CHAPTER 1. TREE-BASED MODELS

1 TREE-BASED MODELS

1.1. Tree-based models involve stratifying or segmenting the predictor
space into regions. The general template is as follows.

1. Divide the predictor space—the set of possible values for features X, ..., X,—
into J distinct and non-overlapping regions Ry, ..., R;.

2. For every observation that falls into the region R;, we predict its response
based on the response values for the training observations in R;:

e For regression problems, we use the mean of response values for the

training observations in R;.
e For classification problems, we use the most commonly occurring

label for the training observations in R;.

1.1 Constructing the Regions.

1.2. So how exactly do we construct those regions in step 17 Recall our
goal is to find boxes Ry,..., R; that minimizes the RSS:

Z Z(yz - ?QR]-)27

j=1i€R;

where g, is the mean response for the training observations within box j.
However, it is computationally infeasible to consider every possible partition
of the feature space. For this reason, we use a top-down, greedy approach
known as recursive binary splitting.

1.3. Intuitively, for each iteration, we select a predictor X; and a cut-
point s to split one of the previously identified region (initially there is only
one region: the entire predictor space) into two sub-regions that leads to the
greatest possible reduction in RSS.

1.4. More precisely, for any j € [J] and s, we define the pair of half-planes
Ri(G,s) = {X | X; < s} and Ry(j,s) = {X | X; > s}
and we seek the value of j and s that minimizes the equation
Yo W)+ Y (iR
iz ER1(4,8) i:x2€R2(4,9)

where §r, and g, are the mean responses for the training observations in
R1(j,s) and Rs(7, s), respectively. We repeat this process, looking for the best
predictor and best cutpoint in order to split the data further. This process
continues until a stop criterion is matched.

CHAPTER 1. TREE-BASED MODELS 1.2. TREE PRUNING

1.2 Tree Pruning.

1.5. The above procedure is likely to overfit the data, because the resulting
tree might be too complex. To fix this, we grow a very large tree Ty and then
prune it to obtain a subtree. Our goal is to select a subtree that leads to the
lowest test error rate.

1.6. The naive solution is to estimate the test error using cross-validation
for each subtree, but there are just too many of them. A better solution is
to use cost complexity pruning (also known as weakest link pruning):
rather than considering every possible subtree, we consider a sequence of trees
indexed by a non-negative tuning parameter o.

1.7. For each value of «, there corresponds a subtree T" C Tj such that

7|

Y wi— k) +alT|

m=11:2,ERm

is minimized. Here, |T'| indicates the number of leaves/regions of the tree T
R, is the rectangular region corresponding to the mth terminating node, and
Ur,, is the predicted response (mean or mode) associated with R,,.

1.8. The tuning parameter « controls a trade-off between the subtree’s
complexity and its fit to the training data. When a = 0, the subtree T" will
simply equal Ty. As « increases, there is a price to pay for having many
leaves, so we obtain a smaller subtree.* This value v can be selected using
cross-validation. We then return to the full data set and obtain the subtree
corresponding to a.

1.9. The following is a complete algorithm that builds a regression tree:

Algorithm 1 Building a regression tree

1: Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum
number of observations.

2: Apply cost complexity pruning to the large to obtain a sequence of best
subtrees, as a function of a.

3: Use cross-validation to choose o which minimizes the average error.

4: Return the subtree from step 2 that corresopnds to the chosen value of a.

*Compare this with lasso regression.

CHAPTER 1. TREE-BASED MODELS 1.3. MORE REMARKS

1.8 More Remarks.

1.10. So far, we have been using RSS for regression trees. Naively, we
could use classification error rate for classification trees:

E=1- mkax(pmk)a

where p,,;, represents the proportion of training observations in the mth region
that are from the kth class. However, this is often not good enough. In
practice, we prefer the following two measures:

e Gini index, a measure of total variance across the K classes:
K
k=1

¢ Entropy, a common measure from information theory:

K

D == Pk 108 Pk
k=1

1.11. We now compare decision trees with linear models. In general,
decision trees are easier to explain, mirror human decision-making process,
can be graphically displayed, and have no need for dummy variables. However,
they have less predictive power and are non-robust. We now cover techniques
to address these issues.

1.12. Vanilla decision trees discussed above suffer from high variance.
This means the model we trained highly depend on the training observations.
Recall given a set of n independent observations 71, ..., Z,, each with variance
02, the variance of the mean Z of the observations is given by o2/n. In other
words, averaging a set of observations reduces variance. Based on this result,
we introduce three techniques: bagging, random forests, and boosting.

CHAPTER 1. TREE-BASED MODELS 1.4. BAGGING AND RANDOM FORESTS

1.4 Bagging and Random Forests.

1.13. Bagging involves repeatedly taking samples from the training data
set. This generates B different bootstrapped training data sets. We then train
our method on the bth bootstrapped training set to get f *b(x) and average all
predictions to obtain

¢ 1 o)
fbag(x) = EZf (‘T)
b=1

1.14. At a high level, we construct B regression trees using B boot-
strapped training sets, then average the resulting predictions. These trees
are grown deep, unpruned. Each individual tree has high variance but low
bias. Averaging them reduces the variance. For classification trees, we simply
take the majority vote when predicting.

1.15. Bagging improves prediction accuracy at the expense of interpretabil-
ity as the collection of bagged trees is much more difficult to interpret than a
single tree. Still, one can obtain an overall summary of the importance of each
predictor using the RSS (for regression trees) or the Gini index (for bagging
classification trees): record the total amount that RSS/GI is decreased due to
splits over a given predictor, average over all B trees; a large value indicates
an important predictor.

1.16. Suppose there is one very strong predictor in the data set along
with some moderately strong predictors. Then in the collection of bagged
trees, most or all of the trees will use this strong predictor in the top split
(due to our greedy approach). Consequently, all of the bagged tree will look
quite similar to each other. This causes problem as averaging highly correlated
quantities does not lead to a large reduction in variance.

1.17. To fix this problem, we aim to decorrelate the trees. Random
forest overcome this problem by forcing each split to consider only a subset
of the predictors. More precisely, each time a split in a tree is considered, a
random sample of m predictors is chosen as split candidates from the full set
of p predictors. The split is allowed to use only one of those m predictors.
Therefore, on average (p — m)/p of the splits will not consider the strong
predictor and other predictors will have more of a chance. Note that when
m = p, this is reduced to bagging.

1.18. In summary, this process decorrelates the trees, thereby making the
average of the resulting trees less variable and hence more reliable.

	Tree-Based Models

