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Chapter 1. Convex Sets

1.1. Let f : Rn → R be differentiable and consider the following problem:

min f(x)
s.t. x ∈ C ⊆ Rn (P)

In the special case where C = Rn, the minimizers of f (if any) will occur at the critical
points of f , namely at x ∈ Rn such that ∇f(x) = 0. This is known as the Fermat’s rule.

1.2. In this course, we will discuss and learn convexity of sets and functions and how
we can approach problem (P) in the more general settings of:

1. absence of differentiability of the function f , where f is convex, and/or

2. ∅ 6= C ( Rn, where C is convex.
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Chapter 1. Convex Sets

Section 1. Affine Sets

1.3. Geometrically speaking, a subset S ⊆ Rn is affine if the line1 joining any two
points from S lies completely in S. The intuitive picture of an affine space is an endless
uncurved structure, like a line or a plane in space.

1.4. Definition: Let S ⊆ Rn. Then

• S is an affine set if λx+ (1− λ)y ∈ S for all x, y ∈ S and λ ∈ R.

• S is an affine subspace if it is a non-empty affine set.

• The affine hull of S, denoted by aff(S), is the intersection of all affine sets containing
S. Equivalently, it is the smallest affine set containing S.

1.5. Intuition: Let’s first try to compare and contrast affine spaces with linear spaces.
In an affine space, there is no distinguished point that serves as an origin. Hence, no vector
has a fixed origin and no vector can be uniquely associated to a point. In an affine space,
there are instead displacement vectors or translation vectors between two points of the space.
Thus, it makes sense to subtract two points of the space, giving an translation vector, but
it does not make sense to add two points of the space. Likewise, it makes sense to add a
displacement vector to a point of an affine space, resulting in a new point translated from
the starting point by that vector.

1.6. (Cont’d): Any vector space is an affine space after you’ve forgotten which point
is the origin. In this case, the elements of the vector space may be viewed either as points of
the affine space or as translations. Adding a fixed vector to the elements of a linear subspace
of a vector space produces an affine subspace. We can say that this affine subspace has be
obtained by translating (away from the origin) the linear subspace by the translation vector.

1.7. Example: Some elementary examples of affine sets in Rn:

1. L, where L ⊆ Rn is a linear subspace.

2. a+ L, where a ∈ Rn and L ⊆ Rn is a linear subspace.

3. ∅ and Rn are extreme affine sets of Rn.

1.8. Example: The half-plane X = {(x1, x2) | x2 ≤ 0} is NOT a affine set, because
(0, 0), (−1, 0) ∈ X but the line ` connecting (0, 0) and (−1, 0) is not completely included in
X (as the upper half of ` is not in X).

1Not line segment! That is for convex sets.
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1. Affine Sets

1.9. Theorem: The linear subspaces of Rn are the affine sets which contain the origin.

Proof. Every subspace contains 0 and, being closed under addition and scalar multiplication,
is in particular an affine set. Conversely, suppose M is an affine set containing 0. For any
x ∈M and λ ∈ R, we have

λx = (1− λ)0 + λx ∈M,

so M is closed under scalar multiplication. Now, if x, y ∈M , we have

1

2
(x+ y) =

1

2
x+

(
1− 1

2

)
y ∈M =⇒ x+ y = 2 · 1

2
(x+ y) ∈M.

Thus, M is also closed under addition. It follows that M is a linear subspace. �

1.10. Recall the concepts of translation and parallelism from elementary geometry. We
here define them mathematically. Note this definition of parallelism is more restrictive than
the everyday one, in that it does not include the idea of a line being parallel to a plane. As
noted below, two affine sets that are parallel to each other must have the same dimension.

1.11. Definition: For M ⊆ Rn and a ∈ Rn, the translation of M by a is defined as

M + a = {x+ a | x ∈M}.

The vector a is called the displacement vector or translation vector.

1.12. Definition: Two affine sets M,M ′ ⊆ Rn are said to be parallel to each other if
M ′ = M + a for some a ∈ Rn. This defines an equivalence relation on the collection of affine
subsets of Rn.

1.13. It should be easy to see that any non-empty affine set S (think: a plane in R3) is
parallel to a unique linear subspace L (think: translating the plane to include the origin).

1.14. Theorem: Every non-empty affine set M is parallel to a unique subspace L given by

L = M −M = {x− y | x, y ∈M}.

Proof. We first show uniqueness. Two subspaces L1 and L2 both parallel to M would be
parallel to each other, so that L2 = L1 + a for some a ∈ Rn. Since 0 ∈ L2, we then have
−a = 0 − a ∈ L1 and hence a ∈ L1. But then L1 ⊇ L1 + a = L2. By a similar argument,
L2 ⊇ L1, so L1 = L2. Now observe that, for any y ∈M , M − y = M + (−y) is a translation
of M containing 0. By Theorem 1.9 and what we have just proved, this affine set must be the
unique subspace L parallel to M . Since L = M−y no matter which y ∈M is chosen (indeed,
translating M by any y ∈M guarantees the resulting set contains the origin 0 = y − y), we
actually have L = M −M . �

1.15. Definition: The dimension of a non-empty affine set is defined as the dimension
of the linear subspace parallel to it. (The dimension of ∅ is −1 by convention.)
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Chapter 1. Convex Sets

1.16. Remark: Naturally, affine sets of dimension 0, 1, and 2 are called points, lines,
and planes, respectively. An (n− 1)-dimensional affine set in Rn is called a hyperplane.

1.17. Motivation: Affine sets may be represented by linear functions and linear equa-
tions. Given a linear subspace L of Rn, the set of vectors x such that x ⊥ L (i.e., x ⊥ y
for all y ∈ L) is called the orthogonal complement of L, denoted L⊥, which is another
subspace and satisfies dimL + dimL⊥ = n. If b1, . . . , bm is a basis for L, then x ⊥ L is
equivalent to the condition that x ⊥ b1, . . . , x ⊥ bm. In particular, the (n − 1)-dimensional
subspace of Rn are the orthogonal complements of the one-dimensional subspaces, which
are the subspaces L having a basis consisting of a single non-zero vector b (unique up to a
non-zero scalar multiple). Thus, the (n− 1)-dimensional subspaces are the sets of the form
{x | x ⊥ b} where b 6= 0. The hyperplanes are translations of these: for any translation
vector a ∈ Rn,

{x | x ⊥ b}+ a = {x+ a | 〈x, b〉 = 0}
= {y | 〈y − a, b〉 = 0} = {y | 〈y, b〉 = β},

where β = 〈a, b〉. This leads to the following characterization of hyperplanes.

1.18. Theorem: Given β ∈ R and a non-zero vector b ∈ Rn, the set

H = {x ∈ Rn | 〈x, b〉 = β} ⊆ Rn

is a hyperplane in Rn. Moreover, every hyperplane may be represented in this way, with b
and β unique up to a common non-zero multiple.

1.19. Remark: The vector b in Theorem 1.18 is called a normal to the hyperplane H.
Every other normal to H is a non-zero scalar multiple of b. A good interpretation of this is
that every hyperplane has “two sides”.
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2. Convex Sets

Section 2. Convex Sets

1.20. A subset C ⊆ Rn is convex if the line segment joining any two points from C lies
completely in C. Intuitively, this means the set is connected (so that you can travel between
any two points without leaving the set) and has no dents in its perimeter.

1.21. Definition: The set C ⊆ Rn is convex if λx+ (1− λ)y ∈ C for all x, y ∈ C and
λ ∈ (0, 1).

1.22. Example: Halfspaces are important examples of convex sets. For any b ∈ Rn\{0}
and β ∈ R, the sets

• {x | 〈x, b〉 ≤ β}, {x | 〈x, b〉 ≥ β} (the closed halfspaces) and

• {x | 〈x, b〉 < β}, {x | 〈x, b〉 > β} (the open halfspaces)

are non-empty and convex. Note replacing b and β by λb and λβ for some λ 6= 0 gives the
exact same set of halfspaces. (For example, 〈x, λb〉 = λ 〈x, b〉 ≤ λβ ⇐⇒ 〈x, b〉 ≤ β.) Thus,
these halfspaces depend only on the hyperplane H = {x | 〈x, b〉 = β}.

1.23. Theorem: The intersection of an arbitrary collection of convex sets is convex.

Proof. Let (Ci)i∈I be a collection of convex subsets of Rn indexed by I. Define C :=
⋂
i∈I Ci.

Fix x, y ∈ C and λ ∈ (0, 1). Since Ci is convex for all i ∈ I, i.e., ∀i ∈ I : λx+ (1− λ)y ∈ Ci,
we get λx+ (1− λ)y ∈

⋂
i∈I Ci = C. Hence, C is convex. �

1.24. Corollary: Let bi ∈ Rn and βi ∈ R for i ∈ I, where I is an arbitrary index set.
Then the set C = {x ∈ Rn | ∀i ∈ I : 〈x, bi〉 ≤ βi} is convex.

Proof. For each i ∈ I, define Ci := {x ∈ Rn | 〈x, bi〉 ≤ βi}. We claim that all such Ci’s are
convex. Indeed, let i ∈ I and fix x, y ∈ Ci and λ ∈ (0, 1). Set z := λx+ (1− λ)y. Then

〈z, bi〉 = 〈λx+ (1− λy), bi〉
= λ 〈x, bi〉+ (1− λ) 〈y, bi〉 linearity of 〈·, ·〉
≤ λβi + (1− λ)βi ∀x ∈ Ci : 〈x, bi〉 ≤ βi

= βi.

Thus, z ∈ Ci and Ci is convex. Now C is just the intersection of all Ci’s, so by Theorem
1.23 it is convex. �

1.25. Remark: It’s easy to see that this corollary holds if some of the inequalities ≤
were replaced by ≥, >,<, or = (we just define individual Ci’s differently). Thus, given any
system of simultaneous linear inequalities and equations in n variables, the set of solutions
is a convex set in Rn.
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Chapter 1. Convex Sets

1.26. Definition: A vector sum λ1x1 + · · · + λmxm is called a convex combination
of vectors x1, . . . , xm ∈ Rm if λi ≥ 0 for all i = 1, . . . ,m and λ1 + · · ·+ λm = 1.

1.27. Remark: In many situations where convex combinations occur in applied math-
ematics, λ1, . . . , λm can be interpreted as probabilities or proportions.

1.28. Theorem: A subset C ⊆ Rn is convex iff it contains all the convex combinations
of its elements.

Proof. (⇐) This direction is trivial.

(⇒) Suppose C is convex. We proceed by induction on m, the number of vectors in the
convex combination. For m = 2, the conclusion is clear as C is convex. Now suppose
that for some m > 2, it holds that any convex combination of m vectors lies in C. Let
{x1, . . . , xm, xm+1} ⊆ C and λ1, . . . , λm, λm+1 ≥ 0 such that

∑m+1
i=1 λi = 1. Our goal is to

show that z := λ1x1 + · · ·+ λmxm + λm+1xm+1 ∈ C.

Observe there must exist at least one λ ∈ [0, 1) as otherwise (if all λi = 1) the sum would
be greater than 1. WLOG, assume that λm+1 ∈ [0, 1). Now

z =
m+1∑
i=1

λixi =

(
m∑
i=1

λixi

)
+ λm+1xm+1

= (1− λm+1)

(
m∑
i=1

λi
1− λm+1

xi

)
+ λm+1xm+1

= (1− λm+1)

(
m∑
i=1

λ′i xi

)
+ λm+1xm+1

Observe that λ′i :=
λi

1− λm+1

≥ 0 and

m+1∑
i=1

λi = 1 =⇒
m∑
i=1

λ′i =
λ1 + · · ·+ λm

1− λm+1

=
1− λm+1

1− λm+1

= 1.

Then z is a convex combination of two vectors in C, so it also lies in C i.e.,

z = (1− λm+1)

(
m∑
i=1

λ′ixi

)
︸ ︷︷ ︸
∈ C by IH

+λm+1 xm+1︸ ︷︷ ︸
∈C

∈ C.

It follows that C is convex as desired. �
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2. Convex Sets

1.29. Definition: Let S ⊆ Rn. The intersection of all convex sets containing S is called
the convex hull of S and is denoted by conv(S). It is the smallest convex set containing S.

1.30. Theorem: Let S ⊆ Rn. Then conv(S) consists of all convex combinations of the
elements of S, i.e.,

conv(S) =

{∑
i∈I

λixi | I is a finite index set and ∀i ∈ I : xi ∈ S, λi ≥ 0,
∑
i∈I

λi = 1

}
.

Proof. Define

D :=

{∑
i∈I

λixi | I is a finite index set and ∀i ∈ I : xi ∈ S, λi ≥ 0,
∑
i∈I

λi = 1

}
.

(conv(S) ⊆ D) Clearly, S ⊆ D. We claim that D is convex. Let d1, d2 ∈ D and λ ∈ [0, 1].
Then we can write

d1 =
k∑
i=1

λixi where λ1, . . . , λk ≥ 0,
k∑
i=1

λi = 1, {x1, . . . , xk} ⊆ S,

d2 =
r∑
j=1

µjyj where µ1, . . . , µr ≥ 0,
r∑
j=1

µj = 1, {y1, . . . , yr} ⊆ S.

Therefore,

λd1 + (1− λ)d2 = [λλ1x1 + · · ·+ λλkxk] + [(1− λ)µ1y1 + · · ·+ (1− λ)µryr].

Observe that λλ1 and (1− λ)µj are non-negative for all i ∈ [k] and j ∈ [r] and that

λλ1 + · · ·+ λλk + (1− λ)µ1 + · · ·+ (1− λ)µr = λ
k∑
i=1

λi + (1− λ)
r∑
j=1

µj

= λ · 1 + (1− λ) · 1 = 1.

Altogether, we conclude that D is a convex set ⊇ S and thus conv(S) ⊆ D.

(D ⊆ conv(S)) Observe that S ⊆ conv(S). Now combine with Theorem 1.28 to learn that
the convex combinations of elements of S lie in conv(S). �
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Chapter 1. Convex Sets

Section 3. The Projection Operator

1.31. Let us first review some results from real analysis.

• A sequence (xn)n∈N in Rn is said to be Cauchy if ‖xm− xn‖ → 0 as min{m,n} → ∞.

• Rn is complete, i.e., every Cauchy sequence in Rn converges.

• Let y ∈ Rn and ‖ · ‖ be the Euclidean norm on Rn. Then the function f : Rn → R
defined by x 7→ ‖x− y‖ (i.e., ‖ · −y‖) is continuous.

1.32. We now cover two basic algebraic properties. We will use them later in the proof
of results related to the projection operator.

1.33. Lemma: Let x, y, z ∈ Rn. Then

‖x− y‖2 = 2‖z − x‖2 + 2‖z − y‖2 − 4

∥∥∥∥z − x+ y

2

∥∥∥∥2 .
1.34. Lemma: Let x, y ∈ Rn. Then

〈x, y〉 ≤ 0 ⇐⇒ ∀λ ∈ [0, 1] : ‖x‖ ≤ ‖x− λy‖.

Proof. Observe that

‖x− λy‖2 − ‖x‖2 = ���‖x‖2 − 2λ 〈x, y〉+ λ2‖y‖2 −���‖x‖2 = λ(λ‖y‖2 − 2 〈x, y〉). (1.1)

Suppose 〈x, y〉 ≤ 0. Then

λ‖y‖2 ≥ 0 ∧ −2 〈x, y〉 ≥ 0 =⇒ ‖x− λy‖2 − ‖x‖2 = λ(λ‖y‖2 − 2 〈x, y〉) ≥ 0.

Conversely, suppose that for every λ ∈ (0, 1], ‖x− λy‖ ≥ ‖x‖. Then (1.1) implies that

〈x, y〉 ≤ λ

2
‖y‖2.

Taking the limit as λ→ 0 yields the desired result. �

1.35. Intuition: Let us give some geometric intuition on the inner product in Rn (i.e.,
the dot product). Recall that in Rn, 〈x, y〉 = ‖x‖‖y‖ cos(θ) where θ is the angle (in radians)
between x and y. Since ‖x‖, ‖y‖ ≥ 0, 〈x, y〉 ≤ 0 ⇐⇒ cos(θ) < 0, which occurs when
θ > 90◦. Thus, if the inner product of x and y is positive, then they form an acute angle and
each vector has a component in the same direction of the other; if the dot product is negative,
then they form an obtuse angle and each vector has a component in the opposite of the other;
and if the dot product is zero, then they form a right angle and they are orthogonal to each
other. The sign of the inner product gives information about the geometric relationship of
the two vectors. This intuition will be important later when we discuss concepts such as
normal cones.
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3. The Projection Operator

1.36. The distance between a point x and a set S ⊆ Rn is the infimum of the distances
between the point x and those in the set S. Intuitively, we find the element s ∈ S “closest”
to x and then take the distance between them to be the distance between x and S.

1.37. Definition: Let S ⊆ Rn. The distance function to S is defined as

dS : Rn → [0,∞]

x 7→ inf
s∈S
‖x− s‖.

1.38. The projection of x onto C is the element in C that attains the infimum given
by dC(x). If p = PC(x), then it is the closest one (to x) among all elements in C.

Figure 1.1: Projecting x onto C.

1.39. Definition: Let C ⊆ Rn be non-empty, x ∈ Rn, and p ∈ C. Then p is the
projection of x onto C, denoted by PC(x), if dC(x) = ‖x− p‖.

1.40. Theorem (The Projection Theorem): Let C ⊆ Rn be non-empty, closed, and
convex. Then PC(x) exists and is unique for all x ∈ Rn, and for every x, p ∈ Rn,

p = PC(x) ⇐⇒ p ∈ C ∧ ∀y ∈ C : 〈y − p, x− p〉 ≤ 0.

Proof. Let x ∈ Rn. Our goal is to show that x has a unique projection onto C.

(Existence) By definition, the distance from x to C is given by dC(x) = infc∈C ‖x − c‖.
Therefore, there exists a sequence (cn)n∈N in C such that

dC(x) = lim
n→∞

‖cn − x‖. (1.2)

Now let m,n ∈ N. By convexity of C, we know that (cm + cn)/2 ∈ C. Hence,

dC(x) = inf
c∈C
‖x− c‖ ≤

∥∥∥∥x− 1

2
(cm + cn)

∥∥∥∥ . (1.3)

Applying Lemma 1.33 with (x, y, z) = (cm, cn, (cm + cn)/2), we learn that

‖cn − cm‖2 = 2‖cn − x‖2 + 2‖cm − x‖2 − 4

∥∥∥∥x− cn + cm
2

∥∥∥∥2
≤ 2‖cn − x‖2 + 2‖cm − x‖2 − 4d2C(x)

9



Chapter 1. Convex Sets

where the inequality follows from (1.3). By (1.2), letting m→∞ and n→∞, we see that

0 ≤ ‖cn − cm‖2
m,n→∞→ 2d2C(x) + 2d2C(x)− 4d2C(x) = 0.

Hence, (cn)n∈N is a Cauchy sequence in C and thus converges to some p:

lim
n→∞

cn = p.

Note p ∈ C as C is closed. We will now show that dC(x) = ‖x− p‖, so by definition p is the
desired projection. First, the function ‖x − ·‖ is continuous. Combining with cn → p and
(1.2), we learn that ‖x− cn‖ → dC(x) and ‖x− cn‖ → ‖x− p‖, which gives

dC(x) = ‖x− p‖.

This concludes the existence of p = PC(x).

(Uniqueness) Suppose that q ∈ C satisfies dC(x) = ‖q−x‖. By convexity of C, (p+q)/2 ∈ C.
Using Lemma 1.33 with (x, y, z) = (p, q, (p+ q)/2), we see that

0 ≤ ‖p− q‖2 = 2‖p− x‖2 + 2‖q − x‖2 − 4

∥∥∥∥x− p+ q

2

∥∥∥∥2
≤ 2d2C(x) + 2d2C(x)− 4d2C(x)

≤ 0.

Hence, ‖p− q‖ = 0 and p = q. Therefore the projection is unique.

Next, we want to show that

∀x ∈ Rn, ∀p ∈ Rn : p = PC(x) ⇐⇒ p ∈ C ∧ ∀y ∈ C : 〈y − p, x− p〉 ≤ 0.

We do so with a series of iffs. Indeed,

p = PC(x) ⇐⇒ p ∈ C ∧ ‖x− p‖2 = d2C(x).

By convexity of C, yα := αy + (1− α)p ∈ C for every y ∈ C and α ∈ [0, 1]. Therefore,

‖x− p‖2 = d2C(x) ⇐⇒ (∀y ∈ C)(∀α ∈ [0, 1]) : ‖x− p‖2 ≤ ‖x− yα‖2

⇐⇒ (∀y ∈ C)(∀α ∈ [0, 1]) : ‖x− p‖2 ≤ ‖x− p− α(y − p)‖2

⇐⇒ ∀y ∈ C : 〈x− p, y − p〉 ≤ 0.

where in the second iff we subtracted p and added αp for α ∈ [0, 1]; the third iff used Lemma
1.34 with (x, y) = (x− p, y − p). �

1.41. Remark: Note both closedness and convexity are necessary.

• In the absence of closedness, PC(x) doesn’t exist for all x 6∈ C as the limit point of the
sequence (cn)n∈N in the first proof is not guaranteed to be contained by C.

• In the absence of convexity, the projection might not unique. For example, with
C := [−2, 1] ∪ [1, 2], x = 0 has two closest points: −1 and 1, so PC(0) = {−1, 1}.
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3. The Projection Operator

1.42. Example: Let ε > 0 and C = b̄ε(0) := {x ∈ Rn : ‖x‖2 ≤ ε2}, i.e., the closed ball
in Rn centered at 0 with radius ε. We claim that

∀x ∈ Rn : PC(x) =
ε

max{‖x‖, ε}
x.

Let x ∈ Rn and set p = PC(x) given above. Using the projection theorem, it suffices to show
that p ∈ C and 〈x− p, y − p〉 ≤ 0 for all y ∈ C.

(p ∈ C) First, if ‖x‖ ≤ ε, then x ∈ C and p = (ε/ε)x = x ∈ C. Now if ‖x‖ > ε, then

p =
ε

‖x‖
x =⇒ ‖p‖ = ε

‖x‖
‖x‖

= ε =⇒ ‖p‖2 ≤ ε2 =⇒ p ∈ C.

(∀y ∈ C : 〈x− p, y − p〉 ≤ 0) Let y ∈ C. If ‖x‖ ≤ ε, then p = x and 0 = 〈x− p, y − p〉 ≤ 0.
Now if ‖x‖ ≥ ε, then p = (ε/‖x‖) · x. Now observe that

〈x− p, y − p〉 =

〈
x− ε

‖x‖
x, y − ε

‖x‖
x

〉
=

(
1− ε

‖x‖

)〈
x, y − ε

‖x‖
x

〉
=

(
1− ε

‖x‖

)(
〈x, y〉 − ε

‖x‖
‖x‖2

)
=

(
1− ε

‖x‖

)
(〈x, y〉 − ε‖x‖)

≤
(

1− ε

‖x‖

)
(‖x‖‖y‖ − ε‖x‖) Cauchy-Schwarz

≤
(

1− ε

‖x‖

)
(‖x‖ε− ε‖x‖) y ∈ C =⇒ ‖y‖ ≤ ε

= 0.
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Chapter 1. Convex Sets

Section 4. The Algebra of Convex Sets

1.43. The class of convex sets is preserved by a rich variety of algebraic operations.

1.44. Note: Let C ⊆ Rn be convex. Then any translation C + a := {c + a | c ∈ C}
for a ∈ Rn and every scalar multiple λC := {λc | c ∈ C} for λ ∈ R are also convex.
Geometrically, for λ > 0, λC is the image of C under the transformation which expands or
contracts Rn by the factor λ with the origin fixed.

1.45. Note: The symmetric reflection of C across the origin is −C := (−1)C. A
convex set is said to be symmetric if −C = C. Such a set (if non-empty) must contain
the origin, since it must contain along with each vector x, not only −x, but the entire line
segment between x and −x.

1.46. Definition: Let C,D ⊆ Rn. The Minkowski sum of C and D is given by

C +D := {c+ d | c ∈ C, d ∈ D}.

1.47. Theorem: Let C1, C2 ⊆ Rn be convex. Then C1 + C2 is convex.

Proof. If one of them is ∅ then their Minkowski sum is ∅ and the conclusion follows. Now
suppose both are not empty, so C + D is non-empty. Let x, y ∈ C1 + C2 and λ ∈ (0, 1).
Since x ∈ C1 + C2, there exists x1 ∈ C1, x2 ∈ C2 such that x = x1 + x2. Similarly, we can
find y1 ∈ C1, y2 ∈ C2 such that y = y1 + y2. Now

λx+ (1− λ)y = λ(x1 + x2) + (1− λ)(y1 + y2)

= λx1 + (1− λ)y1 + λx2 + (1− λ)y2 ∈ C1 + C2.

The proof is complete. �

1.48. Proposition: Let C,D be non-empty, closed, convex subsets of Rn such that D
is bounded. Then C +D is non-empty, closed, and convex.

Proof. Both are non-empty so the sum is non-empty; both are convex so C + D is convex
by Theorem 1.47. It remains to show that C + D is closed. Take a convergent sequence
(xn + yn)n∈N in C + D such that (xn)n∈N lies in C, (yn)n∈N lies in D, and xn + yn → z.
We show that z ∈ C + D. By assumption, D is bounded, so (yn)n∈N is bounded. Using
BW, there is a convergent subsequence (ykn)n∈N converging to y ∈ D as D is closed. Since
(xn + yn) → z, the subsequence (xkn + ykn) → z. Since yn → y, we get xkn → z − y. Since
xkn is convergent, z − y ∈ C as C is closed. Thus, z ∈ C + y ⊆ C +D and we are done. �

1.49. Remark: Both results can be generalized to a finite collection of sets, e.g., if
C1, . . . , Cm are convex, then C1 + · · ·+ Cm is convex.

