
CS-251 (EPFL)
Theory of Computation

David Duan

Spring 2020

1. Automata Theory 2
2. Computability Theory . . 4
3. Complexity Theory 6
A. Appendix: Automata . . . 7
B. Appendix: Computability 11
C. Appendix: Complexity . 13
D. Appendix: MISC 14

This course constitutes an introduction to theory of computation.
It discusses the basic theoretical models of computing as well as
provides a solid and mathematically precise understanding of
their fundamental capabilities and limitations. Topics include

I Basic models of computation (finite automata, Turing machine);
I Elements of computability theory (undecidability, reducibility);
I Introduction to time complexity theory (P, NP and theory of

NP-completeness).

I P: polynomial-time;
I NP: non-deterministic poly-

nomial time;
I R: decidable languages;
I RE: recognizable languages

Overview of CS-251.

Course Overview

What are the fundamental capabilities and limitations of computers?
In this course, we look at the three traditionally central ares of
the theory of computation:

I Automata theory - Basic definitions and properties of math-
ematical models of computation.

I Computability theory - Certain basic problems cannot be
solved by computers...

I Complexity theory - What makes some problems compu-
tationally hard and others easy?

1. Automata Theory

A finite-state machine (FSM) or finite automaton is an abstract machine that can be in exactly
one of a finite number of states at any given time. The FSM can change from one state to another
in response to some inputs; the change from one state to another is called a transition. Note the
FSM has less computational power than some other models of computation such as the Turing
machine. This is mainly because an FSM’s memory is limited by the number of states it has.

1.1. Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple (&,Σ, X, @0, �) consisting of

I a finite set of states &;
I a finite set of input symbols called the alphabet Σ;
I a transition function X : & × Σ→ &, i.e., (current state, symbol) ↦→ next state;
I an initial or start state @0 ∈ &;
I a set of accept states � ⊆ &.

Let F = 0102 . . . 0= be a string over the alphabet Σ. The DFA " accepts the string F if a sequence
of states A0, A1, . . . , A= exists in & satisfying the following conditions:

1. A0 = @0 (we start at the initial state);
2. A8+1 = X(A8 , 08+1 for 8 = 0, . . . , = − 1 (we follow the transition function);
3. A= ∈ � (we halt in one of the accept states).

Otherwise, we say the automaton " rejects the string. The set of strings that " accepts is the
language recognized by " and this language is denoted by ! (").

1.2. Non-deterministic Finite Automaton (with Y-transitions)

A non-deterministic finite automaton (NFA) is a 5-tuple (&,Σ, X, @0, �), consisting of

I a set of states &, alphabet Σ, initial state @0, a set of accept states �;
I a transition function X : & × {Σ ∪ {Y}} → 2& (output is a set of states, hence the power set).

To summarize, NFAs have the following characteristics that differentiate them from DFAs:

I If an arrow is labeled Y, then it can be taken without reading any input symbol.
I A state may have 0, 1, or many exiting arrows (transitions) for each input symbol.
I When a state has no transitions on a symbol, the NFA halts that branch of execution.

1.3. From NFA to DFA (Subset Construction)

For every NFA # , there exists a DFA " such that ! (") = ! (#). Given NFA (&# ,Σ, X# , @0, �#),
we can construct an equivalent DFA " = (&" ,Σ, X" , @" , �") as follows.

I &" = 2&# : states of " correspond to subsets of &# ;
I X" (', 0) = ⋃

A ∈' � (X# (A , 0)), where � (') is the set of states that can be reached from ' by
travelling along 0 or more Y-transitions;

I @" = {@# }: " starts in the state corresponding to the set containing just the state of # ;
I �" = {' ∈ &" | ' contains an accept state of #}: the machine " accepts if one of the

possible states that # could be at this point is an accept state.

1.4. Regular Languages

A regular language is a formal language that can be expressed using a regular expression. Alter-
natively, it can be defined as a language recognized by a DFA/NFA. The equivalence of regular
expressions and finite automata is known as Kleene’s theorem.

We define the regular operations on languages � and � as follows:

I Complement: � := {G | G ∉ �};
I Union: � ∪ � := {G | G ∈ � ∨ G ∈ �};
I Intersection: � ∩ � := {G | G ∈ � ∧ G ∈ �};
I Concatenation: � ◦ � = {GH | G ∈ � ∧ H ∈ �};
I (Kleene) Star: �∗ = {G1G2 · · · G: | : ≥ 0,∀8 : G8 ∈ �};

The class of regular languages is closed under all five operations above. This can be shown by
explicitly constructing an appropriate DFA/NFA given the DFA recognizing languages � and �.

