis is , then

and we can see how unusual it would be for our observed value of this test statistic to be from 

such a  distribution. 

Define the test statistic and observed value (since  distribution is symmetric, we can use the 

absolute value trick again):

The -value is then given by 

where .

3.1.5 Pivotal Quantity with Unequal SD: Difference of Sample Means  

Now suppose we want to examine  using a likelihood ratio test. If  and  are 

large, e.g., , then we can use the approximate pivotal quantity

to construct confidence intervals and test hypotheses for the mean difference . For 

example, an approximate  confidence interval for  would be
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3.2 Paired Data  

Often experimental studies designed to compare means are conducted with pairs of units, where 

the responses within a pair are not independent. For a paired experiment, if  and 

, then

If , then  is smaller for than for an unpaired experiment.

To make inferences about , we analyze the within-pair differences  for 

 by assuming ,  independently. We can then use the 

one sample analysis we used previously for analyzing a random sample from a  

distribution, just with . 

3.3 Summary  

For tests of  (or equivalently, ) where  and 

, 

Unpaired data:

Paired data: define  and test :
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