12



4. The Algebra of Convex Sets

1.50. Example: If we drop the constraint “at least one of C,D is bounded”, then the
proposition above no longer holds. Let R++ := (0,∞) and consider

C1 = R× {0} (i.e., the x-axis),

C2 = {(x, y) ∈ R2
++ | xy ≥ 1}.

Then both C1 and C2 are closed and convex. We claim that C1 + C2 = R × R++, which is
convex but open, which is a valid counterexample for the proposition above.

• C1 + C2 ⊆ R × R++: Let (z1, z2) ∈ C1 + C2. Then there exist (x1, x2) ∈ C1 and
(y, 0) ∈ C2 such that z1 = x1 + y1 and z2 = x2. Clearly, z1 = x1 + y1 ∈ R and
z2 = x2 > 0. Thus, C1 + C2 ⊆ R× R++.

• C1 + C2 ⊇ R × R++: Let (x, y) ∈ R × R++. Set c1 := (x − 1/y, 0) and c2 := (1/y, y).
Then c1 ∈ C1, c2 ∈ C2 and (x, y) = c1 + c2 ∈ C1 + C2.

1.51. Even without convexity, the following algebraic laws related to addition and scalar
multiplication hold:

C1 + C2 = C2 + C1

(C1 + C2) + C3 = C1 + (C2 + C3)

λ1 (λ2C) = (λ1λ2)C

λ (C1 + C2) = λC1 + λC2

Now if the sets are convex, we have one more property. This is in fact equivalent to the
convexity of the set C, since the law implies that λC + (1− λ)C ∈ C whenever λ ∈ (0, 1).

1.52. Theorem: Let C be a convex set and λ1, λ2 ≥ 0. Then

(λ1 + λ2)C = λ1C + λ2C.

Proof. (⊆): Let x ∈ (λ1 + λ2)C. Then there exists c ∈ C such that x = (λ1 + λ2)c =
λ1c+ λ2c ∈ λ1C + λ2C. Note this direction always holds, even in the absence of convexity.

(⊇): WLOG, assume λ1 + λ2 > 0 (otherwise, both are zero and the conclusion is trivial).
By convexity of C, we have

λ1
λ1 + λ2

C +
λ2

λ1 + λ2
C ⊆ C.

Equivalently, λ1C + λ2C ⊆ (λ1 + λ2)C. �
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Chapter 1. Convex Sets

Section 5. Topological Properties of Convex Sets

1.53. Note: Let B denote the closed Euclidean unit ball in Rn:

B = B(0, 1) = {x ∈ Rn | ‖x‖2 ≤ 1}

For any point a ∈ Rn, the closed ball centered at a with radius ε > 0 is given by

B(a; ε) = {a+ x ∈ Rn | ‖x‖2 ≤ ε}
= a+ {x ∈ Rn | ‖x‖2 ≤ ε}
= a+ εB.

For any set C ∈ Rn, the set of points x whose distance from C does not exceed ε is

{x | ∃y ∈ C : ‖x− y‖ ≤ ε} =
⋃
{y + εB | y ∈ C}

= C + εB.

Note we consider the closed ball because closeness is important in convex analysis.

1.54. Definition: The interior and closure of a set C ⊆ Rn are given by

int(C) = {x | ∃ε > 0 : x+ εB ⊆ C},

C = cl(C) =
⋂
{C + εB | ε > 0}.

1.55. Remark: Let’s connect these definitions with those from the past analysis courses.

• Interior: Recall x ∈ R is in the interior of C ⊆ Rn if C contains a ball centered at x
of radius ε. As derived above, such a ball can be expressed as x+ εB.

• Closure: Now recall that the closure of C ⊆ Rn is the set C together with all of
its limit points and it is the smallest closed set containing S. Equivalently, it is the
intersection of all closed sets containing S. As derived above, C + εB is a closed set
containing C, so we take the intersection of all such sets to obtain the closure of C.

1.56. Definition: The relative interior of a convex set C is

ri(C) := {x ∈ aff(C) | ∃ε > 0 : (x+ εB) ∩ aff(C) ⊆ C}.

1.57. Intuition: Imagine a circle (2D object) but in R3. The circle intuitively “should”
have non-empty interior (i.e., the points “inside” the circle) but by definition, it has an empty
interior in R3 (because one of its dimension is 0 so it cannot contain any open ball). Now
the notion of relative interior takes you back to R2 (by considering how the set S behaves
on its affine hull aff(S)), so the circle has non-empty relative interior even when embedded
in a higher-dimensional space.

1.58. Remark: For any C ⊆ Rn, ri(C) ⊆ C ⊆ C.
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5. Topological Properties of Convex Sets

1.59. The following result tells us that if the interior of a set C ⊆ Rn is non-empty, then
the relative interior coincides with the interior. Indeed, we introduced the relative interior
to handle where the interior is empty. Since int(C) 6= ∅, the affine hull of C must be Rn, so
the (x+ εB) ∩ aff(C) ⊆ C reduces to (x+ εB) ⊆ C which matches the definition of int(C).

1.60. Proposition: Let C ⊆ Rn. Suppose that int(C) 6= ∅. Then int(C) = ri(C).

Proof. Let x ∈ int(C). Then there exist ε > 0 such that B(x; ε) ⊆ C. Hence,

Rn = aff(B(x; ε)) ⊆ aff(C) ⊆ Rn.

Therefore, aff(C) = Rn and the conclusion follows by recalling that

ri(C) = {x ∈ aff(C) | ∃ε > 0 : (x+ εB) ∩ aff(C) ⊆ C}
= {x ∈ Rn | ∃ε > 0 : (x+ εB) ∩ Rn ⊆ C} aff(C) = Rn

= {x ∈ Rn | ∃ε > 0 : (x+ εB) ⊆ C} ∀A ⊆ Rn : A ∩ Rn = A

= int(C).

�

1.61. Let C be convex. The next result says given an interior point x ∈ int(C) and a
closure point y ∈ C, the line segment between x and y, including y and excluding y, [x, y),
is in the interior of C. This should be pretty intuitive.

1.62. Proposition: Let C ⊆ Rn be convex. Then ∀x ∈ int(C),∀y ∈ C : [x, y) ⊆ int(C).

Proof. Our goal is to show that

∀x ∈ int(C),∀y ∈ C,∀λ ∈ [0, 1) : (1− λ)x+ λy ∈ int(C).

Let λ ∈ [0, 1). We need to show that for some ε > 0, the ball centered at x with radius ε is
contained in C, i.e., (1− λ)x+ λy + εB ⊆ C for some ε > 0. Observe that, because y ∈ C,
we have y ∈ C + εB for all ε > 0.

(1− λ)x+ λy + εB ⊆ (1− λ)x+ λ(C + εB) + εB y ∈ C + εB

= (1− λ)x+ λC + λεB + εB

= (1− λ)x+ (1 + λ)εB + λC Theorem 1.52

= (1− λ)

[
x+

1 + λ

1− λ
εB

]
+ λC

⊆ (1− λC) + λC for sufficiently small ε

⊆ C. Theorem 1.52

�

1.63. The same result holds if we replace interior with relative interior.
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Chapter 1. Convex Sets

1.64. Theorem: Let C ⊆ Rn be convex. Then ∀x ∈ ri(C), ∀y ∈ C : [x, y) ⊆ ri(C).

Proof. By the previous proposition, if int(C) 6= ∅, then

∀x ∈ int(C),∀y ∈ C,∀λ ∈ [0, 1) : (1− λ)x+ λy ∈ int(C).

Combine this with Proposition 1.60 (int(C) = ri(C)), we are done for this case. Now suppose
int(C) = ∅, then we must have dimC = m < n. Let L = aff(C) − aff(C) be the unique
linear subspace parallel to C whose dimension is m. Then L can be regarded as a copy of
Rm. After translating C with −c ∈ C (if necessary), we can (and do) assume that C ⊆ Rm

and the interior of C wrt Rm is the relative interior ri(C) (in Rn). Now apply case 1. �

1.65. If C is convex, then both its interior and its closure are convex. Moreover, if it
has an non-empty interior, then everything behaves as expected.

1.66. Theorem: Let C ⊆ Rn be convex. Then the following hold:

1. C is convex and int(C) is convex.

2. Suppose that int(C) 6= ∅. Then int(C) = int(C) and C = int(C).

Proof.
(Proof of 1(1)) Let x, y ∈ C and λ ∈ (0, 1). Then there exist sequences (xn)n∈N and (yn)n∈N
in C such that xn → x and yn → y. Since C is convex, λxn + (1− λ)yn ∈ C. Consequently,

λxn + (1− λ)yn → λx+ (1− λy) =⇒ λx+ (1− λy) ∈ C.

Hence, C is convex. �

(Proof of 1(2)) If int(C) = ∅ the conclusion is trivial. Otherwise, use the previous proposition
with y ∈ int(C) ⊆ C. Observe that

[x, y] = [x, y) ∪ {y} ⊆ int(C) ∪ int(C) = int(C).

�

(Proof of 2(1)) Clearly, C ⊆ C, so int(C) ⊆ int(C). Conversely, let y ∈ int(C). Then there
is some ε > 0 such that B(y; ε) ⊆ C. Now let x ∈ int(C), λ > 0 such that x 6= y, and

y + λ(y − x) ∈ B(y; ε) ⊆ C.

By Proposition 1.62 applied with y replaced by y+λ(y−x), we learn that (see Remark 1.67)

y ∈ [x, y + λ(y − x)) ⊆ int(C).

Therefore, int(C) ⊆ int(C) and thus int(C) = int(C). �

(Proof of 2(2)) Clearly, int(C) ⊆ C. Conversely, let y ∈ C and let x ∈ int(C). Define

yλ = (1− λ)x+ λy

for each λ ∈ [0, 1). Again, Proposition 1.62 tells us that the sequence (yλ)λ∈[0,1) lies in

[x, y) ⊆ int(C). Hence, y = limλ→0 yλ ∈ int(C). Therefore, C ⊆ int(C) and C = int(C). �
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5. Topological Properties of Convex Sets

1.67. Remark: For the “∈” above, set α := 1
1+λ
∈ (0, 1) and observe that

y = (1− α)x+ α(y + λ(y − x)) 6= y + λ(y − x).

Indeed, (1− α)x+ α(y + λ(y − x)) = (1− α(1 + λ))x+ α(1 + λ)y = y.

1.68. The following results are listed here without proofs. We will use them later.

1.69. Fact: Let C ⊆ Rn be convex. Then ri(C) ⊆ Rn is convex. Moreover,

C 6= ∅ ⇐⇒ ri(C) 6= ∅.

1.70. Fact: Let C1, C2 be convex subsets of Rm and λ ∈ R. Then

ri(λC1 + C2) = λri(C1) + ri(C2).

1.71. Fact: Let C1 ⊆ Rm, C2 ⊆ Rp be convex. Then

ri(C1 ⊕ C2) = ri(C1)⊕ ri(C2) := {(c1, c2) | c1 ∈ ri(C1), c2 ∈ ri(C2)}.
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Chapter 1. Convex Sets

Section 6. Separation Theorems

1.72. Intuitively, a hyperplane in Rn (an (n−1)-dimensional affine set) divides Rn evenly
in two, in the sense that the complement of the hyperplane is the union of two disjoint open
convex sets, the open half-spaces associated with the hyperplane.

1.73. Here’s the more intuitive set of definitions. Let C1, C2 be non-empty sets in Rn. A
hyperplane H is said to separate C1 and C2 if C1 is contained in one of the closed half-spaces
associated with H and C2 lies in the opposite closed half-space. It is said to separate C1

and C2 strongly if there exists some ε > 0 such that C1 + εB is contained in one of the
open half-spaces associated with H and C2 +εB is contained in the opposite open half-space
(recall that Ci + εB consists of the points x such that |x− c| ≤ ε for some c ∈ Ci.

1.74. Definition: Two sets C1, C2 ⊆ Rn are separated if ∃b ∈ Rn \ {0} such that

sup
c1∈C1

〈c1, b〉 ≤ inf
c2∈C2

〈c2, b〉 .

Sets C1 and C2 are strongly separated if the inequality is strict. We say that x ∈ Rn is
(strongly) separated from C ⊆ Rn if the set {x} is (strongly) separated from C.

1.75. Remark: Let’s show that this definition is equivalent to 1.73. Let b 6= 0 satisfy
the given condition. Choose any β between the infimum over C2 and the supremum over C1.
Since b 6= 0 and β ∈ R, H = {x | 〈x, b〉 = β} is a hyperplane (Theorem 1.18). The halfspace
{x | 〈x, b〉 ≤ β} contains C1 while {x | 〈x, b〉 ≥ β} contains C2. Therefore, this condition
implies the definitions in 1.73.

Conversely, when C1 and C2 can be separated (in the sense of 1.73), the separating plane
and associated closed half-spaces containing C1 and C2 can be expressed in the manner just
described for some b and β. One has 〈x, b〉 ≤ β for every C1 and 〈x, b〉 ≥ β for every x ∈ C2,
with strict inequality for at least one x ∈ C1 or x ∈ C2. This concludes the other direction.

1.76. (Cont’d): Now if the inequality is strict for some b, we can actually choose β ∈ R
and δ > 0 such that 〈x, b〉 ≤ β + δ for every x ∈ C1 and 〈x, b〉 ≥ β − δ for every x ∈ C2.
Since the unit ball B is bounded, ε can be chosen so small that | 〈y, b〉 | < δ for every y ∈ εB.
Then we get

C1 + εB ⊆ {x | 〈x, b〉 < β}, C2 + εB ⊆ {x | 〈x, b〉 > β},

so that H = {x | 〈x, b〉 = β} separates C1 and C2 strongly. Conversely, if they can be
separated strongly, the inclusions just described hold for a certain b, β and ε > 0. Then

β ≥ sup{〈x, b〉+ ε 〈y, b〉 | x ∈ C1, y ∈ B} > sup{〈x, b〉 | x ∈ C1},
β ≤ inf{〈x, b〉+ ε 〈y, b〉 | x ∈ C2, y ∈ B} < inf{〈x, b〉 | x ∈ C2}

so the strict inequality holds.
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6. Separation Theorems

1.77. Theorem: Let C be a non-empty, closed, convex subset of Rn and suppose that
x 6∈ C. Then x is strongly separated from C.

Proof. Applying the definition, we need to guarantee the existence of 0 6= b ∈ Rn such that

sup
c∈C
〈c, b〉 < inf 〈x, b〉 = 〈x, b〉 .

Equivalently, we want to find some b 6= 0 such that

sup
c∈C
〈c− x, b〉 < 0.

Set b := x− PCx where PCx denotes the projection of x onto C. Note b 6= 0 as x 6∈ C. By
the Projection Theorem, we have

p = PCx ⇐⇒ p ∈ C and ∀y ∈ C : 〈y − p, x− p〉 ≤ 0.

Rewrite the rightmost condition with p being replaced by x− b = PC(x) ∈ C, we have

〈y − (x− b), x− (x− b)〉 ≤ 0 ⇐⇒ 〈y − x+ b, b〉 ≤ 0 ⇐⇒ 〈y − x, b〉 ≤ − 〈b, b〉 = −‖b‖2.

Consequently,

sup
y∈C
〈y, b〉 − 〈x− b〉 ≤ −‖b‖2 < 0 =⇒ sup

y∈C
〈y, b〉 < 〈x, b〉

as desired. �

1.78. Corollary: Let C1, C2 be non-empty sets of Rn such that C1∩C2 = ∅ and C1−C2

is closed and convex. Then C1 and C2 are strongly separated.

Proof. By definition, C1 and C2 are strongly separated iff C1 − C2 and 0 are strongly
separated. Indeed, C1 − C2 and 0 are strongly separated iff there exists b 6= 0 such that

sup
c1∈C1,c2∈C2

〈c1 − c2, b〉 < inf 〈0, b〉 = 0

⇐⇒ sup
c1∈C1,c2∈C2

{〈c1, b〉+ 〈−c2, b〉} < 0

⇐⇒ sup
c1∈C1

〈c1, b〉+ sup
c2∈C2

〈−c2, b〉 < 0

⇐⇒ sup
c1∈C1

〈c1, b〉 < − sup
c2∈C2

〈−c2, b〉 = inf
c2∈C2

〈c2, b〉 .

The conclusion follows by noticing that C1 ∩C2 = ∅ =⇒ 0 6∈ C1−C2, and combining with
Theorem 1.77. �

1.79. Corollary: Let C1, C2 be non-empty closed convex subsets of Rn such that C1 ∩
C2 = ∅ and C2 is bounded. Then C1 and C2 are strongly separated.

Proof. Observe that −C2 is non-empty, closed, and convex. Therefore, by 1.48, C1 − C2 is
non-empty, closed, and convex. Now combine with the last corollary. �
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Chapter 1. Convex Sets

1.80. Theorem: Suppose that C1 and C2 are non-empty, closed, convex subsets of Rm

such that C1 ∩ C2 = ∅. Then C1 and C2 are separated.

Proof. Define Dn = C2 ∩ B(0;n) for each n ∈ N . Observe that for each n, C1 ∩ Dn = ∅.
Indeed, Dn ⊆ C2 ⇒ C1 ∩ Dn ⊆ C1 ∩ C2 = ∅. Moreover, Dn is bounded as Dn ⊆ B(0;n).
Now apply Corollary 1.79 with C2 replaced by Dn, we learn that for each n ∈ N, there exists
a hyperplane that strongly separates C1 and Dn. Equivalently,

∀n ∈ N,∀un ∈ Rm : (‖un‖ = 1) ∧ (sup 〈C1, un〉 < inf 〈Dn, un〉). (1.4)

Because (un)n∈N is bounded, there exists a convergent sequence (ukn)n∈N of (un)n∈N such that
ukn → u (for some u) and ‖u‖ = 1. Now let x ∈ C1, y ∈ C2 be arbitrary. Then, eventually
y ∈ B(0; kn), hence eventually y ∈ Dkn , and by (1.4), (as x ∈ C1, y ∈ Dkn ,)

〈x, ukn〉 < 〈y, ukn〉 .

Taking the limit as k →∞, we learn that 〈x, u〉 ≤ 〈y, u〉. This holds for every (x, y) ∈ C1×C2

and we are done. �

1.81. Definition: Two sets C1, C2 ⊆ Rn are properly separated if there exists b ∈
R \ {0} so that

sup
c1∈C1

〈c1, b〉 ≤ inf
c2∈C2

〈c2, b〉

inf
c1∈C1

〈c1, b〉 < sup
c2∈C2

〈c2, b〉 .

1.82. Intuition: Geometrically speaking, two sets in R2 are strongly separated if one
can draw a line (separating hyperplane) between them and neither set touches the line; two
sets are properly separated but not strongly separated means at most one of the sets can
be completely contained in the separating hyperplane (i.e., being a subset of the separating
hyperplane); two sets are separated but not properly separated if both of them can be
completely contained in the separating hyperplane. It is easy to see that

strong separation =⇒ proper separation =⇒ separation.

Figure 1.2: Strongly Separated vs Properly Separated vs Separated.

1.83. Fact: Two non-empty convex sets C1, C2 ⊆ Rm are properly separated iff

ri(C1) ∩ ri(C2) = ∅.
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7. Cones

Section 7. Cones

1.84. A subset C ⊆ Rn is called a cone if it is closed under positive scalar multiplication,
i.e., λx ∈ C for all x ∈ C and λ > 0.

1.85. Intuition: Geometrically, a cone is the union of half-lines (rays) emanating from
the origin. The origin itself may or may not be included (again, we consider positive scalar
multiples, NOT non-negative scalar multiples!). A convex cone is a cone which is a convex
set. Not all cones are convex! For example, the union of two non-intersecting (except possibly
at the origin) cones is still a cone but is not a convex.

1.86. Remark: One should not necessarily think of a convex cone as being “pointed”.
Subspaces of Rn are in particular convex cones. So are the open and closed halfspaces
corresponding to a hyperplane through the origin.

1.87. Note: Let R++ = (0,∞) and R−− = (−∞, 0). Neither of them contains zero!

1.88. Definition: Let C ⊆ Rn. Then

• C is a cone if C = R++C =
⋃
r∈(0,∞){rc | c ∈ C}.

• The conical hull of C, denoted by cone(C), is the intersection of all the cones of Rn

containing C. It is the smallest cone in Rn containing C.

• The closed conical hull of C, denoted by cone(C), is the smallest closed cone in Rn

containing C. It is the smallest closed cone in Rn containing C.

1.89. Example:

1. K1 = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} is a closed convex cone.

2. K2 = {(x1, . . . , xn) ∈ Rn | xi > 0, 1 ≤ i ≤ n} is a convex cone.

3. K3 = ({0} × R+) ∪ (R+ × {0}) ⊆ R2 is a closed cone but not convex.

4. K4 = ({0} × R++) ∪ (R−− × {0}) ⊆ R2 is a cone but neither closed nor convex.
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1.90. Proposition: Let C ⊆ Rn. The following hold.

1. cone(C) = R++C.

2. cone(C) = cone(C).

3. cone(conv(C)) = conv(cone(C)).

4. cone(conv(C)) = conv(cone(C)).

Proof. If C = ∅ then the conclusion is obvious. Now suppose C 6= ∅.

Property 1. Set D = R++C and observe that C ⊆ D and D is a cone. Thus,

cone(C) ⊆ cone(D) = D = R++C.

Conversely, let y ∈ D. Then y = λc for some λ > 0, c ∈ C, so y ∈ cone(C). Hence,

R++C = D ⊆ cone(C).

Now combine ⊆ and ⊇. �

Property 2. Since cone(C) is a closed cone with C ⊆ cone(C), we get

cone(C) ⊆ cone(cone(C)) = cone(C).

Conversely, since cone(C) is a closed cone, cone(C) ⊆ cone(C). Now combine ⊆ and ⊇. �

Property 3. Let x ∈ cone(conv(C)). By Property 1, there exists λ > 0 and y ∈ conv(C)
such that x = λy. Since y ∈ conv(C), there exists λ1, . . . , λm ∈ R++ with

∑m
i=1 λi = 1 and

x1, . . . , xm ∈ C such that y =
∑m

i=1 λixi. Then

x = λ
m∑
i=1

λixi =
m∑
i=1

λi(λxi) ∈ conv(cone(C)) as λ > 0 =⇒ λxi ∈ cone(C).

Conversely, let x ∈ conv(cone(C)). By Property 1, we can find λ1, . . . , λ0 > 0, µ1, . . . , µm > 0
with

∑m
i=1 µi = 1, and {x1, . . . , xm} ⊆ C such that

x =
m∑
i=1

µiλixi =

(
m∑
i=1

λiµi

)(
m∑
i=1

λiµi∑
λiµi

xi

)

= α

m∑
i=1

βixi α :=
m∑
i=1

λiµi, βi :=
λiµi∑
λiµi

.

Then α > 0, βi > 0 for all i ∈ [m], and
∑m

i=1 βi = 1. Hence,

x = α

m∑
i=1

βixi ∈ cone(conv(C)).

as 0 < βi < 1 =⇒ βixi ∈ conv(C). �

Property 4. This is a direct consequence of Property 3. �
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1.91. The following result shows that if C contains 0 as an interior point, then the
cone(C) and cone(C) are both Rn. Indeed, since 0 ∈ int(C), there exists a ball centered
at 0, so for the cone to be closed under positive scalar multiplication, we must have rays
emanating from the origin to all directions.

1.92. Lemma: Let C be a convex subset of Rn such that int(C) 6= ∅ and 0 ∈ C. TFAE:

1. 0 ∈ int(C).

2. cone(C) = Rn.

3. cone(C) = Rn.

Proof. 1⇒ 2: Indeed, 0 ∈ int(C) ⇐⇒ ∃ε > 0 : B(0; ε) ⊆ C. Then

Rn = cone(B(0; ε)) ⊆ cone(C) ⊆ Rn =⇒ cone(C) = Rn.

�

2⇒ 3: By Proposition 1.90(2), cone(C) = cone(C). Now Rn ?
= cone(C) ⊆ cone(C) =

cone(C) where ? is the hypothesis. �

3⇒ 1: By Proposition 1.90(3), cone(conv(C)) = conv(cone(C)). Since C is convex (assump-
tion), we have C = conv(C). Hence

cone(C) = conv(cone(C)) =⇒ cone(C) is convex as RHS is convex.

By assumption, ∅ 6= int(C) ⊆ int(cone(C)).Hence, cone(C) is a convex set and int(cone(C)) 6=
∅. Then by Proposition 1.66 (3) (i.e., int(C) = int(C) for convex C with non-empty interior),
we have

int(cone(C)) = int(cone(C)) = int(cone(C))

Hence,

Rn = int(Rn) = int(cone(C))

= int(cone(C))
?
= cone(int(C))

=⇒ 0 ∈ cone(int(C))

=⇒ 0 ∈ λ · int(C) for some λ > 0

=⇒ 0 ∈ int(C).

Last implication: Since 0 ∈ λint(C), there exists some c ∈ int(C) such that 0 = λc. But
λ > 0, so we must have c = 0. Thus, c ∈ int(C). Note ? follows from the fact below (proof
omitted). �

1.93. Fact: Let C ⊆ Rn be convex with int(C) 6= ∅ and 0 ∈ C. Then

int(cone(C)) = cone(int(C)).
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1.94. We list some useful results without proof below. The first one is elementary.

1.95. Fact: The intersection of an arbitrary collection of convex cones is a convex cone.

1.96. Compare the next result with Corollary 1.24. In words, the set of solutions to
a system of linear inequalities is a convex cone, rather than merely a convex set, if the
inequalities are homogeneous.