1.5. Pumping Lemma

The pumping lemma for regular languages is a lemma that describes an essential property of all
regular languages. Informally, it says that all sufficiently long words in a regular language may
be pumped–that is, have a middle section of the word repeated an arbitrary number of times–to
produce a new word that also lies in the same language. It is useful for disproving the regularity
of a specific language in question.

Theorem. If � is a regular language, then there exists a number ? ∈ Z, called the pumping length,
such that for any B ∈ � of length at least ?, there exists a division of B = GHI such that GH8I ∈ � for all
8 ≥ 0, |H | > 0, and |GH | ≤ ?.

2. Computability Theory

The Church-Turing Thesis states that the intuitive notion of algorithms is equivalent to Turing
machine algorithms.

2.1. Turing Machines

A Turing machine (TM) is a 7-tuple (&,Σ, Γ, X, @0, @accept, @reject) where &,Σ, Γ are all finite sets and

1. & is the set of states,
2. Σ is the input alphabet not containing the blank symbol t,
3. Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4. X : & ×) → & × Γ × {!, '} is the transition function,∗

5. @0 ∈ & is the start state,
6. @accept ∈ & is the accept state, and
7. @reject ∈ & is the reject state, where @reject ≠ @accept.

We can represent various computation problems by languages. For example, the acceptance
problem for DFAs for testing whether a particular DFA accepts a given string can be expressed as
a language, �DFA, which contains the encoding of all DFAs together with strings that the DFAs
accept. From now on, let 〈·〉 denote the binary representation of the argument.

2.2. Turing-Decidable Languages

A TM " decides a language ! ⊆ Σ∗ iff for all inputs F ∈ Σ∗:

I If F ∈ !, " accepts F.
I If F ∉ !, " rejects F.

We say " is a decider for ! and ! is Turing-decidable. Examples of decidable languages include

I (Acceptance testing of DFA) �DFA := {〈�,F〉 | � is a DFA and F ∈ ! (�)}.
I (Emptiness testing of DFA) �DFA := {〈�〉 | � is a DFA and ! (�) = ∅}.
I (Equivalence testing of DFA) �&DFA := {〈�, �〉 | � and � are DFAs and ! (�) = ! (�)}.

2.3. Turing-Recognizable Languages

A TM " recognizes a language ! ⊆ Σ∗ iff for all inputs F ∈ Σ∗:

I If F ∈ !, " accepts F.
I If F ∉ !, " either rejects F or never halts.

We say " is a recognizer for ! and ! is Turing-recognizable. Examples include

I (Acceptance testing of TM) �TM := {〈" ,F〉 | " is a TM and F ∈ ! (")}.
I (Emptiness testing of TM) �TM := {〈"〉 | " is a TM and ! (") = ∅}.†
I (The halting problem) ��!)TM := {〈" ,F〉 | " is a TM and " halts on input F}.

We can use the diagonalization method to show that some languages are not Turing-recognizable.
∗ Suppose the machine is at state @ and the head is over a tape square containing a symbol 0. If X(@, 0) = (A , 1, !), the

machine writes the symbol 1 replacing the 0 at the current square, goes to state A , and move to the left after writing.
† In fact, a general result, called Rice’s theorem, states that determining any non-trivial property of the languages

recognized by TMs is undecidable. See appendix for more information.

2.4. Co-Turing-Recognizable Languages and Turing-Unrecognizable Languages

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem. A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Proof. Suppose � is Turing-decidable. Then it is Turing-recognizable, and a complement of a
decidable language also is decidable and hence recognizable. Now suppose both � and � are
Turing-recognizable. Let "1 be the recognizer for � and "2 be the recognizer for �. The following
TM " is a decider for �: On input F,

1. Run both "1 and "2 on input F in parallel.
2. If "1 accepts, accept; if "2 accepts, reject.

Since every string F is either in � or �, either "1 or "2 must accept F. Thus, " will halt, accepts
all strings in �, and rejects all strings not in �. It follows that " is a decider for � and � is
decidable. �

Since both �TM and ��!)TM are recognizable but undecidable, their complements �TM and
��!)TM are unrecognizable. Other examples include �&TM and �&TM.

