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Machine learning and data analysis are becoming increasingly
central in many sciences and applications. In this course, fun-
damental principles and methods of machine learning will be
introduced, analyzed and practically implemented.

Introduction - KNN, data representation, basic optimization...
Linear models - Linear regression, least-square classification,

logistic regression, linear SVMs...
Nonlinear method - Polynomial regression, kernel methods.
Deep learning - Multi-layer pereceptron, CNNs...
Unsupervised learning - Dimensionality reduction, clustering...

Overview
Note: This document is merely a
highlight of CS-233 at EPFL (writ-
ten mainly for exam-prep purposes)
and is NOT a comprehensive intro-
duction to Machine Learning in any
way. The following topics are not in-
cluded here:

I SVM (separate)
I Trees (separate)
I NNs (omitted)

We can view machine learning as an optimization problem. Our
goal is to minimize

� (w) =
#∑
==1

! (H(x=; w), C=),

where

I w: model parameters
I x: feature vector of the =-th sample
I C=: label associated with the =-th sample
I H: predictor
I !: loss function
I � : error function



1. K Nearest Neighbours (Supervised - Classification)

Given an input G, we classify it according to the majority of labels of its : clearest neighbours.

As : becomes larger, the decision boundary becomes smoother; the error on the training set
increases but the error on the test set decreases, up to a point. The optimal : can be found using
cross-validation.

One critical assumption is that the training set and the test set are drawn from the same statistical
distribution. Otherwise, there is no reason for a decision boundary learned on the training set to
be useful on the test set.

1.1. Disadvantages of KNN

1. The KNN algorithm is prone to misclassifying points near the decision boundaries.
2. If the dataset is unbalanced, meaning there are more samples from one class compared to

the rest, then the better represented class is unduly favoured.
3. The computational cost for decision boundaries could be expensive.

1.2. Condensed Nearest Neighbour for Data Reduction

Condensed nearest neighbour is an algorithm designed to reduce the dataset for KNN classifi-
cation. It selects the set of prototypes % from the training data, such that 1NN with % can classify
the examples almost as accurately as 1NN does with the whole dataset.

Given a training set - , condensed NN works iteratively:

1. Scan all elements of - , looking for an element G whose nearest prototype from % has a
different label than G.

2. Remove G from - and add it to %
3. Repeat the scan until no more prototypes are added to*.

We can replace - by % and yield a similar performance (accuracy) but with a much faster
computation time. The samples that are not prototypes are called the absorbed points.

1.3. The Curse of Dimensionality

In a high-dimensional space, everything is "far" from everything else. The Euclidean distance
becomes less and less meaningful as the distance increases. To guarantee the effectiveness of an
estimator, the distance between neighbouring training samples must be less than some value 3
that depends on the problem.



2. Perceptron (Supervised - Classification)

Splitting data using an =-dimensional hyperplane. Note this only works for linearly separable data.

2.1. Problem Statement

Given a set - = {x8}1≤8≤# of =-dimensional samples x ∈ R=, define x̃ = [1|x] ∈ R=+1. Denote the
weights by w̃ = 〈F0,F1, . . . ,F=〉 ∈ R=+1 where

∑=
8=1 F

2
8
= 1 and F0 is the bias. We wish to find w̃

such that for all/most positive samples, w̃ · x̃ > 0 and for all/most negative samples, w̃ · x̃ < 0.

The decision boundary (hyperplane) is defined as w̃ · x̃ = F0 +
∑=
8=1 F8G8 = 0. The signed distance

from x̃ to the decision boundary is given by ℎ = w̃ · x̃. (See Appendix A for more math.)

2.2. Algorithm

Given a training set {(x8 , C8)1≤8≤# } where x8 ∈ R= and and C8 ∈ {−1, 1},
1. Initialize w0 = 0 ∈ R=.
2. For each training example (x8 , C8),

a) Predict C ′
8
= sgn(w · x8).

b) If C ′
8
≠ C ′, update w← w + C8x8 .