1.97. Corollary: Let bi ∈ Rn for i ∈ I, where I is an arbitrary index set. Then
K = {x ∈ Rn | 〈x, bi〉 ≤ 0, i ∈ I} is a convex cone.

1.98. The following characterization of convex cones highlights an analogy between con-
vex cones and subspaces.

1.99. Fact: A subset of Rn is a convex cone iff it is closed under addition and positive
scalar multiplication.

1.100. The following two corollaries are similar to those in Section 1.2 (Convex Sets).

1.101. Corollary: A subset of Rn is a convex cone iff it contains all the positive linear
combinations of its elements.

1.102. Corollary: Let S ⊆ Rn and K be the set of all positive linear combinations of
S. Then K is the smallest convex cone which contains S.
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8. Tangent and Normal Cones

Section 8. Tangent and Normal Cones

1.103. Definition: Let C ⊆ Rn be non-empty and convex, and x ∈ Rn. The tangent
cone to C at x is given by

TC(x) :=

{
cone(C − x) =

⋃
λ∈R++

λ(C − x) x ∈ C
∅ x 6∈ C

1.104. Intuition: The tangent cone to C at x is the closed conical hull of C shifted by x.
Intuitively, you are looking for a cone that contains all the positive scalar multiples of C−x.

1.105. Example (Tangent Cone): Let C = B(0; 1).

Figure 1.3: Example: tangent cone.

The tangent cone of C is given by

TC(x) =


{y ∈ Rn | 〈x, y〉 ≤ 0} ‖x‖ = 1

Rn ‖x‖ < 1

∅ otherwise

First, if ‖x‖ < 1 or equivalently x ∈ int(C), e.g., x = (0, 0) in the middle graph, then C − x
contains 0 as an interior point, so there exists some closed ball centered at the origin. Since
a cone is closed under positive scalar multiplication, the cone must contain all the ray in all
the directions. Therefore, TC(x) = R2.

Now if ‖x‖ = 1, i.e., C contains x as a boundary point, e.g., x = (1, 0) in the right graph
above, then C − x contains 0 as a boundary point. Therefore, only the left half of the
x, y-plane is needed to cover all positive scalar multiples of points in C. It follows that
TC((1, 0)) = R−×R. In general, we are moving C away from x, so TC(x) contains all points
y ∈ Rn such that 〈x, y〉 ≤ 0. In our example, any y ∈ R− × R is of the form (y1, y2) with
y1 ≤ 0 so that 〈x, y〉 = −y1 ≤ 0 as desired.

Finally, when x 6∈ C, TC(x) is the empty set.
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1.106. Definition: Let C ⊆ Rn be non-empty and convex, and x ∈ Rn. The normal
cone of C at x is

NC(x) :=

{
{u ∈ Rn | supc∈C 〈c− x, u〉 ≤ 0} x ∈ C
∅ x 6∈ C

1.107. Intuition: Let C ⊆ Rn and x ∈ C. Geometrically, 〈c− x, u〉 ≤ 0 means the
two vectors form a right or obtuse angle. Thus, for u to be in the normal cone of C at x,
vectors u and c− x must make up a right or obtuse angle for any c ∈ C.

1.108. Example: Let C = B(0; 1).

Figure 1.4: Example: normal cone.

NC(x) =


R+x ‖x‖ = 1

{0} ‖x‖ < 1

∅ otherwise

First, consider ‖x‖ < 1 or equivalently x ∈ int(C), e.g., x = (0, 0) in the middle graph.
For u ∈ R2 to be in the normal cone NC((0, 0)), u has to form a right or obtuse angle with
every c ∈ C − 0 = C. The only vector that satisfies this constraint is the zero vector (as
C contains vectors of all “directions” in R2). In general, shifting C by any ‖x‖ < 1 means
C − x contains vectors of all “directions” so NC(x) contains only the zero vector.

Now let ‖x‖ = 1 or equivalently C contains x as a boundary point, e.g., x = (1, 0) in the
right graph. For u ∈ R2 to be in the normal cone NC((1, 0)), u has to form a right or obtuse
angle with every c ∈ C − 0 = C. In our case, any vector in the right-half of the x, y-plane
can satisfy this constraint. In general, we see that the vectors in the normal cone are in the
same direction as x itself, so we take all non-negative scalar multiples of x.

Finally, when x 6∈ C, the normal cone NC(x) is the empty set.

1.109. Study these two examples carefully as they will help you gain intuition for the
next two results.
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1.110. Lemma: Let C be a non-empty closed convex subset of Rn and x ∈ C. Then

n ∈ NC(x) ⇐⇒ ∀t ∈ TC(x) : 〈n, t〉 ≤ 0.

Proof. (⇒) Let n ∈ NC(x) and let t ∈ TC(x). Recall that TC(x) = cone(C − x). Therefore,
there exists λk > 0, (tk)k∈N in Rn such that

∀k ∈ N : x+ λktk ∈ C, tk → t.

Since n ∈ NC(x) and x ∈ λktk ∈ C, we learn that

∀k ∈ N : 〈n, λk, tk〉 = 〈n, x+ λktk − x〉 ≤ 0.

Since λk > 0 for all k,

∀k ∈ N : 〈n, tk〉 ≤ 0.

This implies that 〈n, t〉 ≤ 0 as desired.

(⇐) Suppose that 〈n, t〉 ≤ 0 for all t ∈ TC(x). Let y ∈ C and observe that y − x = TC(x).
Indeed, y − x ∈ C − x ⊆ cone(C − x). Therefore, 〈n, y − x〉 ≤ 0 which gives n ∈ NC(x). �

1.111. Theorem: Let C ⊆ Rn be convex with non-empty interior, and let x ∈ C. Then

x ∈ int(C)
1⇐⇒ TC(x) = Rn 2⇐⇒ NC(x) = {0}.

Proof.
1⇐⇒ : Observe that x ∈ int(C) ⇐⇒ 0 ∈ int(C − x). Applying Lemma 1.92 with C

replaced by Cx, we get

0 ∈ int(C − x) ⇐⇒ cone(C − x) = Rn ⇐⇒ TC(x) = Rn.

2⇐⇒ : Our previous lemma combined with (1) yields

n ∈ NC(x) ⇐⇒ ∀t ∈ TC(x) = Rn : 〈n, t〉 ≤ 0 ⇐⇒ n = 0.

Hence, NC(x) = {0}. Conversely, suppose NC(x) = {0}. It is clear that 0 ∈ TC(x). Pick
y ∈ Rn. We claim that y ∈ TC(x). To see this, recall that TC(x) is a closed convex cone, so
p = PTC(x)(y) exists and is unique. Moreover, it suffices to show that y = p ∈ TC(x).

Indeed, by the projection theorem,

〈y − p, t− p〉 ≤ 0

for all t ∈ TC(x). In particular, it holds for t = p, 2 ∈ TC(x) (TC(x) is a cone). So

〈y − p,±p〉 ≤ 0 =⇒ 〈y − p, p〉 = 0.

But then 〈y − p, t〉 ≤ 0 for all t ∈ TC(x), which implies that y − p ∈ NC(x) = {0} and
y = p ∈ TC(x) as desired. �
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1.112. Remark: As an exercise, let us show that x ∈ int(C) =⇒ NC(x) = {0}. First,
if x ∈ int(C), then there exists some ε > 0 such that B(x; ε) ⊆ C. Let v ∈ NC(x). By
definition, 〈v, c− x〉 ≤ 0 for all c ∈ C. For sufficiently small t > 0, we have x+tv ∈ B(x; ε) ⊆
C. Then 〈u, x+ tv − x〉 ≤ 0⇒ t 〈u, v〉 ≤ 0⇒ ‖v‖2 ≤ 0⇒ v = 0. Thus, NC(x) = {0}.

1.113. Theorem: Let C1, C2 ⊆ Rm with ri(C1) ∩ ri(C2) = ∅. Let x ∈ C1 ∩ C2. Then

NC1∩C2(x) = NC1(x) +NC2(x).

Proof. (⊇) By definition, we have

NC(x) :=

{
{u ∈ Rn | supc∈C 〈c− x, u〉 ≤ 0} x ∈ C
∅ x 6∈ C

ND(x) :=

{
{u ∈ Rn | supd∈D 〈d− x, u〉 ≤ 0} x ∈ D
∅ x 6∈ D

NC∩D(x) :=

{{
u ∈ Rn | supy∈C∩D 〈y − x, u〉 ≤ 0

}
x ∈ C ∩D

∅ x 6∈ C ∩D

First, if x 6∈ C or x 6∈ D, then NC(x) + ND(x) = ∅ (direct sum with empty set is empty)
and NC∩D(x) = ∅ by definition. This case is done. Now suppose x ∈ C ∩ D. Let w ∈
NC(x) +ND(x) and write w = wC , wD with wC ∈ NC(x) and wD ∈ ND(x). By definition,

sup
y∈C
〈y − x,wC〉 ≤ 0, sup

y∈D
〈y − x,wD〉 ≤ 0

Fix u ∈ Rm. Observe that

sup
y∈C∩D

〈y − x,w〉 = sup
y∈C∩D

〈y − x,wC + wD〉

= sup
y∈C∩D

(〈y − x,wC〉+ 〈y − x,wD〉)

= sup
y∈C∩D

〈y − x,wC〉︸ ︷︷ ︸
≤0

+ sup
y∈C∩D

〈y − x,wD〉︸ ︷︷ ︸
≤0

≤ 0 wC ∈ NC(x), wD ∈ ND(x).

By definition of normal cone, w = wC + wD ∈ NC∩D(x) as desired.

(⊆): Let x ∈ C1∩C2 and n ∈ NC1∩C2(x). By definition of the normal cone, for all y ∈ C1∩C2,
we have 〈n, y − x〉 ≤ 0. We wish to show that x can be written as a sum of x1 ∈ NC1(x) and
x2 ∈ NC2(x). Define

E1 = epi(δC1) = C1 × [0,∞) ⊆ Rm × R
E2 = {(y, α) | y ∈ C2, α ≤ 〈n, y − x〉} ⊆ Rm × R.

Using Fact 1.70 (ri(C1 ⊕ C2) = ri(C1)⊕ ri(C2)) with C2 replaced by [0,∞) ⊆ R, we get

ri(E1) = ri(C1)× (0,∞).
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One can also show that

ri(E2) = {(y, α) | y ∈ ri(C2), α < 〈n, y − x〉}.

We claim that ri(E1)∩ ri(E2) = ∅. Indeed, suppose for contradiction that ∃(z, α) ∈ ri(E1)∩
ri(E2). Then 0 < α < 〈n, z − x〉 ≤ 0, contradiction. Thus the claim holds. Applying Fact
1.83 with Ci’s replaced by Ei’s yields there exists (b, γ) ∈ Rm × (R \ {0}) such that

∀(x, α) ∈ E1,∀(y, β) ∈ E2 : 〈(x, α), (b, β)〉 ≤ 〈(y, β), (b, γ)〉

Equivalently (written component-wise),

∀(x, α) ∈ E1, ∀(y, β) ∈ E2 : 〈x, b〉+ αγ ≤ 〈y, b〉+ βγ. (1.5)

Moreover, there exists (x̄, ᾱ) ∈ E1, (ȳ, β̄) ∈ E2 such that

〈x̄, b〉+ ᾱγ < 〈ȳ, b〉+ β̄γ. (1.6)

We claim that γ < 0. Indeed, observe that (x, 1) ∈ E1, (x, 0) ∈ E2, so by (1.5), we obtain

〈x, b〉+ γ ≤ 〈x, b〉 =⇒ γ ≤ 0.

We now show that γ 6= 0. Suppose on the contrary that γ = 0. Observe this implies that
the (1.5) and (1.6) become: there exists b 6= 0 such that

∀x ∈ C1,∀y ∈ C2 : 〈x, b〉 ≤ 〈y, b〉
∃x̄ ∈ C1,∃ȳ ∈ C2 : 〈x̄, b〉 < 〈ȳ, b〉 .

That is, C1 and C2 are properly separated. By Fact 1.83, we learn that ri(C1)∩ ri(C2) = ∅,
contradiction. Thus, γ < 0.

We now show that

NC1∩C2(x) 3 n = − b
γ︸︷︷︸

∈NC1
(x)

+

(
n+

b

γ

)
︸ ︷︷ ︸
∈NC2

(x)

.

We claim that

∀y ∈ C1 : 〈b, y〉 ≤ 〈b, x〉 . (1.7)

Indeed, observe that ∀y ∈ C1 : (y, 0) ∈ E1, and by definition of E2, (x, 0) ∈ E2. Therefore,
(1.5) yields (1.7). This implies that b ∈ NC1(x). Hence,

− b
γ

= −1

γ
b ∈ NC1(x).

Finally, (x, 0) ∈ E1 and ∀y ∈ C2 : (y, 〈n, y − x〉) ∈ E2. Therefore, (1.5) yields

∀y ∈ C2 : 〈b, x〉 ≤ 〈b, y〉+ γ 〈n, y − x〉 .
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Equivalently,

∀y ∈ C2 :

〈
b

γ
+ n, y − x

〉
≤ 0.

Therefore,

b

γ
+ n ∈ NC2(x).

Altogether, we conclude that

n = − b
γ

+
b

γ
+ n ∈ NC1(x) +NC2(x).

�

1.114. Example: The condition ri(C1) ∩ ri(C2) = ∅ is necessary. Consider

C1 = {(x, λ) ∈ R2 : x ∈ R, λ ≥ x2}
C2 = {(x, λ) ∈ R2 : x ∈ R, λ ≤ −x2}

Geometrically, C1 is the epigraph of f(x) = x2 and C2 is the reflection of C1 over the x-
axis. Let x = (0, 0). It’s easy to see that NC1(x) is the low-half of the y-axis and NC1(x)
is the upper-half of the y axis. Since C1 ∩ C2 = {(0, 0)}, NC1∩C2(x) = R2. However,
NC1(x) +NC2(x) = {0} × R does not equal to R2. This is because ri(C1) ∩ ri(C2) = ∅.
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Section 1. Definitions and Basic Results

2.1. Definition: Let f : Rn → R := [−∞,+∞] (extended R). The epigraph of f is

epi(f) = {(x, α) | α ≥ f(x)} ⊆ Rn × R.

2.2. Intuition: Recall the graph of f : Rn → R is given by G(f) = {(x, f(x)) | x ∈ Rn}.
The epigraph of f is the set of points lying on or above the graph of f .

2.3. Definition: A function f is convex if its epigraph epi(f) is convex.

2.4. Intuition: Take any two points on or above a convex function. The line segment
connecting them should also be on or above the function (i.e., contained in epi(f)).

Figure 2.1: Effective domain of convex and non-convex functions.

2.5. Definition: Let f : Rn → R. The (effective) domain of the function is given by

dom(f) = {x ∈ Rn | f(x) <∞}.

2.6. Intuition: The effective domain of a function is the projection on Rn of the epigraph
of f . Suppose we would like to minimize a function f : C ⊆ Rn → R over Rn. We can
extend it to a function f ∗ : Rn → R by letting f ∗(x) = f(x) for x ∈ C and f ∗(x) = ∞ for
x 6∈ C. The resulting function is f ∗ : Rn → R with an effective domain C.

2.7. Proposition: The (effective) domain of a convex function is convex.

Proof. Consider the linear map L : Rn+1 → Rn, (x, α) 7→ x. Then L(epi(f)) = dom(f).
Since convexity is preserved under linear transformations, dom(f) is convex. �

2.8. Since we allow the function to take the value ∞, we want to avoid having ∞−∞.
This leads us to the following definition.
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2.9. Definition: A function is said to be proper if dom(f) 6= ∅ and f(x) > −∞ for
all x ∈ Rn. Otherwise, f is said to be improper.

2.10. Intuition: A function is proper if its epigraph

• is non-empty, i.e., f(x) <∞ for at least one x, or equivalently, dom(f) 6= ∅, and

• contains no vertical lines, i.e., f(x) > −∞ for all x.

Put another way, a proper convex function on Rn is a function obtained by taking a finite
convex function f on a non-empty convex set C and then extending it to all of Rn by setting
f(x) =∞ for x 6∈ C.

2.11. Theorem (Jensen’s Inequality): Let f : Rm → R. Then f is convex iff

∀x, y ∈ dom(f),∀λ ∈ (0, 1) : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Proof. In most of the subsequent proofs, we will need to first handle the case where f is
improper (unless it’s given that f is proper in the statement). So if f(x) =∞ for all x, then
epi(f) = ∅ and dom(f) = ∅; the conclusion follows trivially. Now suppose dom(f) 6= ∅.

(⇒) Let x, y ∈ dom(f) and λ ∈ (0, 1). Then (x, f(x)), (y, f(y)) ∈ epi(f). By convexity of
epi(f), we get λ(x, f(x)) + (1−λ)(y, f(y)) = (λ(x) + (1−λ)y, λf(x) + (1−λ)f(y)) ∈ epi(f).
By definition of epigraph, we get f(λ(x) + (1− λ)y) ≤ λf(x) + (1− λ)f(y) as desired.

(⇐) Suppose the inequality holds. Let λ ∈ (0, 1) and (x, α), (y, β). Then by definition of
epi(f), f(x) ≤ α and f(y) ≤ β. Then f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) ≤ λα+(1−λ)β.
Note the last inequality is valid as both λ and (1−λ) are positive. By definition of epigraph,
this implies that (λx+ (1− λ)y, λα+ (1−α)β) = λ(x, α) + (1− λ)(y, β) ∈ epi(f). It follows
that epi(f) is convex and thus f is convex. �

2.12. Definition: Let f : Rm → (−∞,∞] be proper. Then

• f is strictly convex if Jensen’s inequality is strict, i.e.,

∀x, y ∈ dom(f),∀λ ∈ (0, 1) : f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

• f is strongly convex with constant β if for some β > 0, we have

∀x, y ∈ dom(f),∀λ ∈ (0, 1) : f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)−β
2
λ(1−λ)‖x−y‖2.

2.13. Intuition: Recall that geometrically, convexity means that the line segment be-
tween two points on the graph of f lies on or above the graph itself. Strict convexity means
that the line segment lies strictly above the graph of f , except at the segment endpoints.
Convexity is like being at least as convex as a straight line; strong convexity is like being
at least as convex as a quadratic.

2.14. Fact: Strong convexity =⇒ strict convexity =⇒ convexity.
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Section 2. Lower Semicontinuity

2.15. Semicontinuity is a property of extended real-valued functions that is weaker
than continuity. We say f is upper/lower semicontinuous at a point x0 if, roughly
speaking, the function values for arguments near x0 are not much higher/lower than f(x0).
In particular, if f is continuous, then f is upper and lower semicontinuous.

2.16. Definition: A function f is lower semicontinuous (lsc) if epi(f) is closed.

2.17. Example:

Figure 2.2: Examples (and counterexample) of lsc functions.

• The continuous function f1(x) = x2 + 1 in green is clearly lsc.

• The function obtained by moving the point (0, 1) to (0, 0), i.e.,

f2(x) =

{
x2 + 1 x 6= 0

0 x = 0

is also lsc. Its epigraph is the union of epi(f1) and the line segment {(0, y) | 0 ≤ y ≤ 1}
which is clearly closed.

• The function obtained by moving the point (0, 1) to (0, 4), i.e.,

f3(x) =

{
x2 + 1 x 6= 0

4 x = 0

is no longer lsc. The dotted line is no longer in the epigraph, so epi(f3) is not closed.

2.18. Example: Another good example is to consider

f(x) =

{
0, x < 0

1, x ≥ 0
g(x) =

{
0, x ≤ 0

1, x > 0

Exercise: Exactly one of f, g is lsc. Which one is it?
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2.19. Note: Here’s an alternative definition that is useful in proofs. Let f : Rn → R
and x ∈ Rn. Then f is lower semicontinuous at x if for every sequence (xn)n∈N in Rm,
xn → x =⇒ f(x) ≤ lim inf f(xn). We say f is lsc if f is lsc at every x ∈ Rm.

2.20. Definition: Let C ⊆ Rm. The characteristic function of C at x ∈ Rm is

δC(x) =

{
0 x ∈ C
∞ x 6∈ C

2.21. Intuition: Clearly, δC is proper whenever C 6= ∅. Note from an optimization
point of view, this function δC “favours” elements in C, in the sense that it assigns a “cost”
of 0 for any x ∈ C and “penalizes” the elements not in C by giving them a “cost” of ∞.

2.22. Theorem: Let C ⊆ Rm. Then the following hold.

1. C 6= ∅ ⇐⇒ δC is proper.

2. C is convex ⇐⇒ δC is convex.

3. C is closed ⇐⇒ δC is lsc.

Proof. Claim 1 and 2 are easy (see A2). For 3, observe that C = ∅ ⇐⇒ epi(δC) = ∅ which
is closed. Now suppose C 6= ∅.

(⇒): Suppose C is closed. We want to show that epi(δC) is closed. Let ((xn, αn))n∈N be
a sequence in epi(δC) such that (xn, αn) → (x, α). By component convergence, (xn)n∈N
is a sequence in C with xn → x. Thus, x ∈ C as C is closed. Moreover, (αn)n∈N is a
sequence in [0,∞) and αn → α, so α ≥ 0. Indeed, ∀n ∈ N, 0 = δC(xn) ≤ αn. Consequently,
0 = αC(x) ≤ α which implies that (x, α) ∈ epi(δC).

(⇐): Conversely, suppose that δC is lsc. Let (xn)n∈N sequence in C with xn → x. We want
to show that x ∈ C. By definition of δC , it suffices to show that δC(x) = 0. Observe that
0 ≤ δC(x) ≤ lim inf δC(xn) = 0 where the second “≤” follows from the fact that δC is lsc.
Hence, δC(x) = 0 and x ∈ C. �

2.23. Remark: So why do we like the indicator function? Suppose f is convex, lsc, and
proper, C is convex, closed, and non-empty. Consider the minimization problem given by

(P ) = min f(x)
s.t. x ∈ C ⊆ Rm

Observe that P is equivalent to

min
x∈Rm

h(x) := f(x) + δC(x) =

{
f(x) x ∈ C
∞ x 6∈ C

Good news. The problem is now “unconstrainted” minimization of “a sum of two” functions.
Bad news. f is not necessarily smooth and δN is NOT smooth (whenever C 6= Rm).
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2.24. The supremum among a family of lsc, covnex function is lsc and convex.

2.25. Proposition: Let I be an indexed set and (fi)i∈I be a family of lsc, convex func-
tions on Rn. Then supi∈I fi is convex and lsc.

Proof. Set F = supi∈I fi. We claim that epi(F ) =
⋂
i∈I epi(fi). Indeed, let (x, α) ∈ Rm ×R.

(x, α) ∈ epi(F ) ⇐⇒ sup
i∈I

fi(x) ≤ α

⇐⇒ ∀i ∈ I : fi(x) ≤ α

⇐⇒ ∀i ∈ I : (x, α) ∈ epi(fi) ⇐⇒ (x, α) ∈
⋂
i∈I

epi(fi).

Since all fi is lsc/convex, all epi(fi) is closed/convex. Since epi(F ) is the intersection of
closed/convex sets, it is closed/convex and F is lsc/convex. �

2.26. The following two Propositions tell us that non-negative weighted sums of convex
functions are convex. Lower-semicontinuity is preserved under positive scalar multiplication.

2.27. Proposition: Let I be a finite indexed set and (fi)i∈I be a family of convex func-
tions from Rm to R. Then

∑
i∈I fi is convex.

2.28. Proposition: Let f be convex and lsc and let λ > 0. Then λf is convex and lsc.
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Section 3. The Support Function

2.29. Motivation: Recall a hyperplane in Rn is a subspace of dimension n − 1. For
example, a hyperplane in R2 is a line, e.g.,

y = 2x− 6 ⇐⇒ 2x+ (−1)y = 6 ⇐⇒ 〈(2,−1), (x, y)〉 = 6.

More generally, a hyperplane in Rn is determined by a single linear equation of the form

a1x1 + · · ·+ anxn = b ⇐⇒ (a1, . . . , an)T (x1, . . . , xn) = 〈a,x〉 = b.

You should compare the roles of a to (2,−1), x to (x, y), and b to 6. In words, fix a ∈ Rn

and b ∈ R, any vector x ∈ Rn satisfying 〈a,x〉 = b lies on the hyperplane

Ha,b = {x | 〈a,x〉 = b}.

In particular, a and b together specify a unique hyperplane.

2.30. (Cont’d): A supporting halfplane of a set S ⊆ Rn is a hyperplane such that:

1. S is entirely contained in one of the two closed halfspaces bounded by the hyperplane;

2. S has at least one boundary-point on the hyperplane.

Let C ⊆ Rn be a non-empty convex set and c0 be a boundary point of C. The support-
ing hyperplane theorem states that there exists a hyperplane passing through c0 and
containing the set C in one of its halfspaces, i.e.,

∃u ∈ Rn \ {0} : ∀c ∈ C : 〈c, u〉 ≤ 〈c, c0〉 := bc0 ,

(note this u here corresponds to the vector a above) or equivalently,

∃u ∈ Rn \ {0} : sup
c∈C
〈c, u〉 ≤ 〈c, c0〉 := bc0 .

We can prove this using the separating hyperplane theorem. Let c0 be a boundary point of
a convex set C. Then int(C) ∩ {c0} = ∅ and you can find a separating hyperplane between
int(C) and {c0}, which is a supporting hyperplane for C. Let us formalize this definition.