2.5. Closure Properties of Decidable and Recognizable Languages

It is worth mentioning that both decidable and recognizable languages are closed under union,
intersection, concatenation, and star. Decidable languages are closed under complementation
but recognizable languages are not.

2.6. Reducibility

A reduction is a way of converting one problem to another problem such that a solution to the
second problem can be used to solve the first problem. It is critical for us to prove decidabili-
ty/recognizability/unrecognizability of a language. We introduce mapping reducibility here
and leave polynomial-time mapping reducibility to the next section.

A function 5 : Σ∗1 → Σ∗2 is called a computable function if there is some TM " with the following
behavior: On input F, compute 5 (F) and write it on the tape; move the tape head to the start of
5 (F); halt.

A function 5 : Σ∗1 → Σ∗2 is called a mapping reduction from � to �, written � ≤< �, iff

I ∀F ∈ Σ∗1 : F ∈ � ⇐⇒ 5 (F) ∈ �;
I 5 is a computable function.

Intuitively, � ≤< � means:

I � is not harder than �, i.e., if � is decidable/recognizable/co-recognizable, then � is
decidable/recognizable/co-recognizable.

I � is at least as hard as �, i.e., if � is undecidable/unrecognizable/not co-recognizable,
then � is undecidable/unrecognizable/not co-recognizable.

Note that ≤< is a transitive relation and � ≤< � =⇒ � ≤< �.

3. Complexity Theory

Let C : N→ R+ be a function. The time complexity class, denoted TIME(t(n)), is defined be the
collection of all languages that are decidable by an $ (C (=)) time TM.

3.1. The Class P

P (stands for polynomial time) is the class of languages that are decidable in polynomial time
on a deterministic TM. In other words,

P =
⋃
:

TIME(=:).

3.2. The Class NP

A verifier for a language � is an algorithm + where

� = {F | + accepts 〈F, 2〉 for some string 2}.

NP (stands for non-deterministic polynomial time) is the class of languages that have polyno-
mial time verifiers.

3.3. Polynomial Time Reducibility

A polynomial time computable function is a computable function where the TM " has a
polynomial time complexity. A function 5 : Σ∗1 → Σ∗2 is called a polynomial time mapping
reduction from � to �, written � ≤% �, iff

I ∀F ∈ Σ∗1 : F ∈ � ⇐⇒ 5 (F) ∈ �;
I 5 is a polynomial time computable function.

Theorem. If � ≤% � and � ∈ P, then � ∈ P.

3.4. NP-Completeness

The decision problem - is NP-hard if every problem � ∈ NP satisfies � ≤% - . The decision
problem - is NP-complete if every problem � ∈ NP satisfies � ≤% - .

Theorem. Let - be any NP-complete problem. Then:

I If - ∈ P, then P = NP and so every problem in NP can be solved with a polynomial-time algorithm.
I If - ∉ P, then P ≠ NP and no NP-complete problem can be solved with a polynomial-time algorithm.

As a result, proving that a problem is NP-complete is a very strong indication that a problem
cannot be solved efficiently.

A. Appendix: Automata

A.1. Language Recognized by a DFA

Example. For the DFA given below find a description of the language it recognizes. Prove that
your description is correct using induction.

Solution. The language recognized by the automaton ! (") is

! = {F | F ∈ {0, 1}∗ ∧ |F | is odd}.

Let G be the input string of length |G | = ;. We claim that

I if G contains an even number of 0’s and an even number of 1’s, " finishes in @0;
I if G contains an odd number of 0’s and an even number of 1’s, " finishes in @1;
I if G contains an even number of 0’s and an odd number of 1’s, " finishes in @2;
I if G contains an odd number of 0’s and an odd number of 1’s, " finishes in @3.

We prove the claim by induction on ;, the length of G. First, if ; = 0, then G is the empty string
which contains an even number of 0’s and an even number of 1’s. Indeed, " finishes in @0. Now
suppose the claim is true for all ; < = for some = ∈ Z+. Let ; = = and let G ′ be the first = − 1 digits
of G. Since |G ′ | < = the induction hypothesis applies. We have four cases.