2.3. Intuition

Suppose we have made a mistake on a positive example, that is, C = 1 but w · x < 0. Let the new
vector be w′ := w + x. The new dot product will be w′ · x = (w + x) · x = w · x + x · x > w · x. Thus,
for a misclassified positive example, the algorithm will increase the score assigned to the same
input (left). A mirror argument gives the intuition for misclassified negative examples (right).

2.4. Further Comments

The convergence theorem states that if there exists a set of weights that are consistence with the
data, i.e., the data is linearly separable, the perceptron algorithm will converge. (See Mistake
Bound Theorem in Appendix A.) The cycling theorem states that if the training data is not
linearly separable, then the learning algorithm will eventually repeat the same set of weights
and enter an infinite loop.

In summary the perceptron algorithm only works for linearly separable dataset and provides
no way to favour one hyperplane over the other. To address these weaknesses, we introduce
logistic regression.



3. Logistic Regression (Supervised - Classification)

The perceptron algorithm assigns a label H(x) = (w) x > 0) to each x. We would like a softer
version, i.e., a "probability", by replacing the step function by a smoother sigmoid function f.
The prediction thus becomes H(x; w̃) = f(w̃) x̃).

3.1. The Sigmoid Function

The sigmoid function f(0) = 1
1 + exp(−0) is infinitely differentiable with mf/m0 = f(1 − f).

Also, f(0) → 1 as 0 →∞ and f(0) → 0 as 0 → −∞. Thus, it acts like a smoothed step function.

3.2. Probabilistic Interpretation

H(x; w̃) = f(w̃) x̃) = 1
1 + exp(−w̃) x̃) ∈ [0, 1].

I H(x; w̃) = 0.5 when w̃ · x̃ = 0, i.e., x is on the decision boundary.
I H(x; w̃) → 0.0 or H(x; w̃) → 1.0 if x is far from the decision boundary.

H(x; w̃) can be interpreted as the probability that x belongs to one class or the other. It can be
shown that LR finds the ML solution under the assumption that the noise is Gaussian.

3.3. Algorithm

Given a training set {(x=, C=)1≤=≤# } where x= ∈ R= and and C= ∈ {0, 1}, minimize the cross-entropy

� (w̃) = −
∑
=

{C= ln H= + (1 − C=) ln(1 − H=)}

with respect to w̃, where H= = H(x=; w̃).

3.4. Multi-class Case

Given a training set {(x=, [C1=, . . . , C:=])1≤=≤# } where x= ∈ R= and and C:= ∈ {0, 1} is the probability
that sample x= belongs to class �: , the activation is 0: (x) = f(w)

:
x); the probability that x ∈ �: is

H: (x) =
exp(0: (x))∑
9 exp(0 9 (x)) .

Multi-class entropy and its gradient is given by

� (w̃1, . . . , w̃:) = −
∑
=

∑
:

C:= ln(H:x=), ∇�w 9
=

∑
=

(H: (x=) − C:=)x=.

3.5. Further Comments

LR is better than perceptron. However, outliers can often cause problems as LR tries to minimize
error rate at training time. See the separate document on support vector machines.



4. Adaboost (Supervised - Classification)

Boosting is a general strategy for learning classifiers by combining simpler ones. The idea is
to take a "weak classifier" and use it to build a much better classifier, there by boosting the
performance of the weak classification algorithm. The most popular boosting algorithm is
AdaBoost, so-called because it is "adaptive".