2.31. Definition: Let C ⊆ Rn and c0 be a boundary point of C. A supporting
hyperplane to set C at c0 is given by

{x | 〈u, x〉 = 〈u, c0〉 =: bc0}

where u 6= 0 and 〈u, c〉 ≤ 〈u, c0〉 = b for all c ∈ C. We can denote this hyperplane by Hu,bc0
.

2.32. Geometrically, the support function σC of a non-empty closed convex set C in
Rn describes the (signed) distance of supporting hyperplanes of C from the origin. Let us
give the definition first and then explain in details.
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3. The Support Function

2.33. Definition: The support function of C ⊆ Rm is given by

σC : Rm → R
u 7→ sup

c∈C
〈c, u〉 .

2.34. Intuition: Let C ⊆ Rm be convex and consider some arbitrary u ∈ Rm. Suppose
we wish to find out how much (measured by signed distance) we need to shift the hyperplane

Hu,0 = {c | 〈u, c〉 = 0}

so thatHu,0 becomes a supporting hyperplane of C. Equivalently, we want some c0 ∈ C so that

∀c ∈ C : 〈u, c〉 ≤ 〈u, c0〉 =: bc0

holds with equality assumed at least once. This is exactly what the support function does!
Given u ∈ Rm, the support function finds the supremum value of 〈c, u〉 among all c ∈ C and
this value is the scalar bc0 that together with u ∈ Rm defines a supporting hyperplane of C.
This is what we meant by “describing the (signed) distance of supporting hyperplanes of C
from the origin.”

2.35. (Cont’d): In some sense, the support function is a tool for a dual representation
of the set as the intersection of half-spaces. Recall that for any u ∈ Rm,

C ⊆ {c | 〈u, c〉 ≤ σC(u)}.

Staring from any non-convex C ⊆ Rm, the intersection of these supporting hyperplanes is
the closure of the convex hull of C. In the case where C is convex, the convex hull of C is
exactly itself, i.e., for a convex C ⊆ Rn,

C =
⋂
u∈Rm
{c | 〈u, c〉 ≤ σC(u)}.

Therefore, any non-empty closed convex set C is uniquely determined by σC . Furthermore,
σC is compatible with many natural geometric operations, including scaling, translation,
rotation, and Minkowski addition:

• ∀α ≥ 0, x ∈ Rm : σαC(x) = ασC(x).

• ∀x, d ∈ Rm : σC+d(x) = σC(x) + 〈x, d〉.
• ∀x ∈ Rm : σC+D(x) = σC(x) + σD(x).

2.36. Proposition: Let C ⊆ Rn be non-empty. Then σC is convex, lsc, and proper.

Proof. Let c ∈ C and set fc : Rm → R, x 7→ 〈x, c〉. Then fc is proper, (ls) continuous, and
convex. (In fact, fc is linear.) Moreover, σC = supc∈C fc. Now combine with Proposition
2.25 to learn that σC is convex and lsc. To see it’s proper, observe that since C 6= ∅,
σC(x) = supc∈C 〈0, c〉 = 0 < ∞. Hence, 0 ∈ dom(σC) 6= ∅. Moreover, let c∗ ∈ C. Then
σC(u) = supc∈C 〈u, c〉 ≥ 〈u, c∗〉 > −∞ for all u ∈ Rm. It follows that σC is proper. �
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2.37. Example: Let C = [a, b] ⊆ R+. Then

∀x ∈ R : σC(x) = sup
c∈[a,b]

〈c, x〉 = sup
c∈[a,b]

cx

{
bx x ≥ 0

ax x < 0

2.38. Example: Let C = [0,∞) ⊆ R. If x ≤ 0, then

σC(x) = sup
c∈[0,∞)

〈c, x〉 = sup
c∈[a,b]

cx = 0.

If x > 0, then

sup
c∈[0,∞)

cx =∞.

Hence, dom(σC) = (−∞, 0]. Moreover, for all x ∈ (−∞, 0), σC(x) = 0.
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Section 4. Minimizer of Convex Functions

2.39. Let f : Rm → (−∞,∞] be proper and let x̄ ∈ Rm.

• x̄ is a local minimum of f if there is δ > 0 so that ‖x− x̄‖ < δ =⇒ f(x̄) ≤ f(x).

• x̄ is called a global minimum of f if ∀x ∈ dom(f) : f(x̄) ≤ f(x).

Analogously, we define local and global maximum.

2.40. Definition: Let f : Rm → (−∞,∞] be proper and x ∈ Rm. Then x is a (global)
minimizer of f if f(x) = min f(Rn) ∈ R. The set of minimizers of f is denoted arg min(f).

2.41. Proposition: Let f : Rm → (−∞,∞] be proper and convex. Then every local
minimizer of f is a global minimizer.

Proof. Let x be a local minimizer of f . Then there exists ρ > 0 so that

f(x) = min f(B(x; ρ)).

We wish to show that x is a global minimizer of f , i.e.,

∀y ∈ dom(f) : f(x) ≤ f(y).

Let y ∈ dom(f). Observe that if y ∈ B(x; ρ) (or ‖x − y‖ ≤ ρ), then f(x) ≤ f(y). Now
suppose that y ∈ dom(f) \B(x; ρ). Observe that

λ := 1− ρ

‖x− y‖
∈ (0, 1).

Set z = λx+ (1− λ)y ∈ dom(f). Moreover,

z − x = λx+ (1− λ)y − x
= (1− λ)y − (1− λ)x

= (1− λ)(y − x)

=⇒ ‖z − x‖ = ‖(1− λ)(y − x)‖
= (1− λ)‖y − x‖

=
ρ

‖y − x‖
‖y − x‖ = ρ.

Thus, z is on the boundary of the closed ball B(x; ρ), so z ∈ B(x; ρ). Moreover, because f
is convex, it follows from Jensen’s inequality that

f(x) ≤ f(z) z ∈ B(x, ρ)

= f(λx+ (1− λ)y)

≤ λ(f(x) + (1− λ)f(y) Jensen/Convexity of f.

Hence, (1 − λ)f(x) ≤ (1 − λ)f(y) and because λ ∈ (0, 1), we have f(x) ≤ f(y). Thus, any
local minimum is in fact a global minimum. �
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2.42. Proposition: Let f : Rm → (−∞,∞] be proper and convex and let C ⊆ Rm.
Suppose that x is a minimize of f over C such that x ∈ int(C). Then x is a minimizer of f .

Proof. Since x ∈ int(C), there exists ε > 0 so that B(x; ε) ⊆ C. Since x is a minimizer
of f over C ⊇ B(x; ε), we have f(x) = inf f(B(x; ε)). That is, x is a local minimizer of f .
Combine with Proposition 2.41 gives the desired result. �
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Section 5. Conjugates of Convex Functions

2.43. Definition: Let f : Rm → R. The Fenchel-Legendre conjugate (or convex
conjugate) of f is defined to be

f ∗ : Rm → R
u 7→ sup

x∈Rm
{〈u, x〉 − f(x)}.

2.44. Remark: We immediately see that f ∗ is a convex function, since it is the pointwise
supremum of a family of convex functions of y. This is true whether or not f is convex.
Below we give some intuition. Each paragraph should make sense on its own.

2.45. Intuition: Geometrically speaking, the function `u(·) = 〈u, ·〉 is a line goes
through the origin, and f ∗ looks for the maximum (signed) distance between `u(·) = 〈u, ·〉
and the convex function f . If f is differentiable, this occurs at a point u where f ′(u) = u. For
example, given a fixed u, the blue line is `u(·) = 〈u, ·〉 and the maximum (signed) distance
between this line and the green curve f is attained at the x-coordinate of the purple line.

2.46. Intuition: Recall that a closed convex set C is the intersection of all closed
halfspaces that contain C. Applying this idea to the epigraph of a closed convex function f ,
we see that f is the supremum of all affine functions that are majorized by f . For any given
slope u, there may be many different constants b such that the affine function 〈u, x〉 − b is
majorized by f . The convex conjugate gives us the best such constant, i.e., for any u ∈ Rm,
〈u, x〉 exceeds f(x) by at most f ∗(u). Equivalently, so 〈u, x〉−f ∗(u) exceeds f(x) by at most 0.
Therefore, we have f(x) = supu∈Rm{〈u, x〉 − f ∗(u)} ⇐⇒ f ∗(u) = supx∈Rm {〈u, x〉 − f(x)} .

2.47. (Cont’d): In case you want more math, observe that

(u, f ∗(u)) ∈ epi(f ∗) ⇐⇒ ∀(x, f(x)) ∈ epi(f) : f ∗(u) ≥ 〈u, x〉 − f(x)

Rewrite the inequality as f(x) ≥ 〈u, x〉 − f ∗(u) and think of the affine functions on Rn as
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parameterized by pairs (u, f ∗(u)) ∈ Rn × R, we can express this as

(u, f ∗(u)) ∈ epi(f ∗) ⇐⇒ `u,f∗(u) ≤ f ; `u,f∗(u)(x) := 〈u, x〉 − f ∗(u).

Since the specification of a function on Rn is equivalent to the specification of its epigraph,
this means that f ∗ describe the family of all affine functions majorized by f . Simultaneously,

f ∗(u) ≥ f ∗(v) ⇐⇒ ∀(x, f(x)) ∈ epi(f) : f ∗(u) ≥ `x,f(x)(v).

In other words, f ∗ is the pointwise supremum of the family of all affine functions `x,f(x) for
all (x, f(x)) ∈ epi(f).

2.48. Proposition: Let f : Rm → R. Then f ∗ is convex and lsc.

Proof. Observe that if f =∞ ⇐⇒ domf = ∅. Then

f ∗(u) = sup
x∈Rm

(〈x, u〉 − f(x)) = sup
x∈dom(f)

(〈x, u〉 − f(x)) = −∞

and f ∗ = −∞ is lsc and convex. Now suppose that f 6=∞. We claim that

∀u ∈ Rm : f ∗(u) = sup
(x,α)∈epi(f)

(〈x, u〉 − α).

Let u ∈ Rm. First, for all (x, α) ∈ epi(f), we have

〈x, u〉 − f(x) ≥ 〈x, u〉 − α.

Hence,

sup
x∈Rm

(〈x, u〉 − f(x)) ≥ sup
(x,α)∈epi(f)

(〈x, u〉 − α).

On the other hand,

G = {(x, f(x)) | x ∈ dom(f)} ⊆ epi(f).

Hence,

sup
x∈Rm

(〈x, u〉 − f(x)) = sup
x∈dom(f)

(〈x, u〉 − f(x))

= sup
(x,f(x))∈G

(〈x, u〉 − f(x))

≤ sup
(x,α)∈epi(f)

(〈x, u〉 − α) epi(f) ⊆ G.

Combine both directions, we prove the claim holds. This implies that

f ∗(u) = sup
(x,α)∈epi(f)

(〈x, u〉 − α) =: sup
(x,α)∈epi(f)

(f(x,α)(u))

Since f(x,α) = 〈x, ·〉−α is affine and thus lsc and convex, by Proposition 2.25, the supremum
of the family of convex lsc functions is also convex and lsc. �
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2.49. Example: Let p > 1 and set q = p
p−1 . Let f : R→ R given by

f : x 7→ |x|
p

p
.

We show that f ∗ : R→ R is given by

f ∗ : u 7→ |u|
q

q
.

Observe that f is differentiable on R. Also,

f(x) =

{
xp

p
x ≥ 0

(−x)p
p

x < 0.

Let u ∈ R. Then

f ∗(u) = sup
x∈R

(xu− f(x)) = sup
x∈R

(
xu− |x|

p

p

)
:= sup

x∈R
g(x).

Taking its derivative, we get

g′(x) = u−

{
xp−1 x ≥ 0

−(−x)p−1 = −(|x|)p−1 x < 0.

If u ≥ 0, then setting g′(x) = 0 yields xp−1 = u and x > 0; equivalently,

x = u
1
p−1 .

If u < 0, then setting g′(x) = 0 yields u = −(|x|)p−1 and x < 0; equivalently,

|u| = −u = |x|p−1.

Altogether,

|x| = |u|
1
p−1 , sign(x) = sign(u).

Hence,

f ∗(u) = sup
x∈R

(xu− f(x))

= |u|
1
p−1 |u| − |u|

p
p−1

p

=

(
1− 1

p

)
|u|

1
p−1

+1

=
p− 1

p
u

p
p−1 =

|u|q

q
.
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2.50. Example: Consider f : R→ R, f(x) = ex. We claim that

f ∗(u) =


u ln(u)− u u > 0

0 u = 0

∞ u < 0

Let u ∈ R. Then f ∗(u) = supx∈R(xu − ex) =: supx∈R g(x). Note that g(x) is differentiable.
Hence, if u = 0, then f ∗(u) = supx∈R(−ex) = 0. If u > 0, then f ∗(u) = u lnu − u. Indeed,
g′(x) = u− ex. Setting g′(x) = 0 gives ex = u ⇐⇒ x = lnu. Now if u < 0, g′(x) < 0 for all
x ∈ R. Therefore, g(x) is decreasing on R. It follows that supx∈R g(x) = limx→∞ g(x) =∞.

2.51. Proposition: Let C ⊆ Rm. We claim that δ∗C = σC.

Proof. Recall that

δC(x) =

{
0 x ∈ C
∞ x 6∈ C

σC(x) = sup
y∈C
〈x, y〉 .

Now,

δ∗C(u) = sup
y∈C

(〈x, y〉 − δC(y)) = sup
y∈C
〈x, y〉 .

�
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Section 6. The Subdifferential Operator

2.52. Motivation: Recall that for any convex and differentiable f , we have

∀x, y : f(y) ≥ f(x) +
〈
∇f(x)T , y − x

〉
.

A convex, differentiable function f has for all x ∈ Rn an affine minorizer such that:

• The slope of the affine function is defined by ∇f .

• The affine function coincides with function f at x.

• The affine function defines a normal (∇f(x),−1) to the epigraph of f .

What if our function is non-differentiable?

2.53. (Cont’d): A subgradient of a function f at x is any s ∈ Rm such that

∀x, y : f(y) ≥ f(x) + 〈s, y − x〉 .

Each subgradient s ∈ Rm defines an affine minorizer to the function such that:

• The slope of the affine function is define by s.

• The affine function coincides with function f at x.

• The affine function defines a normal (s,−1) to the epigraph of f .

Note the notion of subgradient does not restrict to convex functions.
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2.54. (Cont’d): The operator ∂f is called the subdifferential operator, which is a
set-valued operator that maps each x to the set of subgradients of f at x, denoted ∂f(x).
There can be zero, one, or many subgradients at each point x ∈ Rn, depending on the
behavior of the function:

• If f is differentiable at x, then ∂f(x) = {∇f(x)}.
• If f is proper and convex, then ∀x : ∂f(x) 6= ∅ i.e., f is subdifferentiable for all x.

• If f is non-convex, then we could have x such that f is differentiable at x but ∂f(x) = ∅.

• ∂f(x1) = {0},∇f(x1) = 0

• ∂f(x2) = ∅,∇f(x2) = 0

• ∂f(x3) = ∅,∇f(x3) = 0

In particular, gradient is a local concept (recall the definition of differentiability) but sub-
gradient is a global concept (the inequality has to hold for all x).

2.55. Definition: Let f : Rm → (−∞,∞] be proper. The subdifferential of f is the
set-valued operator 1

∂f : Rm ⇒ Rm

x 7→ {u ∈ Rm | ∀y ∈ Rm : f(y) ≥ f(x) + 〈u, y − x〉}.

Equivalently,

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm : f(y) ≥ f(x) + 〈u, y − x〉 .

Let x ∈ Rm. Then f is subdifferentiable at x if ∂f(x) 6= ∅. The elements of ∂f(x) are
called the subgradient of f at x.

1We use ⇒ to denote a set-valued operator. Recall → denotes a point-to-point operator, e.g., the projec-
tion operator. Here each point x ∈ Rm is mapped to a set in Rm.
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6. The Subdifferential Operator

2.56. Example: Let f : R→ R, x 7→ |x|. Then

∂f(x) =


{−1} x < 0

[−1, 1] x = 0

{1} x > 0

2.57. Fermat’s rule tells us that x is a global minimizer of f iff 0 is a subgradient of f at
x. When f is differentiable at x, then this goes back to Calc I where we find local extrema
using the first derivative test. Fermat’s rule holds also for non-convex functions. However,
we can typically only hope to find local minima as they are not as nice as convex functions.

2.58. Theorem (Fermat): Let f : Rm → (−∞,∞] be proper. Then

arg min(f) = {x ∈ Rm | 0 ∈ ∂f(x)} =: zer(∂f).

Proof. Let x ∈ Rm. Then

x ∈ arg min(f) ⇐⇒ ∀y ∈ Rm : f(x) ≤ f(y)

⇐⇒ ∀y ∈ Rm : 〈0, y − x〉+ f(x) ≤ f(y)

⇐⇒ 0 ∈ ∂f(x).

�

2.59. Lemma: If f : Rm → (−∞,∞] is proper, then dom(∂f) ⊆ dom(f).

Proof. Contrapositive. Suppose x 6∈ dom(f). Then f(x) =∞ and ∂f(x) = ∅. �

2.60. The subdifferential of the indicator function at x is exactly the normal cone NC(x).

2.61. Proposition: Let C ⊆ Rm be convex, closed, and non-empty and x ∈ Rm. Then

∂δC(x) = NC(x).

Proof. Let u ∈ Rm and x ∈ C. Then

u ∈ ∂δC(x) ⇐⇒ ∀y ∈ Rm : δC(y) ≥ δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C : δC(y) ≥ δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C : 0 ≥ 〈u, y − x〉 ⇐⇒ u ∈ NC(x).

�
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Section 7. Calculus of Subdifferentials

2.62. Motivation: Recall the gradient operator is linear. Let f, g : Rm → (−∞,∞] be
proper and let x ∈ Rm. Suppose that f, g are differentiable at x. Then

∇(f + g)(x) = ∇f(x) +∇g(x).

Now consider the subdifferential operator. Let f, g : Rm → (−∞,∞] be proper, convex, and
lsc, and x ∈ Rm. Suppose that f, g are subdifferentiable at x. Is the subdifferential operator
additive?

∂(f + g)(x)
?
= ∂f(x) + ∂g(x)?

2.63. Fact: Let f : Rm → R̂ be convex and proper. Then

∅ 6= ri(dom(f)) ⊆ dom(∂f) := {x | ∂f(x) 6= ∅}.

In particular,

ri(dom(f)) = ri(dom(∂f)), dom(f) = dom(∂f).

2.64. Recall from the previous section, s is a subgradient of f at x iff the affine function
induced by s defines a normal (s,−1) to the epigraph of f .

2.65. Proposition: Let f : Rm → R̂ be convex, lsc, and proper; x, s ∈ Rm. Then:

u ∈ ∂f(x) ⇐⇒ (s,−1) ∈ Nepi(f)(x, f(x)).

Proof. Observe that epi(f) 6= ∅ and convex as f is proper and convex. Let s ∈ Rm. Then

(s,−1) ∈ Nepi(f)(x, f(x))

⇐⇒ x ∈ dom(f) ∧ ∀(y, β) ∈ epi(f) : 〈(y, β)− (x, f(x)), (s,−1)〉 ≤ 0

⇐⇒ x ∈ dom(f) ∧ ∀(y, β) ∈ epi(f) : 〈(y − x, β − f(x)), (s,−1)〉 ≤ 0

⇐⇒ ∀(y, β) ∈ epi(f) : 〈y − x, s〉+ f(x) ≤ β
?⇐⇒ ∀y ∈ dom(f) : 〈y − x, s〉+ f(x) ≤ f(y)

⇐⇒ s ∈ ∂f(x).

?⇐⇒ : (⇒) holds as (y, f(y)) ∈ epi(f); (⇐) holds as (y, β) ∈ epi(f) ⇐⇒ f(y) ≤ β. �
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2.66. We now have the main result of this section. Under the following conditions, the
subdifferential opeator is additive.

2.67. Theorem: Let f, g : Rm → (−∞,∞] be convex, lsc, and proper. Suppose that
ri(dom(f)) ∩ ri(dom(g)) 6= ∅. Then for all x ∈ Rm we have

∂f(x) + ∂g(x) = ∂(f + g)(x).

Proof. Let x ∈ Rm. If x 6∈ dom(f) ∩ dom(g) = dom(f + g) ⊇ dom(∂f) ∩ dom(∂g), then at
least one of ∂f(x), ∂g(x) is empty, so ∂f(x) + ∂g(x) = ∅ = ∂(f + g)(x) and we are done.
Now let x ∈ dom(f) ∩ dom(g) = dom(f + g). One can easily verify that (A2)

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x).

For the opposite direction, let u ∈ ∂(f + g)(x). The subgradient inequality gives us

∀y ∈ Rm : (f + g)(y) ≥ (f + g)(x) + 〈u, y − x〉 . (2.1)

Consider the closed convex sets

∅ 6= E1{(x, α, β) ∈ Rm × R× R | f(x) ≤ α} = epi(f)× R
∅ 6= E2{(x, α, β) ∈ Rm × R× R | g(x) ≤ β}.

We claim that

(u,−1,−1) ∈ NE1∩E2(x, f(x), g(x)). (2.2)

Let (y, α, β) ∈ E1 ∩ E2. Then f(y) ≤ α, g(y) ≤ β, so f(y)− α ≤ 0 and g(y)− β ≤ 0. Now

〈(u,−1,−1), (y, α, β)− (x, f(x), g(x))〉 = 〈u, y − x〉 − (α− f(x))− (β − g(x))

= 〈u, y − x〉+ f(x) + g(x)− α− β
= 〈u, y − x〉+ (f + g)(x)− (α + β)

6 (f + g)(y)− α− β (2.1)

= f(y)− α + g(y)− β ≤ 0.

This proves (2.2). Next, we claim that ri(E1) ∩ ri(E2) 6= ∅. Using Fact 1.70, we know that

ri(E1) = ri(epi(f)× R) = ri(epi(f))× ri(R) = ri(epi(f))× R.

Moreover, we can show that ri(E2) = {(x, α, β) ∈ Rm × R × R | g(x) < β}. Now let
z ∈ ri(dom(f)) ∩ ri(dom(g)). Thus (z, f(z) + 1, g(z) + 1) ∈ ri(E1) ∩ ri(E2) and

ri(E1) ∩ ri(E2) 6= ∅.

Therefore, E1, E2 are non-empty, closed, and convex, satisfying ri(E1) ∩ ri(E2) 6= ∅. By
Theorem 1.113, we have

NE1∩E2(x, f(x), g(x)) = NE1(x, f(x), g(x)) +NE2(x, f(x), g(x)).
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Therefore,

(u,−1,−1) = (u1,−α, 0)︸ ︷︷ ︸
∈NE1

(x,f(x),g(x))

+ (u2, 0,−β)︸ ︷︷ ︸
∈NE2

(x,f(x),g(x))

.

Let’s justify the first ∈ (second is similar). Observe that E1 = epi(f)× R. Thus,

NE1(x, f(x), g(x)) = Nepi(f)(x, f(x))×NR(g(x)) = Nepi(f)(x, f(x))× {0}.

This yields u = u1 + u2 and α = β = 1. Hence,

(u1,−1) ∈ Nepi(f)((x, f(x))

(u2,−1) ∈ Nepi(g)((x, g(x))

Now recall Proposition 2.65. We conclude that u1 ∈ ∂f(x), u2 ∈ ∂g(x), and hence u =
u1 + u2 ∈ ∂f(x) + ∂g(x). The proof is complete. �

2.68. Example: Let f : Rm → (−∞,∞] be convex, lsc, and proper, and let ∅ 6= C ⊆
Rm be convex and closed. Suppose that ri(C) ∩ ri(dom(f)) = ∅. Consider the problem

(P ) := min f(x)
s.t. x ∈ C

Let x̄ ∈ Rm. We claim that x̄ solves (P ) iff ∂f(x̄) ∩ (−NC(x̄)) 6= ∅.

Proof. Write (P ) as

min
x∈Rm
{f(x) + δC(x)}.

Observe that f + δC is convex, lsc, and proper. By Fermat’s theorem,

x̄ solves P ⇐⇒ 0 ∈ ∂(f + δC)(x̄).

Now observe that the relative interiors of the domains of the functions are non-empty:

ri(dom(f)) ∩ ri(dom(δC)) = ri(dom(f)) ∩ ri(C) 6= ∅.

Therefore, by Theorem 2.67, we conclude that

x̄ solves P ⇐⇒ 0 ∈ ∂(f + δC)(x̄) = ∂f(x̄) + ∂δC(x̄) = ∂f(x̄) +NC(x̄)

⇐⇒ ∃u ∈ ∂f(x̄) : −u ∈ NC(x̄))

⇐⇒ ∂f(x̄) ∩ (−NC(x̄)) 6= ∅.

�

2.69. Example: Let d ∈ Rm and let ∅ 6= C ⊆ Rm be convex and closed. Consider

(P ) := min 〈d, x〉
s.t. x ∈ C

Let x̄ ∈ Rm. Since f(x) = 〈d, x〉 is differentiable, ∂f(x) = d for all x. By the previous
example, x̄ solves P if and only if −d ∈ NC(x̄).
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Section 8. Convexity and Differentiability

2.70. Note: Recall the following from MATH-247. Let f : Rm → R̂ be proper and
x ∈ dom(f). The directional derivative of f at x in the direction of d is

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

We say f is differentiable at x if there is a linear operator ∇f(x) : Rm → Rm, called the
derivative or gradient of f at x that satisfies

lim
06=‖y‖→0

‖f(x+ y)− f(x)− 〈∇f(x), y〉 ‖
‖y‖

= 0

If f is differentiable at x, then the directional derivative of f at x in the directional of d is

f ′(x; d) = 〈∇f(x), d〉 .