Suppose G ′ contains an even number of 0’s and an even number of 1’s (so one step before the
last by the hypothesis we are at @0) and consider the last input digit. If the input is now 0, then G
contains an odd number of 0’s and an even number of 1’s and indeed " transitions to @1 and
finishes. If the input is now 1, then G contains an even number of 0’s and an odd number of 1’s
and indeed " transitions to @2 and finishes. (The other cases are similar and thus omitted.)

By induction, the hypothesis holds for ; = = and this completes the proof. �

Practice. Describe the language recognized by the following DFA and prove the correctness of
your claim. (Hint: this DFA recognizes all strings of binary numbers that are not divisible by 3.)

A.2. From NFA to DFA

Example. Construct a DFA that accepts the same language as that accepted by the NFA below.

Solution. Given &# = {@0, @1, @2}, the set of states for the equivalent DFA " has cardinality
2 |&# | with start state {@0}. The transition function X" is described below:

Observe the states ∅ and {@2} are unreachable from the start state {@0}. Thus, we can remove
them from the automaton. The accepting states of " are all the states corresponding to a subset
of &# containing an accepting state of the original NFA: {@1}, {@0, @1}, {@1, @2}, {@0, @1, @2}. The
final automaton is given below:

A.3. Regular Languages

Example. Let ! ⊆ {0, 1}∗ be a language. Define DROP-OUT(!) to be the language containing all
strings that can be obtained by removing one 0 and one 1 from a string in ! (in any order), i.e.,

DROP-OUT(!) = {GHI | G0H1I ∈ ! or G1H0I ∈ !, where G, H, I, ∈ {0, 1}∗}.

Prove that if ! is regular, then so is DROP-OUT(!).

Solution. Since ! is regular, there exists a DFA " = (&,Σ, X, @0, �) that accepts it. To prove that
DROP-OUT(!) is also regular, it suffices to create an NFA that accepts it. For this, we construct
four copies of ": "start,"0,"1,"end. We add the superscript to each component of the DFA
tuple accordingly. For each transition in "start that reads a 0, i.e., Xstart(Bstart

8
, 0) = Bstart

9
, we add

a new Y-transition from Bstart
8

to B0
9

and a new Y-transition from B1
8

to Bend
9

. Similarly, for each
1-transition in "start, we add new Y-transitions from "start to "1 and from "0 to "end. We now
give the technical definition of the NFA (&# ,Σ# , X# , @#0 , �#):
I &# = &start ∪&0 ∪&1 ∪&end; @#0 = @start

0 ; Σ# = Σstart; �# = �end.
I Transition in the copies: ∀@c ∈ & c , X# (@c ,U) = Xc (@c ,U), c ∈ {start, 0, 1, end}.
I New transitions:

• ∀@start
8

, @start
9
∈ &start : Xstart(@start

8
, 0) = @start

9
, set X# (@start

8
, Y) = @0

9
, X# (@1

8
, Y) = @end

9
.

• ∀@start
8

, @start
9
∈ &start : Xstart(@start

8
, 1) = @start

9
, set X# (@start

8
, Y) = @1

9
, X# (@0

8
, Y) = @end

9
.

To prove the correctness of this construction, we need to show that GHI ∈ DROP-OUT(!) iff
G0H1I ∈ ! or G1H0I ∈ !. Let GHI be a string such that G0H1I ∈ !. By construction, after reading G
we can take an Y-transition from "start to "0; after reading H in "0 we can take an Y-transition
to "end. Finally, after reading I in "end, we will arrive at an accepting state of "end. Thus, GHI
is accepted by # and GHI ∈ DROP-OUT(!). A mirror proof shows that GHI will be accepted by
if G1H0I ∈ !. Conversely, let F be a string accepted by # . Since the starting state is in "start

and all accepting states are in "end, we must have taken two Y-transitions at some point that
correspond to avoiding reading one 0 and one 1 in some order. Thus F can be written in the
form of GHI where GHI are the three parts of F separated by the two Y-transitions, and we have
G0H1I ∈ ! or G1H0I ∈ !. �

Practice. Given a language ! ⊆ {0, 1}∗, define !11 = {GH | G11H ∈ !}. In words, each string in !11
is obtained by taking a string in ! and deleting two consecutive 1s from it. Prove that if ! is
regular, so is !11. (Hint: Define an NFA with transition rules that pretend we have read two ones,
i.e., ∀@8 , @ 9 , @: ∈ & : X(@8 , 1) = @ 9 ∧ X(@ 9 , 1) = @: , add X(@8 , Y) = @: .)