4.1. Algorithm

For a training set j = {x=, C=} where C= ∈ {−1, 1} for 1 ≤ = ≤ # :

1. Initialize data weights uniformly, i.e., ∀= : F1
= = 1/# .

2. For C ∈ {1, . . . ,)}:

a) Find classifier HC : j→ {−1, 1} that minimizes the weighted error
∑
C=≠HC (x=) F

C
=.

b) Evaluate the weighted classified error YC and the weight for the current classifier UC :

YC =

∑
C=≠HC (x=)FC=∑#
==1 F

C
=

UC = log
1 − YC
YC

c) Update weights for the next iteration:

FC+1= = FC= exp(UC � (C= ≠ HC (x=)))

3. Output the final classifier:

. (x) = sign

(
)∑
C=1

UC HC (x)
)

4.2. Comments

I The weighted error is simply the sum of weights of all misclassified data points.
I The weight classified error YC is the percentage of misclassified weights; it is bounded by 0

and 1 and is less than 0.5 if the classifier HC performs better than chance.
I The weight for the current classifier UC depends on the performance of the current classifier
HC ; it is positive if HC performs better than chance.

I After each iteration, the weight of misclassified samples is increased.

Remark. See the separate document for more information on tree-based models.



5. K-Means Clustering (Unsupervised - Clustering)

Given a set of input samples, k-means clustering aims to partition = observation into : clusters
in which each observation belongs to the cluster with the nearest mean, serving as a prototype
of the cluster. This results in a partitioning of the data space into Voronoi cells.

5.1. Center of Gravity

The mean of points {G1, . . . , G# }, G8 ∈ R� is ` = 1
#

∑#
8=1 G8 ∈ R� . If the G8’s were physical points

of equal mass, then ` would be their center of gravity. Note this applies in any dimension.

5.2. K-Means Clusters

Suppose cluster : is formed by the points {G8:1 , . . . , G8:
=:
} with center of gravity `: .

I Superscript : ∈ {1, . . . , } denotes which cluster the point belongs to.
I Subscript 9 ∈ {1, . . . , =: } denotes the index of the point within the cluster.

Intuitively, distances between the points within a cluster should be small and the distances across
clusters should be large. We can encode this via the distance to cluster centers {`1, . . . , ` }:

min
 ∑
:=1

=:∑
9=1

(G8:
9
− `:)2

where {G8:1 , . . . , G8:
=:
} are the =: samples that belong to cluster : .

However, we don’t know what points belong to what cluster, and we also don’t know the center
of gravity of the clusters.

5.3. Algorithm

The algorithm iteratively updates the cluster assignment for each point and the cluster centers.

I Initialize {`1, . . . , ` }, randomly if necessary.
I Until convergence,

• Assign each point G8 to the nearest center `: .

* For each point G8 , compute the Euclidean distance to every center {`1, . . . , ` }.
* Find the smallest distance. The point is said to be assigned to the corresponding

cluster. Note that each point is assigned to a single cluster.

• Update each center `: given the points assigned to it. Recompute each center `: as
the mean of the points that were assigned to it.

The algorithm is guaranteed to converge to a stable solution, where the cluster centers and the
point assignments are fixed. Note it does not always converge to the best (desired) solution, as
random initialization often matters. In practice, try several different randomly initialization and
keep the one that yields the best result in term of the sum of square distances.



6. Principal Components Analysis (Unsupervised - Dimension
Reduction)

Principal component analysis is a method for identifying patterns in data and expressing the
data in such a way as to highlight their similarities and differences. Once you have found these
patterns, you can compress the data, i.e., by reducing the number of dimensions, without much
loss of information.

6.1. Intuition

Suppose we are given observations with measurements on a set of = features. Most of the times,
not all of these dimensions are equally interesting. PCA seeks a smaller number of dimensions
that are as interesting as possible, where the concepts of interesting is measured by the amount
that the observations vary along each dimension. Each of the dimension found by PCA is a
linear combination of the = features and the dimensions are orthogonal to each other.

Alternatively, principal components provide low-dimensional linear surfaces that are closest to
the observations. For example, the first principal component is the line in =-dimensional space
that is closest to the observation (wrt the Euclidean metric). Indeed, we seek a single dimension
of the data that lies as close as possible to all of the data points, since such a line will likely to
provide a good summary of the data.

6.2. Procedure

1. Subtract the mean from each of the data dimensions to produce a dataset with mean zero.
2. Calculate the covariance matrix  where  8, 9 = Cov(-8 , - 9).
3. Calculate the eigenvectors for matrix  and order them by eigenvalues, highest to lowest.