2.71. Note: When f is convex, the function h(d) = (x+ d)− f(x) is convex in d, with
h(0) = 0. Thus, we can replace lim with inf and obtain an equivalent definition:

f ′(x; d) = inf
t>0

f(x+ td)− f(x)

t
.

Note that f ′(x; d) is convex in d and f ′(x; d) defines a lower bound on f in the direction d:

∀t ≥ 0 : f(x+ td) ≥ f(x) + tf ′(x; d).

2.72. Let f be convex and proper and y be a unit vector. The following theorem states
that u is a subgradient of f at x iff the directional derivative of f at x in the direction of y
is bounded below by u. In particular, observe that f ′(x; y) is the support function of ∂f(x).
Recall that σ∂f(x)(y) = supu∈∂f(x) 〈u, y〉. Since f ′(x; ·) ≥ 〈u, ·〉 for all u ∈ ∂f(x), we see that
f ′(x; y) = supu∈∂f(x) 〈u, y〉 for all y ∈ Rm. This is exactly the definition of σ∂f(x)(y).

2.73. Theorem: Let f : Rm → R̂ be convex and proper, x ∈ dom(f), u ∈ Rm. Then

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm : f ′(x; y) ≥ 〈u, y〉

Proof. Using the subgradient inequality, we have

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm,∀λ > 0 : f(x+ λy) ≥ f(x) + 〈u, x+ λy − x〉

⇐⇒ ∀y ∈ Rm,∀λ > 0 :
f(x+ λy)− f(x)

λ
≥ 〈u, y〉

⇐⇒ ∀y ∈ Rm, inf
λ>0

f(x+ λy)− f(x)

λ
≥ 〈u, y〉

⇐⇒ ∀y ∈ Rm : f ′(x; y) ≥ 〈u, y〉 .

�
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Figure 2.3: f ′(x; y) is the support function of ∂f(x).

2.74. Theorem: Let f : Rm → R̂ be convex and proper, x ∈ dom(f). If f is differen-
tiable at x, then ∇f(x) is the unique subgradient of f at x.

Proof. Recall that f ′(x; y) = 〈∇f(x), y〉 for all y ∈ Rm. Let u ∈ Rm. Using the previous
theorem, we have

(u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm : f ′(x, y) ≥ 〈u, y〉)
=⇒ (u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm : 〈∇f(x), y〉 ≥ 〈u, y〉).

Replacing u by ∇f(x), this becomes an equality, so we have {∇f(x)} ⊆ ∂f(x). Now let
y = u−∇f(x), we see that

〈∇f(x), u−∇f(x)〉 ≥ 〈u, u−∇f(x)〉 ⇐⇒ 〈u−∇f(x), u−∇f(x)〉 ≤ 0

⇐⇒ ‖u−∇f(x)‖2 = 0

⇐⇒ u = ∇f(x) =⇒ ∂f(x) ⊆ {∇f(x)}.

Thus, ∂f(x) = {∇f(x)}. �

2.75. For the next result, consider φ(x) = x2. Note how φ′ is increasing and φ is convex
on R.

2.76. Lemma: Let φ : R→ R̂ be a proper function that is differentiable on a non-empty
open interval I ⊆ dom(φ). If φ′ is increasing on I, then φ is convex on I.

Proof. Fix x, y ∈ I and λ ∈ (0, 1). Define ψ : R→ R̂,

z 7→ λφ(x) + (1− λ)φ(z)− φ(λx+ (1− λ)z).

Then ψ′(z) = (1 − λ)φ′(z) − (1 − λ)φ′(λx + (1 − λ)z) and ψ′(x) = 0 = ψ(x). Since φ′ is
increasing on I, we have

z < x =⇒ ψ′(z) ≤ 0, z ≥ x =⇒ ψ′(z) > 0

Therefore, ψ achieves its infimum on I at x, i.e., ∀y ∈ I : ψ(y) ≥ ψ(x) = 0. Thus,

∀y ∈ I : λφ(x) + (1− λ)φ(y) ≥ φ(λx+ (1− λ)y).

and φ is convex on I. �
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2.77. For the second statement in the next result, consider the linear approximation

L(x) = f(y) + f ′(y)(x− y) = f(y) + 〈∇f(y), x− y〉 .

Since f is convex, the linear approximation is a global lower bound of f , so we see that

f(x) ≥ L(x) = f(y) + 〈∇f(y), x− y〉 .

2.78. Proposition: Let f : Rm → R̂ be proper. Suppose dom(f) is open and convex
and f is differentiable on dom(f). TFAE:

1. f is convex.

2. ∀x, y ∈ dom(f) : 〈x− y,∇f(y)〉+ f(y) ≤ f(x).

3. ∀x, y ∈ dom(f) : 〈x− y,∇f(x)−∇f(y)〉 ≥ 0.

Proof. (1⇒ 2). ∇f(y) is the unique subgradient of f at y. Thus,

∀x ∈ Rm,∀y ∈ dom(f) : f(x) ≥ 〈x− y,∇f(y)〉+ f(y).

(2⇒ 3). See A2 for a proof in a more general setting.
(3⇒ 1). Fix x, y ∈ dom(f) and z ∈ Rm. By assumption, dom(f) is open, so ∃ε > 0 s.t.

y + (1 + ε)(x− y) = x+ ε(x− y) ∈ dom(f)

=⇒ y − ε(x− y) = y + ε(y − x) ∈ dom(f).

By convexity of dom(f),

∀α ∈ (−ε, 1 + ε) : x+ α(x− y) ∈ dom(f).

Let C = (−ε, 1 + ε) ⊆ R and φ : R→ R̂ given by

φ(α) = f(y + α(x− y)) + δC(α).

Then φ is differentiable on C and

∀α ∈ C : φ′(α) = 〈∇f(y + α(x− y)), x− y〉 .

Now take α, β ∈ C with α < β. Set

yα = y + α(x− y), yβ = y + β(x− y) =⇒ yβ − yα = (β − α)(x− y).

Then

φ′(β)− φ′(α) = 〈∇f(y + β(x− y)), x− y〉 − 〈∇f(y + α(x− y)), x− y〉
= 〈∇f (yβ)−∇f (yα) , x− y〉

=
1

β − α
〈∇f (yβ)−∇f (yα) , yβ − yα〉

≥ 0.

That is, φ′ is increasing on C. By the previous Lemma, φ is convex on C. Now recall that
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φ(α) = f(y + α(x− y)) + δC(α). Thus, (note that α ∈ C =⇒ δC(α) = 0)

f(αx+ (1− α)y) = ϕ(α)

≤ αϕ(1) + (1− α)ϕ(0)

= αf(x) + (1− α)f(y).

�

2.79. Example: Let A ∈ Rm×m and set f : Rm → R, f(x) = 〈x,Ax〉. Then

• ∇f(x) = A+ AT .

• f is convex iff A+ AT is positive semi-definite.

See A3 for Claim 1. For Claim 2, we use Proposition 2.78:

f is convex ⇐⇒ ∀x, y ∈ dom(f) : 〈x− y,∇f(x)− f(y)〉 ≤ 0

⇐⇒ ∀x ∈ Rm : ∀y ∈ Rm :
〈
(A+ AT )x− (A+ AT )y, x− y

〉
≥ 0

⇐⇒ ∀z ∈ Rm :
〈
(A+ AT )z, z

〉
≥ 0.
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Section 9. Subdifferentiability and Conjugacy

2.80. Note: Recall that for a function f : Rm → R, the Fenchel-Legendre conjugate
of f is given by

f ∗ : Rm → R
u 7→ sup

x∈Rm
{〈x, u〉 − f(x)}.

Recall that a closed convex set C is the intersection of all closed halfspaces that contain
C. Applying this idea to the epigraph of a closed convex function f , we see that f is the
supremum of all affine functions that are majorized by f . For any given slope u, there may
be many different constants b such that the affine function 〈u, x〉 − b is majorized by f . The
convex conjugate gives us the best such constant, i.e., for any u ∈ Rm, 〈u, x〉 exceeds f(x)
by at most f ∗(u). Equivalently, so 〈u, x〉 − f ∗(u) exceeds f(x) by at most 0. Therefore, we
have f(x) = supu∈Rm{〈u, x〉 − f ∗(u)} ⇐⇒ f ∗(u) = supx∈Rm {〈u, x〉 − f(x)} .

2.81. Proposition: Let f, g : Rm → R. Then

• f ∗∗ := (f ∗)∗ ≤ f .

• f ≤ g =⇒ f ∗ ≥ g∗ ∧ f ∗∗ ≤ g∗∗.

Proof. See A3. �

2.82. Viewing f ∗(u) as the best (largest) scalar b such that the affine function 〈u, x〉− b
is majorized by f , we immediately see that f(x) ≥ 〈u, x〉 − b = 〈u, x〉 − f ∗(u).

2.83. Proposition (Fenchel-Young Inequality): Let f : Rm → R̂ be proper. Then

∀x, u ∈ Rm : f(x) + f ∗(u) ≥ 〈x, u〉 .

Proof. Observe that the definition of f ∗ yields f ≡ ∞ ⇐⇒ f ∗ = −∞. Since f is proper,
f ∗(u) 6= −∞ for all u ∈ Rm. Now let x, u ∈ Rm. If f(x) = ∞, the inequality clearly holds.
Otherwise, if f(x) <∞, we have f ∗(u) = supy∈Rm(〈y, u〉 − f(u)) ≥ 〈y, x〉 − f(x). �

2.84. Recall that each subgradient u ∈ ∂f(x) defines an affine minorizer to the f such
that the affine function coincides with f at x. Now f ∗(u) is the largest scalar b such that
〈u, x〉 − b is majorized by f , so we have f(x) = 〈x, u〉 − f ∗(u).

2.85. Proposition: Let f : Rm → R̂ be convex, lsc, and proper. Let x, u ∈ Rm. Then

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉 .
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Proof. Observe that

u ∈ ∂f(x)⇐⇒ ∀y ∈ dom f : 〈y − x, u〉+ f(x) ≤ f(y)

⇐⇒ ∀y ∈ dom f : 〈y, u〉 − f(y) ≤ 〈x, u〉 − f(x) ≤ f ∗(u)

⇐⇒ f ∗(u) = sup
y∈Rm

(〈y, u〉 − f(y)) ≤ 〈x, y〉 − f(x) ≤ f ∗(u)

⇐⇒ f(x) + f ∗(u) = 〈x, u〉

�

2.86. Definition: The Fenchel-Legendre biconjugate of f : Rm → R is given by

f ∗∗ : Rm → R
x 7→ sup

y∈Rm
{〈y, x〉 − f ∗(y)}.

2.87. Proposition: Let f : Rm → R̂ be convex and proper with ∂f(x) 6= ∅ at x ∈ Rm.
Then f ∗∗(x) = f(x).

Proof. Let u ∈ ∂f(x). By Proposition 2.85,

〈u, x〉 = f(x) + f ∗(u) =⇒ f(x) = 〈u, x〉 − f ∗(u).

Consequently,

f ∗∗ = sup
y∈Rm
{〈x, y〉} ≥ 〈x, u〉 − f ∗(u) = f(x).

Conversely,

f ∗∗(x) = sup
y∈Rm
{〈y, x〉 − f ∗(y)}

= sup
y∈Rm
{〈y, x〉 − sup

z∈Rm
{〈z, y〉 − f(z)}}

= sup
y∈Rm
{〈y, x〉+ inf

z∈Rm
{f(z)− 〈y, z〉}}

= sup
y∈Rm
{ inf
z∈Rm
{f(z) + 〈y, x− z〉}}

≤ sup
y∈Rm
{f(x) + 〈y, x− x〉}

= sup
y∈Rm

f(x) = f(x).

Altogether, f(x) = f ∗∗(x). �

2.88. Fact: Let f : Rm → R̂ be proper. Then f is convex and lsc iff f = f ∗∗. In this
case, f ∗ is also proper.
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2.89. Corollary: Let f : Rm → R̂ be convex, lsc, and proper. Then f ∗ is convex, lsc,
and proper, and f ∗∗ = f .

Proof. First claim: Fact 2.88 + Proposition 2.48. Second claim: Fact 2.88. �

2.90. Proposition: Let f : Rm → R̂ be convex, lsc, and proper. Then

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(u).

Proof. Recall that u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉. Let g = f ∗. Then by Corollary
2.89, g is convex, lsc, and proper. Moreover, g∗ = f . Hence, g∗∗ = f ∗. Hence

u ∈ ∂f(x)⇐⇒ f(x) + f ∗(u) = 〈x, u〉
⇐⇒ g∗(x) + g(u) = 〈x, u〉
⇐⇒ x ∈ ∂g(u) = ∂f ∗(u)

�
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Section 10. Coercive Functions

2.91. Theorem: Let f : Rm → R be proper, lsc, and let C be a compact subset of Rm

such that C ∩ dom(f) 6= ∅. Then

1. f is bounded below over C.

2. f attains its minimum value over C.

Proof. Suppose for a contradiction that f is not bounded below over C. Then there exists a
sequence {xn}n∈N in C such that limn→∞ f(xn) = −∞. Since C is compact, it is closed and
bounded, so (xn)n∈N must be bounded. By BW, there exists a convergent subsequence xkn
that converges to x̄ ∈ C (C is closed). Since f is lsc, f(x̄) ≤ lim infn→∞ f(xkn), contradiction.

Now let fmin be the minimum value of f over C. Then there exists a sequence (xn)n∈N in C
such that f(xn)→ fmin. Since C is bounded, (xn)n∈N is bounded. Let x̄ be a cluster point of
(xn)n∈N, say xkn → x̄ ∈ C. Then f(x̄) ≤ lim infn→∞ f(xkn) = fmin. Hence, x̄ is a minimizer
of f over C. �

2.92. A coercive function is a function that “grows rapidly” at the extremes of the space
on which it is defined on.

2.93. Definition: Let f : Rm → R̂. Then f is coercive if

lim
‖x‖→∞

f(x) =∞.

f is super coercive if

lim
‖x‖→∞

f(x)

‖x‖
=∞.

2.94. Theorem: Let f : Rm → R̂ be proper, lsc, coercive, and let C be a closed subset
of Rm satisfying C ∩ dom(f) = ∅. Then f attains its minimum value over C.

Proof. Let x ∈ C ∩ dom(f). Since f is coercive,

∃M > 0 : ‖y‖ > M =⇒ f(y) > f(x).

If x̄ is a minimizer of f over C, then f(x̄) ≤ f(x). Thus, the set of minimizers of f over C is
the same as the set of minimizers of f over C ∩ B(0;M). The latter is closed and bounded
so it is compact. Applying the previous result with the set C replaced by C ∩ B(0;M), we
conclude that f attains its minimum value over C ∩ B(0;M), say at x̃. Altogether, x̃ is a
minimizer of f over C. �
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Section 11. Differentiability and Strong Convexity

2.95. Intuition: A function is Lipschitz if it cannot change arbitrarily fast. Consider
f : R→ R. The slope between two points x, y ∈ R is given by

|f(x)− f(y)|
|x− y|

.

If the slope (which measures how fast the function may change) between any x, y ∈ R is
bounded by some constant L ∈ R, i.e.,

∀x, y ∈ R :
|f(x)− f(y)|
|x− y|

≤ L ⇐⇒ ‖f(x)− f(y)‖ ≤ L|x− y|.

We now generalize this to Rm.

2.96. Definition: Let T : Rm → Rm and L ≥ 0. Then T is L-Lipschitz if

∀x, y ∈ Rm : ‖Tx− Ty‖ ≤ L‖x− y‖.

2.97. Note: Recall the operator norm on the space Rm×n is given by

‖A‖ = sup{‖Ax‖ | x ∈ Rn, ‖x‖ = 1} = sup

{
‖Ax‖
‖x‖

: x ∈ Rn, x 6= 0

}
.

Intuitively, we are measuring how “big” an operator A is by looking at how it sends vectors.

2.98. Example: Let A � 0 (positive semidefinite), b ∈ Rn, c ∈ R, and consider

f : Rm → Rm, x 7→ 1

2
〈x,Ax〉+ 〈b, x〉+ c.

Now observe that ‖∇f(x)−∇f(y)‖ = ‖Ax− Ay‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖, i.e., ∇f is
Lipschitz with constant L = ‖A‖.

2.99. Example: Let C ⊆ Rm be non-empty, closed, and convex. We claim that the
projection operator PC is 1-Lipschitz. The claim is trivial if C is a singleton. Now suppose
otherwise. Let x 6= y ∈ Rm. If PC(x) = PC(y), then 0 = ‖PC(x) − PC(y)‖ < ‖x − y‖.
Otherwise, if PC(x) 6= PC(y), then

‖PC(x)− PC(y)‖2

= 〈PC(x)− PC(y), PC(x)− PC(y)〉 = 〈PC(x)− PC(y), PC(x)− x+ y − PC(y) + x− y〉
= 〈PC(x)− PC(y), PC(x)− x〉+ 〈PC(x)− PC(y), y − PC(y)〉+ 〈PC(x)− PC(y), x− y〉
= 〈PC(x)− PC(y), PC(x)− x〉+ 〈PC(y)− PC(x), PC(y)− y〉+ 〈PC(x)− PC(y), x− y〉
≤1 〈PC(x)− PC(y), x− y〉 ≤2 ‖PC(x)− PC(y)‖‖x− y‖ =⇒ ‖PC(x)− PC(y)‖ ≤ ‖x− y‖.

where ≤1 uses the projection theorem (both first and second components are non-positive)
and ≤2 uses CS-inequality.
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2.100. Motivation: Let f be a convex, differentiable function and x ∈ int(dom(f)).
Recall the linear approximation g(y) = f(x)+〈∇f(x), y − x〉 gives a (global) lower bound of
f and intersects f at x. The descent lemma bounds f(y) around x with quadratic functions.
More precisely, it gives us a convex quadratic upper bound on f .

2.101. Lemma (Descent Lemma): Let f : Rm → R̂ be differentiable on ∅ 6= D ⊆
int(dom(f)) such that ∇f is L-Lipschitz over D, where D is convex. Then

∀x, y ∈ D : f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2.

Proof. Let x, y ∈ Rm. By the Fundamental Theorem of Calculus,

f(y)− f(x) =

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉dt

= 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt.

This implies that

|f(y)− f(x)− 〈∇f(x), y − x〉| =
∣∣∣∣∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉dt
∣∣∣∣

≤
∫ 1

0

|〈∇f(x+ t(y − x))−∇f(x), y − x〉|dt

≤
∫ 1

0

‖∇f(x+ t(y − x))−∇f(x)‖ · ‖y − x‖dt

=

∫ 1

0

L‖x+ t(y − x)− x‖ · ‖y − x‖dt

=

∫ 1

0

tL‖x− y‖2dt =
L

2
‖x− y‖2.

Hence,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2.

�
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2.102. There are many alternative characterizations for Lipschitz functions.

2.103. Theorem: Let f : Rm → R be convex and differentiable, and L > 0. TFAE:

1. ∇f is L-Lipschitz.

2. ∀x, y ∈ Rm : f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2
‖x− y‖2.

3. ∀x, y ∈ Rm : f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L
‖∇f(x)−∇f(y)‖2.

4. ∀x, y ∈ Rm : 〈∇f(x)−∇f(y), x− y〉 ≥ 1
L
‖∇f(x)−∇f(y)‖2.

Proof. (1⇒ 2): This is the descent lemma with D = Rm.

(2⇒ 3): WLOG, assume ∇f(x) 6= ∇f(y) (or the conclusion follows immediately using the
subgradient inequality and the fact that ∂f(x) = {∇f(x)}). Fix x ∈ Rm and define

hx(y) := f(y)− f(x)− 〈∇f(x), y − x〉 .

Observe that hx is convex and differentiable with ∇hx(y) = ∇f(y)−∇f(x). Then

hx(z) = f(z)− f(x)− 〈∇f(x), z − x〉

≤ f(y) + 〈∇f(y), z − y〉+
L

2
‖z − y‖2 − f(x)− 〈∇f(x), z − x〉

= f(y)− f(x)− 〈∇f(x), y − x〉 − 〈∇f(x), z − y〉+ 〈∇f(y), z − y〉+
L

2
‖z − y‖2

= f(y)− f(x)− 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), z − y〉+
L

2
‖z − y‖2

= hx(y) + 〈∇hx(y), z − y〉+
L

2
‖z − y‖2 (2.3)

Since hx is convex and ∇hx(x) = ∇f(x) − ∇f(x) = 0, x is a global minimizer of hx. Let
v ∈ Rm with ‖v‖ = 1 and y ∈ Rm with 〈∇hx(y), v〉 = ‖∇hx(y)‖. Since x minimizes hx,

0 = hx(x) ≤ hx

(
y − ‖∇hx(y)‖

L
v

)
.

On the other hand, from (2.3), we have

0 = hx(x) ≤ hx

(
y − ‖∇hx(y)‖

L
v

)
= hx(y)− ‖∇hx(y)‖

L
〈∇hx(y), v〉+

1

2L
‖∇hx(y)‖2 ‖v‖2

= hx(y)− ‖∇hx(y)‖2

L
+

1

2L
‖∇hx(y)‖2

= hx(y)− 1

2L
‖∇hx(y)‖2

= f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2L
‖∇f(x)−∇g(y)‖2

as desired.
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(3⇒ 4): Using (3), we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2L
‖∇f(x)−∇f(y)‖2

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2L
‖∇f(y)−∇f(x)‖2

Adding them together gives (4).

(4⇒ 1). WLOG, assume ∇f(x) 6= ∇f(y) (or the conclusion is trivial). By (4),

‖∇f(x)−∇f(y)‖2 ≤ L〈∇f(x)−∇f(y), x− y〉
≤ L‖∇f(x)−∇f(y)‖ · ‖x− y‖

=⇒ ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

This concludes the proof. �

2.104. ∇f is L-Lipschitz iff the operator norm ∇2f(x) is bounded by L for all x ∈ Rm.

2.105. Theorem (Second Order Characterization): Let f : Rm → R be twice continu-
ously differentiable over Rm and let L ≥ 0. Then

∇f is L-Lipschitz ⇐⇒ ∀x ∈ Rm : ‖∇2f(x)‖ ≤ L.

Proof. (⇒) Suppose that ∇f is L-Lipschitz. Observe that for any y ∈ Rm, α > 0,

‖∇f(x+ αy)−∇f(x)‖ ≤ L‖x+ αy − x‖ = αL‖y‖.

Now ∥∥∇2f(x)(y)
∥∥ = lim

α↓0

‖∇f(x+ αy)−∇f(x)‖
α

≤ lim
α↓0

L‖x+ αy − x‖
α

= lim
α↓0

L‖y‖ = L‖y‖ =⇒ ‖∇2f(x)‖ ≤ L.

(⇐): Let ‖∇2f(x)‖ ≤ L and fix x, y ∈ Rm. By the fundamental theorem of calculus

∇f(x) = ∇f(y) +

∫ 1

0

∇2f(y + α(x− y))(x− y)dα

= ∇f(y) +

[∫ 1

0

∇2f(y + α(x− y))dα

]
(x− y)

=⇒ ‖∇f(x)−∇f(y)‖ ≤
∥∥∥∥∫ 1

0

∇2f(x+ α(x− y))dα

∥∥∥∥ · ‖x− y‖
≤
∫ 1

0

∥∥∇2f(x+ α(x− y))
∥∥ dα · ‖x− y‖ ≤ L‖x− y‖

�
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2.106. Fact: Let A ∈ Rm×m be symmetric. Then

‖A‖ = sup
‖x‖=1

‖Ax‖ = max
1≤i≤m

|λi|

where λ1, . . . , λm are the eigenvalues of A.

2.107. Proposition: Let f : Rm → R be twice continuously differentiable. Then f is
convex iff ∇2f(x) is positive semidefinite for all x ∈ Rm.

Proof. See A3. �

2.108. Corollary: Let f : Rm → R be convex and twice continuously differentiable. Let
L ≥ 0. Then ∇f is L-Lipschitz iff λmax(∇2f(x)) ≤ L for all x ∈ Rm.

Proof. Since f is convex and twice continuously differentiable, ∇2f(x) is positive semidefinite
for all x ∈ Rm. Combine with the earlier result, we learn that

L ≥ ‖∇2f(x)‖ = |λmax(∇2f(x))| = λmax(∇2f(x)).

�

2.109. Example: Let f : Rm → R be given by f(x) =
√

1 + ‖x‖2. Then f is convex
and ∇f is L-Lipschitz. See A3.

2.110. We now look at some results related to strong convexity.

2.111. Proposition: Let β > 0. Then f : Rm → R̂ is β-strongly convex iff f − β
2
‖ · ‖2

is convex.

Proof. See A3. �

2.112. Proposition: Let f, g : Rm → R̂ and β > 0. Suppose that f is β-strongly convex
and g is convex. Then f + g is β-strongly convex.

Proof. Define h = f + g − β
2
‖ · ‖2 = (f − β

2
‖ · ‖2) + g. Then h is convex being the sum of

two convex functions. Now apply Proposition 2.111 again with f replaced by f + g yields
the desired result. �

2.113. Fact: Let f : Rm → R̂ be strongly convex and proper. Then f has a unique
minimizer.
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Section 12. The Proximal Operator

2.114. Motivation: The proximal operator can be viewed as a generalization of the
Projection operator. (See Proposition 2.118 and Proposition 2.120 for this statement.) Al-
ternatively, evaluating the proximal operator of f at x can be viewed as attempting to reduce
the value of f without straying too far from x. For more intuition, see here.

2.115. Definition: Let f : Rm → R̂. The proximal operator of f is the operator

proxf : Rm ⇒ Rm

x 7→ arg min
u∈Rm

{
f(u) +

1

2
‖u− x‖2

}
.