A.4. Pumping Lemma

Exercise 1. Prove the language � = {0=2
1= | = ≥ 0} is not regular.

Solution 1. We use the pumping lemma. Suppose that � is regular with pumping length ?. For
B := ??

2
1? ∈ �, by the pumping lemma, B can be decomposed as B = GHI where |GH | ≤ ?, |H | ≥ 1,

and GH8I ∈ � for all 8 ∈ N. Since B starts with ?2 ≥ ? zeros, |GH | ≤ ? and |H | ≥ 1, we have H = 0:

for some integer : ≥ 1. Then GH2I = 0?2+:1? ∈ � by the pumping lemma, a contradiction. Hence,
� is not regular. �

Exercise 2. Prove the language ! = {0<1< : =,< ∈ N, = ≤ < ∨ = ≥ 2<} is not regular.

Solution 2. We use the pumping lemma. Suppose that ! is regular with pumping length ?. By
taking = = < = ? + 1, we have B := 0?+11?+1 ∈ �. By the pumping lemma, B can be decomposed
as B = GHI where |GH | ≤ ?, |H | ≥ 1, and GH8I ∈ � for all 8 ∈ N. Since B starts with ? + 1 zeros, H = 0:

for some integer : , 1 ≤ : ≤ ?. Then GH2I = 0?+1+:1?+1 ∈ � by the pumping lemma. However,
? + 1 < ? + 1 + : < 2(? + 1) for all 1 ≤ : ≤ ?, which contradicts that GH2I ∈ �. Hence, ! is not
regular. �

Exercise 3. Prove the language � = {F | F has equal number of 0s and 1s} is not regular.

Solution 3. We can prove it by contradiction by intersecting it with the regular language {0∗1∗}
hence yielding � = {0=1= | = ≥ 0} which we know is not regular. Since the intersection of two
regular languages must be regular but � is not, we know � is not regular. �

Exercise 4. Prove the language � = {02= : = ≥ 0} is not regular.

Solution 4. Suppose � is regular and let is pumping length be ?. Let 2A be any power of two
strictly greater than ?. Consider the string B = 02A ∈ �. By the pumping lemma B can be written
as GHI where |GH | ≤ ?, |H | ≥ 1, GH8I ∈ � for any 8 ≥ 0. Since B contains only 0’s, H must be 0: for
some 1 ≤ : ≤ ?. Therefore, GH2I = 02A+: where the number of zeros is more than 2A but less than
2A+1, since 2A + : ≤ 2A + ? < 2A + A2 = 2A+1. Thus GH2I ∉ �. Contradiction. �

Practice 1. Prove the language � = {0=1= | = ≥ 0} is not regular. (Hint: consider 0?1?.)

Practice 2. Prove the language � = {FF | F ∈ {0, 1}∗} is not regular. (Hint: consider F = 0?1?.)

Practice 3. Let B' be the reverse of the string B. Prove the language = {BB' | B ∈ {0, 1}∗} is not
regular. (Hint: consider the string B = 0?110?.)

Practice 4. Prove the language � = {081 9 | 8 > 9} is not regular. (Hint: consider B = 0?+11? and GI.)

Practice 5. Prove the language � = {FF | F ∈ {0, 1}∗} is not regular. (Hint: consider F = 0?1?.)

B. Appendix: Computability

B.1. Prove decidability

To show a language is decidable, thanks to Church-Turing Thesis, it suffcies to simply providing
a high-level algorithm (in terms of TMs, of course) that decides the problem.

Example. Prove the following language is decidable.

� = {〈�〉 | � is a DFA over {0, 1} which accepts everything except F for some F ∈ {0, 1}∗}

Solution. Given �̄, find a string F accepted by �̄ by finding a path from the start of �̄ to an
accepting state. If �̄ has no such path/string, then it does not accept anything, so

〈
�̄

〉
is not in �.

Next, construct a DFA " that recognizes all strings except F. Finally, verify that the DFA " ∩ �̄
has no path from the start state to the accepting state. In other words, " ∩ �̄ should have no
accepting strings. If so then

〈
�̄

〉
∈ �. Otherwise

〈
�̄

〉
∉ �. �

B.2. Prove undecidability

To show a language ! is undecidable, show that if there exists a decider for !, then one can build
a decider (for �TM (or any other undecidable problems, e.g., ��!)TM). Since (cannot exist, !
must be undecidable.