I Eigenvectors of  are actually the dimensions of the axes where there is the most
variance and that we call principal components.

I Eigenvalues are simply the coefficients attached to eigenvectors, which give the
amount of variance carried in each principal component.

4. Choose what to do with these components and form a feature vector.

I You can either keep all of the components or discard those of less significance and
form a matrix called feature vector whose columns are the eigenvectors.

I If particular, if you choose to keep the top ? eigenvectors/components out of =, the
final data set will have only ? dimensions.

5. Recast the data along the principal components axes:

FinalDataset = FeatureVector) StandardizedOriginalDataset) .

References.

I A step by step explanation of Principal Components Analysis.
I A tutorial on Principal Components Analysis
I ISLR Chapter 10.

https://builtin.com/data-science/step-step-explanation-principal-component-analysis
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://faculty.marshall.usc.edu/gareth-james/ISL/


7. LDA (Supervised - Classification / Dimension Reduction)

Linear Discriminant Analysis seeks to best separate (discriminate) the samples in the training
dataset by their class value. Specifically, the model seeks to find a linear combination of input
variables that achieves the maximum separation for samples between classes and the minimum
separation of samples within each class.

7.1. Procedure

1. Compute the 3-dimensional mean vectors for the different classes from the dataset.

I For each class 8, compute <8 = 1
=8

∑
G∈�8

G: ∈ R3 .

2. Compute the scatter matrices (in-between-class and within-class scatter matrix).

I Within-class scatter matrix (, :

(, =

2∑
8=1

(8 , where (8 =
∑
G∈�8

(G −<8) (G −<8)) .

I Between-class scatter matrix (�:

(� =

2∑
8=1

#8 (<8 −<) (<8 −<)) ,

where < is the overall mean vector and <8, #8 are the sample mean and sizes of the
respective class.

3. Compute and sort the eigenvectors by decreasing eigenvalues and choose : eigenvectors
with the largest eigenvalues to form a 3 × : matrix, (columns are eigenvectors).

I Solve the generalized eigenvalues problem for the matrix (−1
,
(� to obtain linear

discriminants.
I Roughly speaking, eigenvectors with high eigenvalues bear more information.

4. Use this matrix, to transform the sample onto the new subspace: . = -, .

7.2. PCA vs. LDA

I Both are linear transformation techniques.
I LDA is supervised whereas PCA is unsupervised.
I PCA seek component axes that maximize the variance; LDA seek component axes that

maximize between-class variance and minimize within-class variance.
I LDA makes assumptions about normally distributed classes and equal class covariances.



A. Math Prerequisites for Linear Classification

A.1. Normal Vector to a Line

Prop. 1. A normal vector to line 0G + 1H + 2 is a scalar multiple of D = 〈0, 1〉.

Proof. A normal vector of a 2-dimensional line will have the direction vector of an orthogonal
line to it. Rewriting 0G + 1H + 2 = 0 in the point-slope form, we get

H = −0
1
G − 2

1
.

Any vector that is perpendicular to ! must have slope 1/0, or equivalently, any normal vector to
! will be a non-zero multiple of D = 〈0, 1〉. �

Cor. 2. A unit normal vector to line 0G + 1H + 2 is of the form D̂ = 1√
02+12

〈0, 1〉.

A.2. Dot Product

Recall that u · v = ‖u‖‖v‖ cos \ where \ is the angle between u and v. Equivalently, we have

cos \ =
u · v
‖u‖‖v‖ .

Prop. 3. Let v and w be two vectors with non-zero dot product. The sign of v ·w tells us their
relative position from each other.

Proof. Fix v. Note that cos \ = 0 when v and w are perpendicular to each other, i.e., v ·w = 0;
cos \ > 0 in the first and second quadrants, i.e., when w is in the same half-plane as v; cos \ < 0
in the third and fourth quadrants, i.e., when w is in the opposite half-plane as v. �

A.3. Vector Projection

The vector projection of a vector v onto a non-zero vector u is a vector parallel to u, defined as
v1 = E1û, where E1 is a scalar, called the scalar projection of v onto u, and û is the unit vector in
the direction of u.