2.116. Theorem: Let f : Rm → R̂ be convex, lsc, and proper. Then proxf (x) is a
singleton for all x ∈ Rm.

Proof. Observe that for a fixed x ∈ Rm, hx := 1
2
‖ · −x‖2 is a β-strongly convex for every

β < 1. Therefore, gx := f + hx is β-strongly convex for every x ∈ Rm. Also, gx is lsc (both
f, hx are lsc) and proper (both f, hx are proper, dom(f) ∩ dom(hx) = dom(f) ∩ Rm 6= ∅).
Therefore, by Fact 2.113, we see that arg minu∈Rm gx = proxf (x) exists and is unique. �

2.117. The proximal operator of an indicator function of a non-empty, closed, and
convex set is equal to the projection operator of that set.

2.118. Proposition: Let C ⊆ Rm be a non-empty, closed, and convex. Then

proxδC = PC .

Proof. Let x ∈ Rm. By definition,

p = proxδC (x) ⇐⇒ p = arg min
u∈Rm

{
δC(u) +

1

2
‖x− u‖2

}
⇐⇒ ∀u ∈ Rm : δC(p) +

1

2
‖x− p‖2 ≤ δC(u) +

1

2
‖x− u‖2

⇐⇒ (p ∈ C) ∀u ∈ C :
1

2
‖x− p‖2 ≤ ‖x− u‖2

⇐⇒ (p ∈ C) ∀u ∈ C : ‖x− p‖ ≤ ‖x− u‖
⇐⇒ p = PC(x).

Note we only care about the case where p ∈ C because δC(p) = ∞ otherwise and the
statement trivially holds. �

2.119. Note this proposition expands the inequality of the projection theorem. In par-
ticular, we didn’t have f(p) and f(y) back then, because they were simply δC(p) and δC(y)
which evaluate to 0.
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12. The Proximal Operator

2.120. Proposition: Let f : Rm → R̂ be convex, lsc, and proper. Let x, p ∈ Rm. Then

p = proxf (x) ⇐⇒ ∀y ∈ Rm : 〈y − p, x− p〉+ f(p) ≤ f(y).

Proof. Let y ∈ Rm.

(⇒) Suppose that p = proxf (x) and set pλ = λy + (1− λ)p for λ ∈ (0, 1). Then

f(p) ≤ f (pλ) +
1

2
‖x− pλ‖2 −

1

2
‖x− p‖2

≤ f (pλ) +
1

2
‖x− λy − (1− λ)p‖2 − 1

2
‖x− p‖2

= f (pλ) +
1

2
〈x− p− λ(y − p)− (x− p), x− p− λ(y − p) + (x− p)〉

= f (pλ) +
1

2
〈−λ(y − p), 2(x− p)− λ(y − p)〉

= f (pλ) +
λ

2
‖y − p‖2 − λ〈x− p, y − p〉

= f(λy + (1− λ)p) +
λ2

2
‖y − p‖2 − λ〈x− p, y − p〉

≤ λf(y) + (1− λ)f(p) +
λ2

2
‖y − p‖2 − λ〈x− p, y − p〉

Rearranging yields

λ〈x− p, y − p〉+ λf(p) ≤ λf(y) +
λ2

2
‖y − p‖2.

Dividing by λ and taking the limit as λ→ 0 yields the desired inequality.

(⇐): Suppose that 〈y − p, x− p〉+ f(p) ≤ f(y). Then

f(p) ≤ f(y)− 〈y − p, x− p〉 = f(y) + 〈x− p, p− y〉

It follows that

f(p) +
1

2
‖x− p‖2 ≤ f(y) + 〈x− p, p− y〉+

1

2
‖x− p‖2

≤ f(y) + 〈x− p, p− y〉+
1

2
‖x− p‖2 +

1

2
‖p− y‖2

≤ f(y) + ‖x− p+ p− y‖2

= f(y) + ‖x− y‖2

�

2.121. Example: Let f : R→ R with x 7→ |x|. Then

proxf (x) =


x− 1 x > 1

0 −1 ≤ x ≤ 1

x+ 1 x < −1
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2.122. The following proposition illustrates the usefulness of the proximal operator.

2.123. Proposition: Let f : Rm → R be convex, lsc, and proper. Then x minimizes f
over Rm iff x = proxf (x).

Proof. By Proposition 2.120,

x = proxf (x)⇐⇒ ∀y ∈ Rm : 〈y − x, x− x〉+ f(x) ≤ f(y)

⇐⇒ ∀y ∈ Rm : f(x) ≤ f(y).

�

2.124. Example: Let us find the proximal operator for each of these functions:

f(x) = 0, g(x) =

{
0 x 6= 0

−λ x = 0
, h(x) =

{
0 x 6= 0

λ x = 0

Clearly f is convex and h, g are not.

(1) Let x ∈ R. Since f is convex, lsc, and proper, proxf (x) is the unique minimizer of the
function

f(y) +
1

2
(y − x)2 ≥ 0.

Since f(y) = 0 for all y and (y − x)2 is non-negative, the minimizer is y = x.

(2) Let x ∈ R. Recall proxg(x) is the minimizer of the function

k(y) = g(y) +
1

2
(y − x)2 =

{
1
2
(y − x)2 y 6= 0

1
2
x2 − λ y = 0.

Let k∗ be the minimum value of k(y). First, if x2 < 2λ, then the first case is non-negative and
the second case is negative, so k∗ comes from the second case which gives us arg min y = {0}.
If x2 > 2λ, then the second case is strictly positive, so k∗ = 0 and is attained iff y = x from
the first case. If x2 = 2λ, then k∗ = 0 and is attained iff y ∈ {0, x}. Therefore,

proxg(x) =


{x} |x| >

√
2λ

{0, x} |x| =
√

2λ

{0} |x| <
√

2λ

Note this indicates that proxg is not necessarily a singleton in the general case.

(3) We claim that

proxh(x) =

{
{x} x 6= 0

∅ x = 0

i.e., proxh(x) is not defined as x = 0. Combine the examples for g and h tells us that
convexity is critical for the proximal operator to be well-defined. See A3.
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2.125. Example: Let f : R → R, x 7→ λ|x| where λ ≥ 0. Then f is convex. We claim
that for all x ∈ R,

proxf (x) =


x− λ x > λ

0 −λ ≤ x ≤ λ

x+ λ x < −λ

This is known as the soft threshold. The above formula is often written as

proxf (x) = sgn(x)(|x| − λ)+

where for all y ∈ R,

(y)+ = max{y, 0} =

{
y y ≥ 0

0 y < 0

2.126. The components of the proximal operator behave as expected.

2.127. Theorem: Let f : Rm → R̂ be given by

f(x1, . . . , xm) =
m∑
i=1

fi(xi)

where each fi : R→ R̂ is convex, lsc, and proper. Then

proxf (x) = (proxf1(x1), . . . , proxfm(xm)).

Proof. By A2, f being the direct sum of convex, lsc, and proper functions is convex, lsc, and
proper. Let p = (p1, . . . , pm) ∈ Rm. Then

p = proxf (x) ⇐⇒ ∀y ∈ Rm : f(y) ≥ f(p) + 〈y − p, x− p〉
⇐⇒ ∀y ∈ R : f1(y) + · · ·+ fm(ym) ≥ f1(p1) + · · ·+ fm(pm)

+ (y1 − p1)(x1 − p1) + · · ·+ (ym − pm)(xm − pm).

Setting yi − pi for all i ∈ {2, . . . ,m}, we learn that

∀y1 ∈ R : f1(y1) ≥ f1(p1) + (y1 − p1)(x1 − p1) ⇐⇒ p1 = proxf1(x1).

Similar arguments yield pi = proxfi(xi) for all i ∈ [m]. �

2.128. Example: Let α > 0 and g : Rm → R̂ be given by

g(x) =

{
−α
∑m

i=1 log xi x > 0

∞ otherwise

Then

proxg(x) =

(
xi +

√
x2i + 4α

2

)m

i=1

.
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Proof. Consider the function f : R→ R̂ where

∀x ∈ R : f(x) =

{
−α log x x > 0

∞ otherwise

Then f is convex, lsc, and proper. Indeed, f is differentiable for all x > 0 (which is the
domain of f), so it is lsc. Also, f ′′(x) = α/x2 > 0 for all x ∈ R so it is convex. Finally,
f(x) > −∞ for all x ∈ R, so dom(f) 6= ∅ and it is proper. We wish to show that

proxf (x) =
x+
√
x2 + 4α

2
.

Indeed, recall that p = proxf (x) is the unique minimizer of the function

h(y) = f(y) +
1

2
(y − x)2 =

{
−α log y + 1

2
(y − x)2 y > 0

∞ otherwise

Clearly, h is differentiable on its domain (0,∞). Therefore,

p = proxf (x) ⇐⇒ f ′(p) = 0

⇐⇒ (−α log p+ (p− x)2/) = 0

⇐⇒ −α/p+ p− x = 0

⇐⇒ p2 − xp− α = 0 (p > 0)

⇐⇒ p > 0, p =
x±
√
x2 + 4α

2

⇐⇒ p =
x+
√
x2 + 4α

2
.

Now combine with the previous theorem. �

2.129. The following theorem gives us a way to quickly obtain the proximal operator of
a function based on the proximal operator of a related function.

2.130. Theorem: Let g : Rm → R̂ be proper, c > 0, a ∈ Rm, γ ∈ R, and set

∀x ∈ Rm : f(x) = g(x) +
c

2
‖x‖2 + 〈a, x〉+ γ.

Then

∀x ∈ Rm : proxf (x) = proxg/(c+1)

(
x− a
c+ 1

)
.

Proof. Indeed, recall that

Proxf (x) := argminu∈Rm f(u) +
1

2
‖u− x‖2

= argminu∈Rm g(u) +
c

2
‖u‖2 + 〈a, u〉+ γ +

1

2
‖u− x‖2
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Now:

c

2
‖u‖2 + 〈a, u〉+

1

2
‖u− x‖2 =

c

2
‖u‖2 + 〈a, u〉+

1

2
‖u‖2 − 〈u, x〉+

1

2
‖x‖2

=
c+ 1

2
‖u‖2 − 〈u, x− a〉+

1

2
‖x‖2

=
c+ 1

2

[
‖u‖2 − 2

〈
u,
x− a
c+ 1

〉
+

1

c+ 1
‖x‖2

]
=
c+ 1

2

[∥∥∥∥u− x− a
c+ 1

∥∥∥∥2 − ‖x− a‖2c+ 1
+

1

c+ 1
‖x‖2

]

=
c+ 1

2

∥∥∥∥u− x− a
c+ 1

∥∥∥∥2 − ‖x− a‖22
+

1

2
‖x‖2

Finally, since minimizers are preserved under positive scalar multiplication and translation.

Proxf (x) = argminu∈Rm g(u) +
c+ 1

2

∥∥∥∥u− x+ a

c+ 1

∥∥∥∥2 + γ − ‖x− a‖
2

2
+

1

2
‖x‖2

= argminu∈Rm g(u) +
c+ 1

2

∥∥∥∥u− x+ a

c+ 1

∥∥∥∥2
= argminu∈Rm

1

c+ 1
g(u) +

1

2

∥∥∥∥u− x− a
c+ 1

∥∥∥∥2
=: prox 1

c+1
g

(
x+ a

c+ 1

)
�

2.131. Example: Let α ∈ R+ and C = [0, α]. Set f = δC . Then

∀x ∈ R : proxf (x) = PC(x) =


0 x ≤ 0

x 0 < x < α

α x ≥ α

= min{max{x, 0}, α}.

2.132. Example: Let f : R→ R̂ be given by

∀x ∈ R : f(x) =

{
µx 0 ≤ x ≤ α

∞ otherwise

where µ ∈ R and α ≥ 0. Then for all x ∈ R,

f(x) = µx+ δ[0,α](x).

Now applying Theorem 2.130 with c = γ = 0, g = δ[0,α], a = µ, and C = [0, α] and combining
with the example above, we get

proxf (x) = proxg(x− µ) = PC(x− µ) = min{max{x− µ, 0}, α}.
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2.133. Theorem: Let g : R→ R̂ be convex, lsc, and proper such that dom(g) ⊆ [0,∞).
Define f : Rm → R as f(x) = g(‖x‖). Then

proxf (x) =

proxg(‖x‖)
x

‖x‖
x 6= 0

{u ∈ Rm | ‖u‖ = proxg(0)} x = 0

Proof. First let x = 0. By definition, we have

proxf (0) = arg min
u∈Rm

{
f(u) +

1

2
‖u− 0‖2

}
= arg min

u∈Rm

{
f(u) +

1

2
‖u‖2

}
= arg min

u∈Rm

{
g(‖u‖) +

1

2
‖u‖2

}
Using the change of variable w = ‖u‖, the above set of minimizers is the same as

arg min
w∈R

{
g(w) +

1

2
w2

}
= arg min

w∈R

{
g(w) +

1

2
(w − 0)2

}
= proxg(0)

Thus, u ∈ proxf (0) ⇐⇒ ‖u‖ ∈ proxg(0) or equivalently

proxf (0) = {u ∈ Rm | ‖u‖ = proxg(0)}.

This concludes Case 1.

Now suppose x 6= 0, in which case proxf (x) is the set of solutions to the problem

min
u∈Rm

{
g(‖u‖) +

1

2
‖u− x‖2

}
= min

u∈Rm

{
g(‖u‖) +

1

2
‖u‖2 − 〈u, x〉+

1

2
‖x‖2

}
?
= min

α≥0
min

u∈Rm:‖u‖=α

{
g(α) +

1

2
α2 − 〈u, x〉+

1

2
‖x‖2

}
Note on Line ? we used a change of variable α = ‖u‖. Now

−〈u, x〉 = −‖u‖‖x‖ cos θu,x ≥ −‖u‖‖x‖.

Therefore,

min
u∈Rm:‖u‖=α

−〈u, x〉 = −‖u‖‖x‖ = −α‖x‖

and is attained at u = αx/‖x‖. The corresponding optimal value of the inner minimization
problem is therefore

g(α) +
1

2
α2 − α‖x‖+

1

2
‖x‖2 = g(α) +

1

2
(α− ‖x‖)2.
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Therefore, proxf (x) = ᾱx/‖x‖ where

ᾱ = min
α≥0

{
g(α) +

1

2
(α− ‖x‖)2

}
?
= min

α∈R

{
g(α) +

1

2
(α− ‖x‖2)

}
= proxg(‖x‖).

Note Line ? holds because we are assuming that dom(g) ⊆ R≥0. The proof is complete. �

2.134. Example: Let α > 0 and f : R→ R̂ be given by

f(x) =

{
λ|x| |x| ≤ α

∞ otherwise

where α ≥ 0. Then f is convex, lsc, and proper. We show that for all x ∈ R,

proxf (x) = min{max{|x| − λ, 0}, α} · sgn(x).

Define

g(x) =

{
λx 0 ≤ x ≤ α

∞ otherwise

Then dom(g) = [0, α] ⊆ [0,∞). Moreover, f(x) = g(|x|) for all x. Using the theorem above,
we learn that

proxf (x) =

proxg(|x|)
x

|x|
= proxg(|x|) · sgn(x) x 6= 0

{u ∈ R | |u| = proxg(0)} x = 0

Now by the previous example,

|u| = proxg(0) ⇐⇒ |u| = min{max{−λ, 0}, α} = 0 ⇐⇒ u = 0.

The result follows.
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Section 13. Nonexpansive, Firmly Nonexpansive, and Averaged
Operators

2.135. Let I and Id denote the identity mapping.

2.136. Definition: Let T : Rm → Rm.

1. T is nonexpansive (ne) if

∀x, y ∈ Rm : ‖Tx− Ty‖ ≤ ‖x− y‖.

2. T is firmly nonexpansive (fne) if

∀x, y ∈ Rm : ‖Tx− Ty‖2 + ‖(I − T )x− (I − T )y‖2 ≤ ‖x− y‖2.

3. Let α ∈ (0, 1). T is α-averaged if there is some nonexpansive N : Rm → Rm so that

T = (1− α)I + αN.

2.137. Intuition:

Firmly nonexpansiveness
this lecture

=⇒ averagedness
Cauchy-Schwarz

=⇒ nonexpansiveness.

• An operator is nonexpansive if it is L-Lipschitz with |L| ≤ 1.

• An operator is α-averaged if it can be written as a convex combination of I and some
nonexpansive N .

2.138. Proposition: Let T : Rm → Rm. TFAE:

1. T is fne.

2. (I − T ) is fne.

3. (2T − I) is ne.

4. ∀x, y ∈ Rm : ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
5. ∀x, y ∈ Rm : 〈Tx− Ty, (I − T )x− (I − T )y〉 ≥ 0.

Proof. (1⇔ 2): Clear from definition. (1⇔ 3⇔ 4⇔ 5): See A3. �

2.139. For linear operators, the previous proposition can be written as follows.

2.140. Proposition: Let T : Rm → Rm be linear. TFAE:

1. T is fne.

2. ‖2T − I‖ ≤ 1.

3. ∀x ∈ Rm : ‖Tx‖2 ≤ 〈x, Tx〉.
4. ∀x ∈ Rm : 〈Tx, x− Tx〉 ≥ 0.
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Proof. By previous proposition, T is fne iff (2T − I) is ne. Since T is linear, so is 2T − I.
Therefore,

2T − I nonexpansive ⇐⇒ ∀x, y ∈ Rm‖(2T − I)x− (2T − I)y‖ ≤ ‖x− y‖
⇐⇒ ∀z ∈ Rm : ‖(2T − I)z‖ ≤ ‖z‖

=⇒ ∀z ∈ Rm \ {0} :
‖2T − I‖z‖
‖z‖

≤ 1

=⇒ sup
‖2T − I‖z‖
‖z‖

≤ 1

=⇒ ‖2T − I‖ ≤ 1.

Conversely, suppose that ‖2T − I‖ ≤ 1. Then

∀z ∈ Rm \ {0}‖2T − I‖z‖
‖z‖

≤ sup
z 6=0

‖2T − I‖z‖
‖z‖

= ‖2T − I‖ = 1.

Thus, ‖(2T − I)z‖ ≤ ‖z‖ for all z ∈ Rm. Let x, y ∈ Rm. Setting z = x− y yields the desired
result. �

2.141. Remark: Observe that

T is fne ⇐⇒ 2T − I =: N is ne

⇐⇒ 2T =: N + I, N ne

⇐⇒ T = I/2 +N/2, N ne

⇐⇒ T is 1/2-averaged.

This justifies our previous claim (intuition).

2.142. Example: Let C ⊆ Rm be convex, closed, and non-empty. Recall that

∀x, y ∈ Rm : ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉 .

By the previous proposition, PC is fne.

2.143. Example: Suppose that T = −I/2. First,

T =
1

4
I − 3

4
I,

so T is 3/4-averaged. However, T is not fne, as

‖Tx‖2 + ‖x− Tx‖2 =
1

4
‖x‖2 +

9

4
‖x‖2 =

10

4
‖x‖2 =

5

2
‖x‖2 > ‖x‖2

whenever x 6= 0.
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2.144. Example: Suppose that T = −I. Then T is ne but not averaged. Indeed,

T is averaged ⇐⇒ ∃α ∈ (0, 1) : N : Rm → Rm ne

Now for α ∈ (0, 1),

T = (1− α)I + αN ⇐⇒ −I = (1− α)I + αN

⇐⇒ (−2 + α)I = αN

⇐⇒ N =
α− 2

α
I

Now

N is ne ⇐⇒
∣∣∣∣α− 2

α

∣∣∣∣ ≤ 1

⇐⇒ 2− α
α
≤ 1

⇐⇒ 2− α ≤ α

⇐⇒ 2α ≥ 2 ⇐⇒ α > 1,

contradiction.

2.145. Proposition: Let T : Rm → Rm be ne. Then T is continuous.

Proof. Let (xn)n∈N be a sequence in Rm such that xn → x̄. We wish to show that

T (xn)→ T (x̄).

Indeed, for all n ∈ N,

0 ≤ ‖T (xn)− T (x̄)‖ ≤ ‖xn − ‖̄.

Letting n→∞,

0 ≤
∥∥∥ lim
n→∞

T (xn)− T (x̄)
∥∥∥ ≤ 0 =⇒ T (xn)→ T (x̄)

as desired. �

2.146. Definition: Let T : Rm → Rm. Then the fixed points of T is given by

Fix(T ) := {x ∈ Rm : x = Tx}.
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14. Fejer Monotone

Section 14. Fejer Monotone

2.147. Definition: Let C ⊆ Rm be nonempty and (xn)n∈N be a sequence in Rm. Then
(xn)n∈N is Fejer monotone with wrt C if

∀c ∈ C, ∀n ∈ N : ‖xn+1 − c‖ ≤ ‖xn − c‖.

2.148. Intuition: A sequence is Fejer monotone wrt to a set C if for any fixed c ∈ C,
elements in the sequence gets closer and closer to c.

2.149. Example: Suppose Fix(T ) 6= ∅ for some nonexpansive T : Rm → Rm. We claim
that for any x0 ∈ Rn, the sequence defined recursively by xn := T (xn−1) is Fejer monotone
wrt Fix(T ). Indeed, observe that for any f ∈ Fix(T ), f = T (f) = T 2(f) = T 3(f) = · · · .
Observe also that for all n ∈ N, xn+1 = T (xn) = T 2(xn−1) = · · · = T n(x0). Now, let n ∈ N
and f ∈ Fix(T ). Then

‖xn+1 − f‖ = ‖T n(xn)− T n(f)‖
= ‖T (T n−1(x0)− T (T n−1(f))‖
≤ ‖T n−1(x0)− T n−1(f)‖ nonexpansiveness of T

= ‖xn − f‖.

2.150. Proposition: Let ∅ 6= C ⊆ Rm and (xn)n∈N be a sequence in Rm. Suppose
(xn)n∈N is Fejer monotone wrt C. Then the following hold:

• (xn)n∈N is a bounded sequence.

• ∀c ∈ C : (‖xn − c‖)n∈N converges.

• (dC(xn))n∈N is decreasing and converges.

Proof. (1) Let c ∈ C. By triangle inequality and Fejer monotonicity,

‖xn‖ ≤ ‖c‖+ ‖xn − c‖ ≤ ‖c‖+ ‖xn−1 − c‖ ≤ · · · ≤ ‖c‖+ ‖x0 − c‖.

Thus, (xn)n∈N is bounded.

(2) By Fejer monotonicity,

∀n ∈ N,∀c ∈ C : 0 ≤ ‖xn+1 − c‖ ≤ ‖xn − c‖.

In other words, the sequence (‖xn − c‖)n∈N is a non-decreasing sequence bounded below, so
(‖xn − c‖)n∈N converges.

(3) By Fejer monotonicity, ∀n ∈ N,∀c ∈ C : ‖xn+1 − c‖ ≤ ‖xn − c‖. Now take the infimum
over c ∈ C to learn that

0 ≤ inf
c∈C
‖xn+1 − c‖ = dC(xn+1) ≤ dC(xn) = inf

c∈C
‖xn − c‖.

This implies that (dC(xn))n∈N converges. �
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2.151. Proposition: A bounded sequence (xn)n∈N in Rm converges iff it has a unique
cluster point.

Proof. (⇒): Easy.

(⇐): Suppose now that (xn)n∈N has a unique cluster point x̄. Suppose that xn 6→ x̄. Then
there is some ε0 > 0 and subsequence xkn such that for all n,

‖xkn − x̄‖ ≥ ε0.

But then (xkn)n∈N is bounded and hence contains a convergent subsequence. This is still a
subsequence of (xn)n∈N but cannot converge to x̄. It follows that (xn)n∈N has more than one
cluster point. By contradiction, xn → x̄. �

2.152. Lemma: Let (xn)n∈N be a sequence in Rm and let C ⊆ Rm be non-empty. Sup-
pose that for every c ∈ C, (‖xn − c‖)n∈N converges and that every cluster point (limit point)
of (xn)n∈N lies in C. Then (xn)n∈N converges to a point in C.

Proof. By triangle inequality, 0 ≤ ‖xn‖ ≤ ‖xn − c‖+ ‖c‖. Since ‖xn − c‖ is constant hence
bounded and ‖c‖ is constant, (xn)n∈N is bounded from above and below.

Let x, y be two cluster points of (xn)n∈N. That is, there are some xkn → x and y`n → y.
By assumption, x, y ∈ C. We wish to show that (xn)n∈N converges to x = y. Observe that
for any n ∈ N, ‖xn − y‖2 − ‖xn − x‖2 + ‖x‖2 − ‖y‖2 converges as the first two terms are
convergent by assumption and the last two terms are constant. Expanding this,

‖xn − y‖2 − ‖xn − x‖2 + ‖x2‖ − ‖y‖2

= ‖xn‖2 + ‖y‖2 − 2 〈xn, y〉 − ‖xn‖2 − ‖x‖2 + 2 〈xn, x〉+ ‖x‖2 − ‖y‖2

= 2 〈xn, x− y〉 .

Since the first line converges, the last line must also converge. Say the sequence 〈xn, x− y〉
converges to `. Taking the limit along xkn and xln respectively yields

lim
n→∞

〈xkn , x− y〉 = lim
n→∞

〈x`n , x− y〉 = `

〈x, x− y〉 = 〈y, x− y〉 = `

=⇒ ‖x− y‖2 = 〈x, x− y〉 − 〈y, x− y〉 = 0

=⇒ x = y.

�

2.153. Theorem: Let ∅ 6= C ⊆ Rm and (xn) be a sequence in Rm. Suppose that
(xn)n∈N is Fejer monotone wrt C, and that every cluster point of (xn)n∈N lies in C. Then
(xn)n∈N converges to a point in C.