Example. Prove the following language is undecidable: �TM = {〈"〉 | ! (") = ∅}.
Solution. Suppose that ' is a decider for �TM. We construct a decider (for �TM as follows.

1. Given 〈) ,F〉, build a TM 〈"〉 as follows.

I Ignore its input.
I Simulate) on F and return what) would have returned on F.

2. Simulate ' with 〈"〉 as input.
3. If ' accepts, then reject. Otherwise accept.

To show that (decides �TM, observe if 〈) ,F〉 ∈ �TM, then " (built by (for the input 〈) ,F〉)
accepts all strings, i.e., ! (") ≠ ∅. Thus, ' accepts and (rejects. It follows that 〈) ,F〉 ∈ ! ((). A
mirror argument shows that if 〈) ,F〉 ∉ �TM then 〈) ,F〉 ∉ ! ((). Furthermore, (always halts as '
always halts. Thus, (decides �TM. Contradiction. �

Practice. Prove the following language is undecidable: = {〈"〉 | |! (") | < ∞}. (Hint: the same
proof works, because " either accepts all strings or no string (it ignores the input); therefore,
! (") is finite iff it is empty.)

B.3. Prove recognizability

Example 1. Prove the following language is recognizable.

! = {〈"〉 | " is a TM and " accepts at least one string F ∈ {0}∗ \ {Y}}.

Solution 1. Consider the following procedure: (= on input 〈"〉:

1. For every positive integer ; and every string F ∈ {0}∗ \ {Y} with |F | ≤ ;,
2. Simulate " on F for ; steps.
3. If " accepts F (during ; steps), accept 〈"〉.

We can prove that (is a recognizer for !2. If 〈" 〈 ∈ !2, then there exists a string F0 ∈ {0}∗ \ {Y}
accepted by " . If " accepts F0 in ;0 steps, then (accepts 〈"〉 before ; becomes ;0 + 1. Otherwise
(will not terminate when run on 〈"〉. Hence, ! (() = !. �

Example 2. Show that following language is recognizable but undecidable.

! = {〈" ,�〉 | " is a TM, � is a DFA, ! (�) ∩ ! (") ≠ ∅}.

Solution 2. We first build a recognizer for !. Given input 〈" ,�〉,

1. For 8 = 0, 1, . . . ,
2. For F ∈ Σ∗ such that |F | ≤ 8:
3. Run � and " on F for 8 steps.
4. If both accept, return accept.

All simulations are finite, so the algorithm eventually reaches every value of 8. If 〈" ,�〉 ∈ !,
then there exists a F ∈ ! (") ∩ ! (�). If |F | = 8 and is accepted by " steps and by � in at most 9
steps, the recognizer will accept 〈" ,�〉 when 8 = max(9 , :).

We now construct a reduction �TM ≤< !: 5 : {〈) ,F〉} ↦→ {〈" ,�〉}.

I � accepts any string.
I " ignores its input and simulates) on F and outputs the result.

Then ! (�) = Σ∗. If 〈) ,F〉 ∈ �TM, then ! (") ∩ ! (�) = Σ∗ and 〈" ,�〉 ∈ !. If 〈) ,F〉 ∉ �TM,
! (") ∩ ! (�) = ∅ and 〈" ,�〉 ∉ !. �

B.4. Prove unrecognizability

To prove a language is unrecognizable, construct a mapping reduction from �TM (or any other
known unrecognizable languages, e.g., ��!)TM) to the given language.

Example. Prove the following language is unrecognizable.

!2 = {〈"〉 | " is a TM and " halts on all inputs of length ≥ 2020}

Solution. It is enough to show that �) " ≤< !2. Define 5 (〈) ,F〉) = a machine " which performs
the following on input G:

1. On input G, simulate) with F for |G | steps.
2. If) accepts F (in |G | steps or less), go into an infinite loop. Otherwise, accept G.

Observe

I If) does not accept F, then for every input G, " accepts G. Thus 〈"〉 ∈ !2.
I If) accepts F in : steps, then " will loop on every word longer than : characters. In

particular, 〈"〉 ∉ !2. �

C. Appendix: Complexity

C.1. List of NPC Problems

3SAT Given a Boolean CNF formula (an AND of ORs) on = variables in which each clause
has at most 3 literals, determine whether there is an assignment of) or � values to the =
variables that satisfies the formula.