Prop. 4. The scalar projection of v onto u is given by

‖Projuv‖ = v · u
‖u‖ .

In other words, the component of v in the direction of u is equal to the dot product between v
and u, the unit vector in the direction of u.



Proof. From the picture, we see that ℓ = ‖v‖ cos \. Using the cosine property of dot product, we
have

ℓ = ‖v‖ cos \ =
v · u
‖u‖

as desired. �

Cor. 5. The vector projection of v onto u is given by

Projuv =

(
v · u
‖u‖

)
u
‖u‖ .

Proof. By definition, the vector projection of v onto u is the unit vector u multiplied by scalar
projection of v onto u. �

A.4. Signed Distance to Hyperplane

Prop. 6. Let % = (G0, H0) ∈ R2, ! be the line 0G + 1H + 2 = 0, & = (G1, H1) be any point on !, and n
be the vector 〈0, 1〉 starting at the point &. The distance from point % to line ! is given by

3 =
0G0 + 1H0 + 2√

02 + 12
.

Proof. By Prop 1, n is perpendicular to !. The distance 3 from point % to ! is equal to the length
of the orthogonal projection of

−−→
&% on n. By Prop 5, the length of this scalar projection is given by

3 =

−−→
&% · n
‖n‖ .



Plugging in
−−→
&% = 〈G0 − G1, H0 − H1〉, we have

3 =
〈G0 − G1, H0 − H1〉 · 〈0, 1〉

√
02 + 12

=
0(G0 − G1) + 1(H0 − H1)√

02 + 12
.

Since & is a point on the line, 2 = −0G1 − 1H1, and so,

3 =
0G0 + 1H0 + 2√

02 + 12
.

�

Cor. 7. If n is a unit vector, then the distance from point % to line ! is given by 3 = 0G0 + 1H0 + 2.
Cor. 8. Point % is on the line if 3 = 0, positive if it is on the same side (wrt !) as n, and negative if
it is on the other side.

A.5. Mistake Bound Theorem

Thm. 9. If there exists a number W > 0 and a parameter vector w∗ with ‖w∗‖ = 1 such that

∀= : C= (x= ·w∗) ≥ W,

then the perceptron algorithm makes at most '2/W2 errors, where ' = max= ‖x=‖.
Remark.

I We can always find such an ': just look at the farthest data point from the origin.
I The margin W is the complexity parameter that defines the separability of data.
I The theorem is only true when samples are linearly separable, i.e., W > 0 exists!

Proof. Let w: be the parameter vector when the algorithm makes its :th error. If the :th error is
made on an example =, we have

w:+1 ·w∗ = (w: + C=x=) ·w∗ = w: ·w∗ + C= (x= ·w∗) ≥ w: ·w∗ + W

where the last inequality follows from the separability of dataset by a margin W. Since ‖w1‖ =
0, it follows by induction that w:+1 ·w∗ ≥ :W. By Cauchy-Schwarz inequality, the fact that
‖w:+1‖ × ‖w∗‖ ≥ w:+1 ·w∗ and ‖w∗‖ = 1, we have ‖w:+1‖ ≥ :W.

Next, we want to show that after : mistakes, ‖w:+1‖2 ≤ :'2. We also have

‖w:+1‖2 = ‖w: + C=x=‖2

= ‖w: ‖2 + C2=‖x=‖2 + 2C= (x= ·w:)︸         ︷︷         ︸
<0 as misclassified

≤ ‖w: ‖2 + '2

Again by induction, ‖w:+1‖ ≤ :'2. Combining two inequalities yields

:2W2 ≤ ‖w:+1‖ ≤ :'2 =⇒ ∀: : : ≤ '2

W2 . �

Remark. If W is small, randomization helps.
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