Proof. By Fejer monotonicity of (xn)n∈N, (‖xn − c‖)n∈N converges for every c ∈ C. Now
combine with Lemma 2.152. �
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2.154. Remark: Let x, y ∈ Rm and α ∈ R. One could directly verify that

‖αx+ (1− α)y‖2 + α(1− α)‖x− y‖2 = α‖x‖2 + (1− α)‖y‖2.

2.155. Theorem: Let α ∈ (0, 1) and let T : Rm → Rm be α-averaged with Fix(T ) = ∅.
Let x0 ∈ Rm. Recursively define xn+1 = T (xn) for all n ∈ N. Then

• (xn)n∈N is Fejer monotone wrt Fix(T ).

• T (xn)− xn → 0 as n→∞.

• (xn)n∈N converges to a point in Fix(T ).

Proof. (1) T is averaged so T is nonexpansive. Now combine with Example 2.149.

(2) Since T is averaged, there exists some nonexpansive N : Rm → Rm such that

T = (1− α)I + αN ⇐⇒ N =
1

α
(T − (1− α)I).

Then for all n ∈ N, we can write

xn+1 = T (xn) = (1−α)xn +αN(xn) ⇐⇒ T (xn)− xn = −αxn +αN(xn) = α(N(xn)− xn).

We wish to show that α(N(xn)− xn)→ 0 as n→∞. Let f ∈ Fix(T ), we have

‖xn+1 − f‖2 = ‖(1− α) (xn − f) + α (N (xn)− f)‖2

= (1− α) ‖xn − f‖2 + α ‖N (xn)−N(f)‖2 − α(1− α) ‖N (xn)− xn‖2

≤ (1− α) ‖xn − f‖2 + α ‖xn − f‖2 − α(1− α) ‖N (xn)− xn‖2

= ‖xn − f‖2 − α(1− α) ‖N (xn)− xn‖2

α(1− α) ‖N (xn)− xn‖2 ≤ ‖xn − f‖2 − ‖xn+1 − f‖2

where we used Remark 2.154 on Line 2. By a telescoping sum argument,

∞∑
n=0

α(1− α) ‖N (xn)− xn‖2 = ‖x0 − f‖2 − ‖xk+1 − f‖2 ≤ ‖x0 − f‖2 <∞.

Since we are adding an infinite number of non-negative numbers and the sum is bounded,
we must have α(1− α)‖N(xn)− xn‖ → 0. In particular, ‖N(xn)− xn‖ → 0 as n→ 0.

‖Txn − xn‖ = ‖(1− α)xn + αN (xn)− xn‖ = α ‖N (xn)− xn‖ → 0.

Observe that Fix(T ) = Fix(N):

x ∈ Fix(T ) ⇐⇒ x = Tx

⇐⇒ x = (1− α)x+ αN(x)

⇐⇒ x = x− αx+ αN(x)

⇐⇒ αx = αN(x)

⇐⇒ x = N(x) ⇐⇒ x ∈ Fix(N).

Altogether, we learn that (xn)n∈N is Fejer monotone wrt Fix(N) = Fix(T ) as desired.
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(3) Let x̄ be a cluster point of (xn)n∈N, say xkn → x̄. Observe that N being nonexpansive
implies that N is continuous. From (2), we learned that Nxn − xn → 0, so we must also
have Nxkn − xkn → 0. Taking the limit along the subsequence xkn , we learn that

Nxkn − xkn → Nx̄− x̄ =⇒ Nx̄ = x̄.

In other words, every cluster point of (xn)n∈N lies in Fix(N) = Fix(T ). Now combine with
Theorem 2.153 concludes the proof. �

2.156. For any arbitrary point x, if we keep applying a firmly nonexpansive operator T
with Fix(T ) 6= ∅ on x, then the result converges to a fixed point of T .

2.157. Corollary: Let T : Rm → Rm be fne and suppose that Fix(T ) 6= ∅. Let x0 ∈ Rm

and recursively define xn+1 := Txn. Then there is some x̄ ∈ Fix(T ) such that xn → x̄.

Proof. Since T is fne, T is averaged. Now combine with the Theorem 2.155. �

2.158. The proximal operator behaves nice when f is convex, lsc, and proper.

2.159. Proposition: Let f : Rm → R̂ be convex, lsc, and proper. Then proxf is fne.

Proof. Let x, y ∈ Rm. Set p = proxf (x), q = proxf (y). Using the proximal operator
inequality, we have for all z ∈ Rm,

〈z − p, x− p〉+ f(p) ≤ f(z), 〈z − q, y − q〉+ f(q) ≤ f(z).

Choosing z = q in Eq1 and z = p in Eq2, we obtain

〈q − p, x− p〉+ f(p) ≤ f(q), 〈p− q, y − q〉+ f(q) ≤ f(p).

Adding the last two inequalities yields 〈q − p, (x− p)− (y − p)〉 ≤ 0. Equivalently,

〈p− q, (x− p)− (y − q)〉 ≥ 0.

Now recall that p = proxf (x), q = proxf (y), so we have〈
proxf (x)− proxf (y), (Id− proxf )(x)− (Id− proxf )(y)

〉
≥ 0

and by A3 Q3(i), we see that proxf is fne. �

2.160. We can use the proximal operator for optimization purposes.

2.161. Corollary: Let f : Rm → R̂ be convex, lsc, and proper, with arg min f 6= ∅. Let
x0 ∈ Rm. Recursively define xn+1 = proxf (xn). Then ∃x̄ ∈ arg min(F ) such that xn → x̄.

Proof. Observe that by Proposition 2.123, arg min f = Fix(proxf ) 6= ∅. Now proxf is fne by
Proposition 2.159. Combine with Corollary 2.157 applied with T replaced by proxf . �
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Section 15. Composition of Averaged Operators

2.162. Let x, y ∈ Rm and α ∈ R \ {0}. Then one can directly verify that

α2

(
‖x‖2 −

∥∥∥∥(1− 1

α

)
x+

1

α
y

∥∥∥∥2
)

= α

(
‖x‖2 − 1− α

α
‖x− y‖2 − ‖y‖2

)
.

2.163. Proposition: Let T : Rm → Rm be nonexpansive and let α ∈ (0, 1). TFAE:

1. T is α-averaged.

2. 1− 1

α
Id +

1

α
T is nonexpansive.

3. ∀x, y ∈ Rm : ‖T (x)− T (y)‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id− T )(x)− (Id− T )(y)‖2.

Proof. (1 ⇔ 2)

T is α-averaged ⇐⇒ ∃N : Rm → Rm nonexpansive s.t. T = (1− α)Id + αN

⇐⇒ N =
1

α
(T − (1− α)Id) nonexpansive

⇐⇒
(

1− 1

α

)
Id +

1

α
T nonexpansive

(2 ⇔ 3)

‖x− y‖2 ≥
∥∥∥∥(1− 1

α

)
x+

1

α
Tx−

(
1− 1

α

)
y − 1

α
Ty

∥∥∥∥2
=

∥∥∥∥(1− 1

α

)
(x− y) +

1

α
(Tx− Ty)

∥∥∥∥2
= ‖x− y‖2 − 1

α

(
‖x− y‖2 − 1− α

α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2

)
0 ≥ − 1

α

(
‖x− y‖2 − 1− α

α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2

)
0 ≤ ‖x− y‖2 +

1− α
α
‖(x− Tx)− (y − Ty)‖2 − ‖Tx− Ty‖2

where we used Remark 2.162 on Line 3. �

2.164. Composition of averaged operators is still averaged.

2.165. Theorem: Let α1, α2 ∈ (0, 1), Ti : Rm → Rm be αi-averaged. Set T = T1T2 and

α :=
α1 + α2 − 2α1α2

1− α1α2

.

Then T is α-averaged.
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Proof. First, α ∈ (0, 1) ⇐⇒ α1(1−α2) < 1−α2 which holds as α1 < 1. Now by Proposition
2.163, for each x, y ∈ Rm,

‖Tx− Ty‖2 = ‖T1T2x− T1T2y‖2

≤ ‖T2x− T2y‖2 −
1− α1

α1

‖(Id− T1)T2x− (Id− T1)T2y‖2

≤ ‖x− y‖2 − 1− α2

α2

‖(Id− T2)x− (Id− T2) y‖2 −
1− α1

α1

‖(Id− T1)T2x− (Id− T1)T2y‖2

= ‖x− y‖2 − V1 − V2.

Set

β :=
1− α1

α1

+
1− α2

α2

> 0

By computation,

V1 + V2 ≥
(1− α1) (1− α2)

βα1α2

‖(Id− T )x− (Id− T )y‖2

Consequently,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − (1− α1) (1− α2)

βα1α2

‖(Id− T )x− (Id− T )y‖2

= ‖x− y‖2 − 1− α
α
‖(Id− T )x− (Id− T )y‖2

By Proposition 2.163, we are done. �
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3.1. We now consider the problem

(P ) : min f(x) s.t. x ∈ C.

where

• f : Rm → (−∞,∞] is convex, lsc, proper;

• C ⊆ Rm is non-empty, convex, and closed.

81
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Section 16. Optimality Conditions

3.2. Recap: Recall the following fact. Let f : Rm → (−∞,∞] be convex, lsc, proper,
and let ∅ 6= C ⊆ Rm be convex and closed. Suppose we have

ri(C) ∩ ri(dom(f)) = ∅

(constraint qualification, which gives that ∂(f + g) = ∂f + ∂g, see Theorem 2.67). Define

(P ) : min f(x) s.t. x ∈ C,

or equivalently as an unconstrained problem,

(P ) : min f(x) + δC(x) s.t. x ∈ Rm.

By Example 2.68, x̄ ∈ Rm solves (P) iff (∂f(x̄)) ∩ (−NC(x̄)) 6= ∅.

3.3. We now see some weaker results, in the absence of convexity.

3.4. Theorem: Let f : Rm → (−∞,∞] be proper and g : Rm → (−∞,∞] convex, lsc,
and proper, with dom(g) ⊆ int(dom(f)). Consider the optimization problem

(P ) : min
x∈Rm

[f(x) + g(x)].

1. If x∗ ∈ dom(g) is local optimal of (P ) and f is differentiable at x∗, then

−∇f(x∗) ∈ ∂g(x∗).

2. Suppose f is convex. If f is differentiable at x∗ ∈ dom(g), then x∗ is a global minimizer
of (P ) iff

−∇f(x∗) ∈ ∂g(x∗).

Proof. Let y ∈ dom(g). Since g is convex, its domain dom(g) is convex, so for any λ ∈ (0, 1),

x∗ + λ(y − x∗) = (1− λ)x∗ + λy︸ ︷︷ ︸
=: xλ

∈ dom(g).

Therefore, for sufficiently small λ, we have

f (xλ) + g (xλ) ≥ f (x∗) + g (x∗)

f (xλ) + (1− λ)g (x∗) + λg(y) ≥ f (x∗) + g (x∗)

λg (x∗)− λg(y) ≤ f (xλ)− f (x∗)

g (x∗)− g(y) ≤ f (xλ)− f (x∗)

λ
λ→0+−→ f ′ (x∗; y − x∗) = 〈∇f (x∗) , y − x∗〉 .

In other words, for all y ∈ dom(g), we have

g(y) ≥ g (x∗) + 〈∇ − f (x∗) , y − x∗〉 =⇒ −∇f (x∗) ∈ ∂g (x∗) .
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16. Optimality Conditions

Now for Claim 2, suppose that f is convex. Observe that Claim 1 proves the necessary
direction. For the sufficient direction, suppose that −∇f(x∗) ∈ ∂g(x∗). By definition of
subdifferentials, for each y ∈ dom(g),

g(y) ≥ g (x∗) + 〈−∇f (x∗) , y − x∗〉

Since f is convex and differentiable at x∗, we have that for any y ∈ dom(g) ⊆ int(dom(f)),

f(y) ≥ f(x∗) + 〈∇f(x∗), y − x∗〉 .

Adding these two together, we see that for any y ∈ dom(g),

f(y) + g(y) ≥ f(x∗) + g(x∗).

It follows that x∗ is an optimal solution of (P). �

3.5. Motivation: The Karush-Kuhn-Tucker conditions are first-order necessary
conditions for a solution in nonlinear programming to be optimal, provided that some
regularity conditions are satisfied. Suppose f, g1, . . . , gn are functions from Rm → R and
I = {1, . . . , n}. Consider the problem

(P ) : min f(x)
s.t. gi(x) ≤ 0 ∀i ∈ I.

Assume that (P ) has at least one solution and define

µ := min{f(x) | ∀i ∈ I : gi(x) ≤ 0} ∈ R

to be the optimal value. Define

F (x) := max{f(x)− µ︸ ︷︷ ︸
=: g0(x)

, g1(x), . . . , gn(x)}.

3.6. Lemma:

1. ∀x ∈ Rm : F (x) ≥ 0.

2. Solutions of (P ) = the set of minimizers of F = {x | F (x) = 0}.

Proof. Let x ∈ Rm. First, assume x does not solve (P). If x is infeasible for (P), i.e., x does
not satisfy the constraints, then

∃j ∈ I : gj(x) > 0 =⇒ F (x) ≥ gi(x) > 0.

Now if x is feasible (i.e., gi(x) ≤ 0 for all i) but not optimal (i.e., f(x) > µ), then

F (x) ≥ g0(x) = f(x)− µ > 0.

Both case work out. Next, assume x is an optimal solution to (P). Then x is feasible (so
∀i ∈ I : gi(x) ≤ 0) and f(x) = µ (so g0(x) = f(x)− µ = 0). Then F (x) = 0. �
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3.7. Fact (Max Rule for Subdifferential Calculus): Let g1, . . . , gn : Rm → (−∞,∞] be
convex, lsc, and proper. Let g(x) be the supremum of gi(x)’s and A(x) be the set of indices
such that gi(x) attains this maximum:

g(x) = max{g1(x), . . . , gn(x)},
A(x) = {i ∈ {1, . . . , n} | gi(x) = g(x)}.

Let x ∈
⋂n
i=1(int(dom(gi))) be some point in the interior of domain of all gi’s. Then the

subdifferentials of g at x is the convex hull of the union of individual gi’s subdifferentials at
x indexed by A(x) (i.e., those gi’s that attain the maximum):

∂g(x) = conv

 ⋃
i∈A(x)

∂gi(x)

 .

3.8. Fritz-John conditions are a necessary condition for a solution in nonlinear pro-
gramming to be optimal. In words, if x∗ is an optimal solution to a nonlinear program, then
we can find a set of scalars satisfying the stationarity and CS conditions.

3.9. Theorem (Fritz-John Necessary Optimality Conditions): Suppose that f, g1, . . . , gn
are convex and x∗ solves the following nonlinear optimization problem:

(P ) : min f(x)
s.t. gi(x) ≤ 0 ∀i ∈ I.

Then there exist α0 ≥ 0, . . . , αn ≥ 0 not all 0, for which the following conditions are satisfied:

1. stationarity condition: 0 ∈ α0∂f(x∗) +
∑

i∈I αi∂gi(x
∗);

2. CS condition: ∀i ∈ I : λigi(x
∗) = 0.

Proof. Recall the definition of F (x):

F (x) := max{f(x)− µ, g1(x), . . . , gn(x)}.

By Lemma 3.6, x∗ solves (P) so F (x∗) = 0 = minF (Rm). Since the supremum of convex
functions is convex, by Fermat’s rule and the fact above,

0 ∈ ∂F (x∗) = conv

 ⋃
i∈A(x∗)

(
∂gi(x

∗)
)

where

A(x∗) = {i ∈ {0, 1, . . . , n} | gi(x∗) = 0(= F (x∗))}.

Note that 0 ∈ ∂F (x∗) because g0(x
∗) = f(x∗)− µ = 0 = minF (Rm). Moreover, ∂g0 = ∂f as

g0 = f − µ. Hence,

∀i ∈ A(x∗), ∃αi ≥ 0 :
∑

i∈A(x∗)

αi = 1,
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16. Optimality Conditions

and not all α’s are zeros. This gives us the first condition:

0 ∈
∑

i∈A(x∗)

αi∂gi(x
∗) = α0∂g0(x

∗) +
∑

i∈A(x∗)\{0}

αi∂gi(x
∗)

= α0∂f(x∗) +
∑

i∈A(x∗)\{0}

αi∂gi(x
∗). ∂g0 = ∂f

Finally, for CS conditions,

• if i ∈ A(x∗) ∩ I, then gi(x
∗) = 0;

• else if i ∈ I \ A∗(x), then αi = 0.

It follows that αigi(x
∗) = 0 for all i ∈ [n]. �

3.10. We now look at the KKT condition. The necessary part is quite close to Fritz-
John, except we required an extra Slater’s condition to be satisfied.

3.11. Theorem (KKT, Necessary): Suppose f, g1, . . . , gn are convex and x∗ solves

(P ) : min f(x)
s.t. gi(x) ≤ 0 ∀i ∈ I.

Suppose that Slater’s condition holds, i.e.,

∃s ∈ Rm,∀i ∈ I = {1, 2, . . . , n} : gi(s) < 0.

Then ∃λ1, . . . , λn ≥ 0 such that the KKT conditions hold:

1. stationarity condition: 0 ∈ ∂f(x∗) +
∑

i∈I λi∂gi(x
∗);

2. CS condition: ∀i ∈ I : λigi(x
∗) = 0.

Proof. Recall Fritz-John: there exists α0, α1, . . . , αn ≥ 0, not all 0, such that

? 0 ∈ α0∂f(x∗) +
∑

i∈I αi∂gi(x
∗);

� ∀i ∈ I : αigi(x
∗) = 0.

Thus, we are done if we can show that α0 > 0, as we can simply divide the inclusion by α0

and obtain the desired result. Suppose for eventual contradiction that α0 = 0. By ?,

∀i ∈ I,∃yi ∈ ∂gi(x∗) :
∑

i∈I αiyi = 0. (∗)
=⇒ ∀i ∈ I,∀y ∈ Rm : gi(x

∗) + 〈yi, y − x∗〉 ≤ gi(y)

=⇒ ∀i ∈ I : gi(x
∗) + 〈yi, s− x∗〉 ≤ gi(s) take y = s

=⇒ ∀i ∈ I : αigi(x
∗) + 〈αiyi, s− x∗〉 ≤ αigi(s).

Adding the above inequalities for all i ∈ I,∑
i∈I αigi(x

∗)︸ ︷︷ ︸
= 0,by ?

+
〈∑

i∈I αiyi, s− x∗
〉︸ ︷︷ ︸

= 0, by ∗

≤
∑

i∈I αigi(s) < 0 =⇒ 0 < 0,

contradiction. Hence, α0 > 0. Now divide ? and � by α0 and set ∀i ∈ I : λi = αi
α0
≥ 0. �
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3.12. The following theorem says that if x∗ satisfies all four sets of conditions, then it
is guaranteed to be the optimal solution of (P).

3.13. Theorem (KKT, Sufficient): Suppose f, g1, . . . , gn are convex and x∗ ∈ Rm sat-
isfies the following conditions:

1. Primal feasibility: ∀i ∈ I : gi(x
∗) ≤ 0.

2. Dual feasibility: ∀i ∈ I : λi ≥ 0.

3. Stationarity: 0 ∈ ∂f(x∗) +
∑

i∈I λi∂gi(x
∗).

4. Complementary slackness: ∀i ∈ I : λigi(x
∗) = 0.

Then x∗ solves (P).

Proof. Define

h(x) := f(x) +
∑
i∈I

λigi(x).

By dual feasibility, h(x) being a nonnegative weighted sum of convex functions is convex.
Observe that the sum rule applies to the sum of convex functions f and λigi for i ∈ I (see
A4), so that

∀x ∈ Rm : ∂h(x) = ∂

(
f +

∑
i∈I

λigi

)
(x) = ∂f(x) +

∑
i∈I

λi∂gi(x),

where the second equality follows from the sum rule. Consequently, by stationarity,

0 ∈ ∂h(x∗) = ∂f(x∗) +
∑
i∈I

λi∂gi(x
∗).

By Fermat’r rule, x∗ is a global minimizer of h. Now, let x be feasible for (P), i.e.,

∀i ∈ I : gi(x) ≤ 0.

Then

f(x∗) = f(x∗) +
∑
i∈I

λigi(x
∗) CS conditions

= h(x∗) defn of h

≤ h(x) x∗ is a global minimizer of h

= f(x) +
∑
i∈I

λigi(x) defn of h

≤ f(x) primal and dual feasibility

�
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17. Subgradient Methods

Section 17. Subgradient Methods

3.14. Definition: Let f : Rm → (−∞,∞] be proper and x ∈ int(dom(f)). Then d ∈
Rm \ {0} is a descent direction of f at x if the directional derivative satisfies f ′(x; d) < 0.

3.15. Remark: If 0 6= ∇f(x) exists at x, then −∇f(x) is a descent direction. Indeed,

f ′(x;−∇f(x)) = 〈∇f(x),−∇f(x)〉 = −‖∇f(x)‖2 < 0.

3.16. Note: Let f be differentiable. Recall that gradient descent method:

1. Initialize x0 ∈ Rm.

2. For each n ∈ N:

(a) Pick tn ∈ arg mint≥0 f(xn − t∇f(xn)).

(b) Update xn+1 := xn − tn∇f(xn).

In particular, if f is strictly convex and coercive, then xn converges to the unique minimizer.

3.17. Example (L. Vandenberghe): If f is not differentiable, can we pick a subgradient
and do the same thing? Unfortunately, negative subgradients are NOT necessarily descent
directions. Consider f(x1, x2) = |x1|+2|x2|. It’s easy to see that f is convex and continuous.
Pick a subgradient

(1, 2) ∈ {1} × [−2, 2] = ∂f(1, 0)

and consider its negative d = −(1, 2) = (−1,−2). Let t > 0. Then

f((1, 0) + t(−1,−2)) = f(1− t,−2t)

= |1− t|+ 2| − 2t|
= |1− t|+ 4|t|

=


1 + 3t 0 ≤ t ≤ 1

−1− 3t t < 0

5t− 1 t ≥ 1

Therefore:

f ′((1, 0); (−1,−2)) = lim
t↓0

f((1, 0) + t(−1,−2))− f(1, 0)

t

= lim
t↓0

1 + 3t− 1

t

= 3 > 0.

Hence, (−1,−2) is NOT descent direction.
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3.18. In the absence of smoothness, we may use the projected subgradient method.
Consider the problem

min f(x)
s.t. x ∈ C

where

• f : Rm → (−∞,∞] is convex, lsc, proper.

• C ⊆ int(dom(f)) is non-empty, closed, and convex (which implies that dom(f) 6= ∅).

• S := arg minx∈C f(x) 6= ∅, the set of solutions.

• µ := minx∈C f(x), the minimum value.

• ∃L > 0 : sup ‖∂f(C)‖ ≤ L <∞ (all subgradients at all c ∈ C are bounded).

3.19. Note: We here introduce the projected subgradient method:

1. Start with a feasible point x0 ∈ C.

2. For all n ∈ N:

(a) Given xn, pick a step size tn > 0 and a subgradient f ′(xn) ∈ ∂f(xn). 1

(b) Update via xn+1 := PC(xn − tnf ′(xn)).

Recall that C ⊆ int(dom(f)), so xn ∈ int(dom(f)) for all n ∈ N. Therefore, ∂f(xn) 6= ∅
and (xn)n∈N is well-defined.

3.20. The following lemma relates the distance between the current point xn+1 and an
arbitrary solution s of the current iteration to that distance of the previous iteration.

3.21. Lemma: Let s ∈ S = arg minx∈C f(x) ⊆ C be a minimizer. Then

‖xn+1 − s‖2 ≤ ‖xn − s‖2 − 2tn(f(xn)− µ) + t2n‖f ′(xn)‖2.

Proof. Observe that S ⊆ C. We have

‖xn+1 − s‖2 = ‖PC (xn − tnf ′ (xn))− PC(s)‖2

≤ ‖xn − tnf ′ (xn)− s‖2 PC is fne hence ne

= ‖xn − s‖2 + t2n ‖f ′ (xn)‖2 − 2tn 〈xn − s, f ′ (xn)〉 .

It suffices to show that

−2tn 〈xn − s, f ′ (xn)〉 ≤ −2tn (f (xn)− µ)

〈xn − s, f ′ (xn)〉 ≥ f (xn)− µ
〈xn − s, f ′ (xn)〉 ≥ f (xn)− f(x)

which holds by the subgradient inequality. �

1Abuse of notation: f -prime here does not mean derivative!
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3.22. Next question: what is a good step size tn? Let us minimize the upper bound

0 =
d

dtn
RHS

=
d

tn
(−2tn(f(xn)− µ) + t2n‖f ′(xn)‖2)

= −2(f(xn)− µ) + 2tn‖f ′(xn)‖2.

If f ′(xn) = 0, then 0 ∈ ∂f(xn) and hence, by Fermat’s rule, xn is a global minimizer and we
are done. Now if f ′(xn) 6= 0, we have

tn =
f(xn)− µ
‖f ′(xn)‖2

,

which is known as Polyak’s rule.

3.23. Theorem: The following results hold:

1. ∀s ∈ S,∀n ∈ N : ‖xn+1 − s‖ ≤ ‖xn − s‖, i.e., (xn)n∈N is Fejer monotone wrt S.

2. f(xn)→ µ, i.e., the objective values (f(xn))n∈N converges to the optimal value.

3. Define µn := min0≤k≤n f(xk). Then the error of objective value is bounded by:

µn − µ ≤
L · dS(x0)√

n+ 1
= O

(
1√
n

)
.

4. Let ε > 0. Then we can pick n as follows so that µn gets arbitrarily close to µ:

n ≥ L2d2S(x0)

ε2
− 1 =⇒ µn ≤ µ+ ε.