Clique Determine if � has a clique ∗ of size at least : .
IndepSet Determine if � has an independent set † of size ≥ : .
VertexCover Determine if � has a vertex cover of size ≤ : .
DominatingSet Determine if � has a dominating set‡ of size : .
SetCover Given a collection S of subsets of [<] and : ∈ Z+, determine if there are : sets

(1, . . . , (: ∈ Ssuch that (1 ∪ · · · ∪ (: = [<].
(Dir)HamPath Determine if � contains a (directed) Hamiltonian path. §

(Dir)HamCycle Determine if � contains a (directed) Hamiltonian cycle.
SubsetSum Given an array of = elements F1,F2, . . . ,F= and a target weight) , determine

whether there is a subset (⊆ [=] such that
∑

8∈(F8 =) .
Partition Given binary representation of = integers 01, . . . , 0=, is there a set (⊆ [=] such that∑

8∈(08 =
∑

9∈[=]\(0 9?
HittingSet Given a set (, a collection � of subsets of (, and a number : , is there a subset) ⊆ (

of size at most : such that) ∩�8 = ∅ for all �8 ∈ �?

C.2. Prove NP-Completeness

Exercise. Prove the following problem is NP-hard: Given binary representation of = integers
01, . . . , 0=, is there a set (⊆ [=] such that

∑
8∈(08 =

∑
9∈[=]\(0 9?

Solution. This problem is known as Partition. We reduce the SubsetSum problem to Partition.

I Problem: SubsetSum

• Input: A set (of integers and an integer C.
• Output: Is there a non-empty subset whose sum is C?

I Reduction: Given an instance of SubsetSum 〈(, C〉, we define the instance 〈(′〉 of Partition
where (′ = (∪ {B − 2C} where B =

∑
B8 . The construction clearly takes polynomial time.

We claim that 〈(, C〉 ∈ SubsetSum ⇐⇒ 〈(′〉 ∈ Partition.

I If there exists a set of numbers) ⊆ (that sum to C, then the remaining numbers in (sum
to B − C. Therefore, if we let) ′ =) ∪ {B − 2C} then () ′,)̄ ′) is a partition of (′ into two such
that each partition sums to B − C.

I If there exists a partition of (′ where each subset has sum (B + B − 2C)/2 = B − C. One of these
sets contains the number B − 2C. Removing this number, we get a set of numbers whose
sum is C; all of them are in (.

∗ a set of vertices where every two vertices are adjacent
† a set of vertices such that no two of which are adjacent
‡A dominating set for a graph � = (+ , �) is a subset (of + such that every vertex not in (is adjacent to at least one

member of (.
§ a path (cycle) that visits every vertex in � exactly once

D. Appendix: MISC

D.1. Rice’s Theorem

Let Sbe a property. The language (TM is defined as (TM = {〈" , 〉 | ! (") ∈ S}.

Theorem. (Rice) If Sis a non-trivial property of Turing-recognizable languages, then (TM is undecidable.

The following is a proof template for related problems:

Problem. Show the language % is undecidable.

Solution. Suppose that % is decidable. Then there exists a halting TM "% that recognizes the
descriptions of TMs that satisfy %. In other words, given a description 〈"〉 of a TM ", "%

accepts 〈"〉 if INSERT PROPERTY DESCRIPTION HERE and rejects otherwise. We define a
compute function 5 from the inputs of �TM to the inputs of %:

5 : 〈" ,F〉 ↦→
〈
)" ,F

〉
.

SHOW COMPUTABILITY OF THIS FUNCTION. We now define the TM)" ,F : On input G,

I Run " on F.
I If " accepts on F, run "% on G. If "% accepts, then accept.
I Otherwise, reject.

Analysis:

I If " accepts F, since "% is a decider for %,)" ,F ∈ %.
I If " does not accept F (either rejects or never halts), then)" ,F = ∅ ∉ %.

Since �TM is undecidable, % must be undecidable as well. �

	
	Automata Theory
	Computability Theory
	Complexity Theory
	Appendix: Automata
	Appendix: Computability
	Appendix: Complexity
	Appendix: MISC