Proof.

Proof of 1. Let s ∈ S and n ∈ N. By computation,

‖xn+1 − s‖2 ≤ ‖xn − s‖2 − 2tn (f (xn)− µ) + t2n ‖f ′ (xn)‖2

= ‖xn − s‖2 − 2
f (xn)− µ
‖f ′ (xn)‖2

(f (xn)− µ) +

(
f (xn)− µ
‖f ′ (xn)‖2

)2

‖f ′ (xn)‖2

= ‖xn − s‖2 −
(f (xn)− µ)2

‖f ′ (xn)‖2

≤ ‖xn − s‖2 −
(f (xn)− µ)2

L2

≤ ‖xn − s‖2

It follows that (xn)n∈N is Fejer monotone wrt S. �
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Proof of 2. Observe that

(f (xk)− µ)2

L2
≤ ‖xk − s‖2 − ‖xk+1 − s‖ .

Summing the above inequalities over k = 0, . . . , n yields

1

L2

n∑
k=0

(
f (xk)− µ2

)
≤ ‖x0 − s‖2 − ‖xn+1 − s‖2 ≤ ‖x0 − s‖2

Letting n→∞, we have

0 ≤
∞∑
k=0

(f (xk)− µ)2 ≤ L2 ‖x0 − s‖2 <∞

and it must be that f (xk)→ µ. �

Proof of 3. Recall that

µn := min
0≤k≤n

f(xk)

for n ∈ N. Letting n ≥ 0. Then for all k ∈ {0, 1, . . . , n},

(µn − µ)2 ≤ (f (xk)− µ)2

(n+ 1)
(µn − µ)2

L2
≤ 1

L2

n∑
k=0

(f (xk)− µ)2

≤ ‖x0 − s‖2

Minimizing over s ∈ S, we get

(n+ 1)
(µn − µ)2

L2
≤ d2S(x0).

�

Proof of 4. Suppose that

n ≥ L2d2S (x0)

ε2
− 1⇐⇒ d2S (x0)L

2

n+ 1
≤ ε2

Apply (iii) yields

(µn − µ)2 ≤ d2S (x0)L
2

n+ 1

≤ ε2

=⇒ µn − µ ≤ ε

=⇒ µn ≤ µ+ ε.

�
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3.24. We conclude this section by showing the correctness (i.e., convergence to an opti-
mal solution) of the projected subgradient method.

3.25. Theorem (Convergence of Projected Subgradient): Suppose that (xn)n∈N is gen-
erated using projected subgradient. Then xn → s ∈ S, i.e., it approaches a solution.

Proof. By the previous Theorem, (xn)n∈N is Fejer monotone wrt S. Since (xn)n∈N is Fejer
monotone, (xn)n∈N is bounded. Also, by the previous theorem, f(xn) → µ = minx∈C f(x).
By Bolzano-Weierstrass, there exists a subsequence converging to some point in C, i.e.,
∃xkn → x̄ and x̄ ∈ C (because (xn)n∈N lies in C by construction and C is closed). Now

µ = min
x∈C

f(x) ≤ f(x̄) ≤ lim inf
n→∞

f(xkn) = µ,

where the right inequality follows as f is lsc and the right equality follows because f(xn)→ µ.
Thus, f(x̄) = µ and x̄ ∈ S. That is, all cluster points of (xn)n∈N lie in S. Then xn → x̄ ∈ S
by the Fejer Monotonicity Theorem. �

3.26. Example: Let C ⊆ Rm be convex, closed, and non-empty. Let x ∈ Rm. Then

∂dC(x) =


x− PC(x)

dC(x)
x 6∈ C

NC(x) ∩B(0; 1) x ∈ C

Consequently, for all x ∈ Rm,

sup ‖∂dC(x)‖ ≤ 1.

3.27. Lemma: Let f be convex, lsc, and proper. Let λ > 0. Then

∂(λf) = λ∂f.

Proof. Apply definition. �
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Section 18. Convex Feasibility Problem

3.28. Motivation: Given K closed convex subsets S1, . . . , Sk ⊆ Rm such that

S = S1 ∩ S2 ∩ · · · ∩ Sk 6= ∅.

We wish to find x ∈ S. Let us try to use the projected subgradient method. That is, we
wish to formulate the problem into the following form (in particular, define f, C, L):

min f(x)
s.t. x ∈ C

where

• f : Rm → (−∞,∞] is convex, lsc, proper.

• C ⊆ int(dom(f)) is non-empty, closed, and convex (which implies that dom(f) 6= ∅).

• S := arg minx∈C f(x) 6= ∅, the set of solutions.

• µ := minx∈C f(x), the minimum value.

• ∃L > 0 : sup ‖∂f(C)‖ ≤ L <∞ (all subgradients at all c ∈ C are bounded).

such that we could use the following algorithm:

1. Start with a feasible point x0 ∈ C.

2. For all n ∈ N:

(a) Given xn, pick a step size tn > 0 and a subgradient f ′(xn) ∈ ∂f(xn). 2

(b) Update via xn+1 := PC(xn − tnf ′(xn)), where tn is computed using Polyak’s rule:

tn =
f(xn)− µ
‖f ′(xn)‖2

,

3.29. Note: First, since we are working with subsets of Rm, every x ∈ Rm is a possible
solution, so C = Rm. This also makes the projection easy: PC = PRm = Id. Define the
objective function to be the maximum of distances between x and the sets:

f(x) = max{dS1(x), . . . , dSk(x)}

Note that dSi(x) ≥ 0 by definition. Thus, f(x) ≥ 0 for all x ∈ Rm. To see why this is a valid
formulation, observe that

f(x) = 0 ⇐⇒ ∀i ∈ {1, . . . , k} : d(Si)(x) = 0

⇐⇒ ∀i ∈ {1, . . . , k} : x ∈ Si
⇐⇒ x ∈ S := ∩ki=1Si.

Also, since the set of solutions is non-empty, the optimal value is 0:

S 6= ∅ =⇒ µ = min
x∈Rm

f(x) = 0.

2Abuse of notation: f -prime here does not mean derivative!
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18. Convex Feasibility Problem

3.30. (Cont’d): We show that L = 1. First, by Example 3.26,

∀i ∈ {1, . . . , k} : sup
∥∥{∂dSi(Rm)}

∥∥ ≤ 1.

The max formula for subdifferentials implies that for x 6∈ S,

∂f(x) = conv

{
∂dSi(x)

∣∣∣∣ dSi(x) = f(x)

}
= conv

{
x− PSi(x)

dSi(x)

∣∣∣∣ dSi(x) = f(x)

}
Recall that f(x) = max{dS1(x), . . . , dSk(x)}, so the condition dSi(x) = f(x) is basically
saying that this particular Si attains the maximum of f . The second equality follows from
3.26 as well. By Example 3.26, each vector in the above set

u� =
x− PSi(x)

dSi(x)
≤ 1

by the example, which implies that all vectors in the convex hull of these vectors satisfy∥∥∥∥∥
r∑
i=1

λiui

∥∥∥∥∥ ≤
r∑
i=1

λi‖ui‖ ≤
r∑
i=1

λi · 1 = 1.

It follows that L = 1. The case where x ∈ S is irrelevant, as in that case we are done.
We have successfully modeled the problem in the framework of projected gradient method.
Time to run the algorithm.

3.31. Note: Since PRm = Id, the update rule is given by xn+1 = xn − tnf ′(xn), where
f ′(xn) is a subgradient. We now work out the details. Given xn, we wish to pick an index
in ∈ {1, . . . , k} such that dSin (xn) = f(xn). Since we want to find a point in the convex hull,
we can simply choose

f ′(xn) :=
xn − PSi(xn)

dSin (xn)
.

For step size, since ‖f ′(xn)‖ = 1, using Polyak’s rule (computational details omitted),

tn = dSin (xn).

This leads to the Greedy Projection Algorithm:

xn+1 ← PC(xn − tnf ′(xn)) = xn − tnf ′(xn)

= xn − dSin (xn)
xn − PSin (xn)

dSin (xn)

= xn − (xn − PSin (xn))

= PSin (xn),

where Sin is any set that is furthest away from xn. Now by convergence of projected sub-
gradient, xn converges to some solution in S.

93



Chapter 3. Constrained Convex Optimization

3.32. Note: Let us look at the case where m = 2, which leads to the method of
alternating projections, MAP. Let x0 ∈ Rm, update via

xn+1 = PS2PS1xn.

3.33. Example: Define {S := {x ∈ Rm | Ax = b, x ≥ 0} where A ∈ Rk×m and b ∈ Rk.
We can use MAP to find x ∈ S. Set S1 = Rm

+ , so

PS1(x) = x+ = (max{xi, 0})mi=1.

Next, define S2 = {x ∈ Rm | Ax = b} = A−1(b), the inverse image of b (check: S = S1 ∩ S2),
so that

PS2 = x− A†(Ax− b)

where A† is the Moore-Penrose pseudo-inverse. Let x0 ∈ Rm. Update via

xn+1 = PS2PS1(xn)

= PS2(x
+
n )

= x+n − A†(Ax+n − b)→ x̄ ∈ S.

3.34. Remark: In practice, it is possible that

µ = min
x∈C

f(x)

is unknown to us. In this case, we replace Polyak’s stepsize by a sequence (tn)n∈N such that∑n
k=0 t

2
k∑n

k=0 tk
→ 0

as n→∞. For example, we may choose

tk =
1

k + 1
.

One can show that

µn := min{f(x0), . . . , f(xn)} → µ

as n→∞.
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Section 19. The Proximal Gradient Method

3.35. Motivation: Consider the problem

(P ) : min
x∈Rm

F (x) := f(x) + g(x).

where

• f is nice: convex, lsc, proper, differentiable on int(dom(f)) 6= ∅, with gradient ∇f
being L-Lipschitz continuous on int(dom(f)).

• g is convex, lsc, proper, and dom(g) ⊆ int(dom(f)).

• S := arg minx∈Rm F (x) 6= ∅.

• µ = minx∈Rm F (x).

Note that dom(g) ⊆ int(dom(f)) implies that ri(dom(g)) ∩ ri(dom(f)) = ri(dom(g)) 6= ∅.

3.36. Example: Consider minx∈C f(x) where ∅ 6= C ⊆ Rm is convex and closed. Note
this is equivalent to minx∈Rm f(x) + g(x) with g = δC .

3.37. Note: Start with x ∈ int(dom(f)) ⊇ dom(g). Update via

x+ = prox 1
L
g

(
x− 1

L
∇f(x)

)
= arg min

y∈Rm

{
1

L
g(y) +

1

2

∥∥∥∥y − (x− 1

L
∇f(x)

)∥∥∥∥2
}

∈ dom(g) ⊆ int(dom(f)) = dom(∇f).

Therefore, this update rule makes sure the new x+ stays within int(dom(f).

3.38. (Cont’d): Let’s give this operator a name. Define

T := prox 1
L
g

(
Id− 1

L
∇f
)
,

so that for all x ∈ Rm,

Tx = prox 1
L
g

(
x− 1

L
∇f(x)

)
.

3.39. Theorem: Let x ∈ Rm. Then x is a solution to the optimization problem iff x is
a fixed point of T :

x ∈ S = arg min
x∈Rm

F = arg min
x∈Rm

(f + g) ⇐⇒ x = Tx,

where T is defined as above.
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Proof. Since ri(dom(g)) ∩ int(dom(f)) 6= ∅, the sum rule applies. Let x ∈ Rm.

x ∈ S ⇐⇒ 0 ∈ ∂(f + g)(x) Fermat

⇐⇒ 0 ∈ ∂f(x) + ∂g(x) sum rule

⇐⇒ 0 ∈ ∇f(x) + ∂g(x) f is differentiable at x

⇐⇒ −∇f(x) ∈ ∂g(x)

⇐⇒ − 1

L
∇f(x) ∈ 1

L
∂g(x)

⇐⇒ x− 1

L
∇f(x) ∈ x+

1

L
∂g(x) =

(
Id + ∂

(
1

L
g

))
(x) shift by x

⇐⇒ x ∈
(

Id + ∂

(
1

L
g

))−1(
x− 1

L
∇f(x)

)
⇐⇒ x = Prox 1

L
g

(
Id− 1

L
∇f

)
(x) A4; g/L is a singleton

⇐⇒ x = Tx

�

3.40. The following Fact is used in the proof for the Proposition below.

3.41. Fact: Let f : Rm → (−∞,∞] be convex, lsc, and proper. Let β > 0. Then f is
β-strongly convex iff

∀x ∈ dom(∂(f)),∀u ∈ ∂f(x) : f(y) ≥ f(x) + 〈u, y − x〉+
β

2
‖y − x‖2.

3.42. Now the main result of this section: the prox-grad inequality.

3.43. Proposition: Let x ∈ Rm, y ∈ int(dom(f)), and define the update rule as

y+ = Ty = prox 1
L
g(y −∇f(y)).

Then

F (x)− F (y+) ≥ L

2
‖x− y+‖2 −

L

2
‖x− y‖2 +Df (x, y)

where Df (x, y) is known as the Bregman distance:

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉 .

This value is non-negative by convexity of f .

Proof. Define

h(z) := f(y) + 〈∇f(y), z − y〉+ g(z) +
L

2
‖z − y‖2.
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19. The Proximal Gradient Method

Since the first three terms are convex and the last term is strongly convex, h is L-strongly
convex. We claim that y+ is the unique minimizer of h. Indeed, for z ∈ Rm,

z ∈ argminh⇐⇒ 0 ∈ ∂h(z) Fermat

⇐⇒ 0 ∈ ∂
(
f(y) + 〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

)
⇐⇒ 0 ∈ ∂

(
〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

)
f(y) irrelevant

⇐⇒ 0 ∈ ∇f(y) + ∂g(z) + L(z − y) sum rule

⇐⇒ 0 ∈ 1

L
∇f(y) + ∂

(
1

L
g

)
(z) + (z − y) divide by L

⇐⇒ y − 1

L
∇f(y) ∈ z + ∂

(
1

L
g

)
(z)

⇐⇒ y − 1

L
∇f(y) ∈

(
Id +∂

(
1

L
g

))
(z)

⇐⇒ z ∈
(

Id + ∂

(
1

L
g

))−1(
y − 1

L
∇f(y)

)
⇐⇒ z = Prox 1

L
g

(
y − 1

L
∇f(y)

)
⇐⇒ z = Ty = y+

Hence, y+ is the unique minimizer of h. Let us now use the previous Fact with f 7→ h, β 7→
L, y 7→ x, x 7→ y+. This gives us (after setting u = 0)

h(x)− h(y+) ≥ L

2
‖x− y+‖2. (?)

Moreover, by the descent lemma, we have

f(y+) ≤ f(y) + 〈∇f(y)− y+ − y〉+
L

2
‖y+ − y‖2.

Therefore,

h(y+) = f(y) + 〈∇f(y), y+ − y〉+ g(y+) +
L

2
‖y+ − y‖2

≥ f(y+) + g(y+) = F (y+).

Combining this with (?), we arrive at

h(x)− F (y+) ≥ h(x)− h(y+) ≥ L

2
‖x− y+‖2.

Plugging in the definition of h, this becomes

f(y) + 〈∇f(y), x− y〉+ g(x) +
L

2
‖x− y‖2 − F (y+) ≥ L

2
‖x− y+‖2

Adding f(x) to both sides and rearranging, we get the desired conclusion. �
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3.44. Lemma (Sufficient Decrease Lemma): F (y+) ≤ F (y)− L

2
‖y − y+‖2.

Proof. Use Proposition 3.43 with x 7→ y and recall that Df (x, y) ≥ 0 by convexity of f . �

3.45. Algorithm. The Proximal Gradient Method.

Given x0 ∈ int(dom(f)), update via

xn+1 := Txn = prox 1
L
g

(
xn −

1

L
∇f(xn)

)
.

3.46. Theorem (Rate of Convergence of PGM):

• (xn)n∈N is Fejer monotone wrt S, i.e.,

∀x ∈ S,∀n ∈ N : ‖xn+1 − s‖ ≤ ‖xn − s‖.

• (F (xn))n∈N → µ. More precisely,

0 ≤ F (xn)− µ ≤ L · d2S(x0)

2n
∈ O

(
1

n

)
.

Proof. Apply Lemma 3.44 with y 7→ xn and y+ 7→ xn+1 tells us that the sequence of function
values monotonically decreases:

F (xn+1) ≤ F (xn)− L

2
‖xn+1 − xn‖2 ≤ F (xn). (?)

Let’s prove the first statement. Let s ∈ S and k ∈ N. Applying Proposition 3.43 with
(x, y) 7→ (s, xk) yields

0 ≥ F (s)− F (xk+1) ≥
L

2
‖s− xk+1‖2 −

L

2
‖s− xk‖2.

Discarding the middle part, we see that (xn)n∈N is Fejer monotone wrt S. For the second
part, let us multiply this inequality by 2/L and adding the resulting inequalities from k = 0
to k = n− 1. Note the right side is a telescoping sum, which yields

2

L

n−1∑
k=0

(µ− F (xk+1)) ≥ ‖s− xn‖2 − ‖s− x0‖2 ≥ −‖s− x0‖2.

In particular, setting s = PS(x0) ∈ S, we obtain

d2S(x0) = ‖PS(x0)− x0‖2

=
2

L

n−1∑
k=0

(F (xk+1)− µ)

=
2

L

n−1∑
k=0

(F (xn)− µ) by ?
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=
2

L
n(F (xn)− µ).

Equivalently, we have

0 ≤ F (xn)− µ ≤ L · d2S(x0)

2n

and F (xn)→ µ as n→∞. �

3.47. Theorem (Convergence of PGM): xn converges to some solution in S = arg minx∈Rm F (x).

Proof. By the previous theorem, we have (xn)n∈N is Fejer monotone wrt S. Thus, it suffices
to show that every cluster point of (xn)n∈N lies in S. Suppose that x̄ is a cluster point of
(xn)n∈N, say xkn → x̄. We wish to show that F (x̄) = µ. Indeed,

µ ≤ F (x̄) ≤ lim inf
n→∞

F (xkn) = µ =⇒ F (x̄) = µ ⇐⇒ x̄ ∈ S.

�

3.48. Proposition:

1. 1
L
∇f is fne.

2. Id− 1
L
∇f is fne.

3. T = prox 1
L
g(Id−∇f) is 2/3-averaged.

Proof. For the first two statements, recall that (Theorem 2.103) for real-valued, convex,
differentiable functions with L-Lipschitz gradient,

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2〈

1

L
∇f(x)− 1

L
∇f(y), x− y

〉
≥
∥∥∥∥ 1

L
∇f(x)− 1

L
∇f(y)

∥∥∥∥2
The result follows then from the two equivalent characterizations of fne: Id− T is ne and

〈Tx− Ty, Tx− Ty〉 ≥ ‖Tx− Ty‖2.

For (3), recall that prox 1
L
g is fne. Hence, prox 1

L
g and Id − 1

L
∇f are both 1/2-averaged.

Consequently, the composition prox 1
L
g

(
Id− 1

L
∇f
)

is averaged with constant 2/3. �

3.49. Remark: Recall Proposition 2.163. One can show that for this T we have

1

2
‖(Id− T )x− (Id− T )y‖2 ≤ ‖x− y‖2 − ‖Tx− Ty‖2.

3.50. Theorem:

‖xn+1 − xn‖ ≤
√

2 · dS(x0)√
n

= O

(
1√
n

)
.
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Proof. Using the previous remark, we have

∀x,∀y :
1

2
‖(Id− T )x− (Id− T )y‖2 ≤ ‖x− y‖2 − ‖Tx− Ty‖2.

Let s ∈ S and recall that by Theorem 3.39, s = Ts. Applying this property with x 7→ xk
and y = s ∈ S, we get

1

2
‖(Id− T )xk − (Id− T )s‖2 ≤ ‖xk − s‖2 − ‖Txk − Ts‖2

=
1

2
‖xk − xk+1 − 0‖2 ≤ ‖xk − s‖2 − ‖xk+1 − s‖2

=
1

2
‖xk − xk+1‖2 ≤ ‖xk − s‖2 − ‖xk+1 − s‖2.

By Proposition 3.43, T is 2/3-averaged hence ne. Therefore,

‖xk − xk+1‖ ≤ ‖xk−1 − xk‖ ≤ · · · ≤ ‖x0 − x1‖.

Summing over k = 0 to n− 1,

‖x0 − s‖2 − ‖xn − s‖2 ≥
1

2

n−1∑
k=0

‖xk − xk+1‖2 ≥
1

2
n‖xn−1 − xn‖2.

In particular, for s = PS(x0), we get

1

2
n‖xn−1 − xn‖2 ≤ d2S(x0) =⇒ ‖xn−1 − xn‖ ≤

√
2√
n
dS(x0) ∈ O

(
1√
n

)
.

�

3.51. We now look at the classical proximal point algorithm.

3.52. Corollary: Let g : Rm → (−∞,∞] be convex, lsc, and proper. Let c > 0.
Consider

min
x∈Rm

g(x).

Assume that S = arg minx∈Rm g(x) 6= ∅. Let x0 ∈ Rm. Update via

xn+1 = proxcgxn.

Then

1. g(xn)→ µ = min g(Rm).

2. 0 ≤ g(xn)− µ ≤ d2S(x0)

2cn
.

3. xn → s ∈ S.

4. ‖xn−1 − xn‖ ≤
√

2 · dS(x0)√
n

.
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Proof. Set f(x) = 0 for all x ∈ Rm. Then ∇f(x) = 0 for all x ∈ Rm and ∇f = 0 is
L-Lipschitz for any L > 0. In particular, this holds for L = 1/c > 0. Now write the problem
as

min
x∈Rm

f(x) + g(x).

Then S = arg minx∈Rm F (x) = arg minx∈Rm g(x). Since ∇f = 0, Id − 1
L
∇f = Id. This

implies that

T = prox 1
L
g

(
Id− 1

L
∇f
)

= proxcg(Id) = proxcg.

Now apply the previous theorem and we are done. �
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Section 20. Fast Iterative Shrinkage Thresholding Algorithm

3.53. Motivation: Previously, we were looking at the following problem with assump-
tions listed below:

(P ) : min
x∈Rm

F (x) := f(x) + g(x).

where

• f is nice: convex, lsc, proper, differentiable on int(dom(f)) 6= ∅, with gradient ∇f
being L-Lipschitz continuous on int(dom(f)).

• g is convex, lsc, proper, and dom(g) ⊆ int(dom(f)).

• S := arg minx∈Rm F (x) 6= ∅.

• µ = minx∈Rm F (x).

Note that dom(g) ⊆ int(dom(f)) implies that ri(dom(g)) ∩ ri(dom(f)) = ri(dom(g)) 6= ∅.
Let us now tighten the assumptions, so that

• f is convex, lsc, proper, and differentiable on Rm with ∇f being L-Lipschitz on Rm;

• g is convex, lsc, and proper. Note we get dom(g) ⊆
∫

(dom(f)) for free.

3.54. Note (FISTA): Start with x0 ∈ Rm. Recall previously in PGM, we require
x0 ∈ int(dom(f)) = dom(∇f). But here dom(∇f) = Rm so we can freely choose x0. We
have two other sequences, with starting point t0 = 1 and y0 = x0. Update via

tn+1 =
1 +

√
1 + 4t2n
2

xn+1 = prox 1
L
g

(
Id− 1

L
∇f
)

(yn) =: Tyn

yn+1 = xn+1 +
tn−1
tn+1

(xn+1 − xn)

=

(
1− 1− tn

tn+1

)
xn+1 +

1− tn
tn+1

xn ∈ aff{xn, xn+1}.

3.55. Remark: First, observe that yn+1 is in the affine hull of {xn, xn+1} as we can
write it as an affine combination of xn and xn+1. Next, observe that

2tn+1 − 1 =
√

1 + 4t2n =⇒ t2n+1 − tn+1 = t2n.

Finally, the sequence (tn)n∈N satisfies

∀n ∈ N : tn ≥
n+ 2

2
≥ 1.

This can be easily verify using induction. The base case is t0 = 1 = (0 + 2)/2. Induction
step is just computation.
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3.56. Theorem (FISTA Rate of Convergence):

0 ≤ F (xn)− µ ≤ 2L · d2S(x0)

(n+ 1)2
= O

(
1

n2

)
.

Proof. Set s = PS(x0). Recall that tn ≥ 1, so 1/tn ≤ 1. By convexity of F , we have

F

(
1

tn
· s+

(
1− 1

tn

)
xn

)
≤ 1

tn
F (s) +

(
1− 1

tn

)
F (xn).

For all n ∈ N, define

δn = F (xn)− µ = F (xn)− F (s) ≥ 0.

Observe that(
1− 1

tn

)
δn − δn+1 =

(
1− 1

tn

)
(F (xn)− F (s))− (F (xn+1)− F (x))

=

(
1− 1

tn

)
(F (xn)− F (s)))−

(
1− 1

tn

)
F (s)− F (xn+1) + F (s)

=

(
1− 1

tn

)
F (xn) +

1

tn
F (s)− F (xn+1)

≥ F

(
1

tn
s+

(
1− 1

tn
xn

))
− F (xn+1).

Applying Proposition 3.43 with

x =
1

tn
s+

(
1− 1

tn

)
xn

and y 7→ yn, so that y+ = Tyn = xn+1, we get

F

(
1

tn
s+

(
1− 1

tn

)
xn

)
− F (xn+1)

≥ L

2

∥∥∥∥ 1

tn
s+

(
1− 1

tn

)
xn − xn+1

∥∥∥∥2 − L

2

∥∥∥∥ 1

tn
s+

(
1− 1

tn

)
xn − yn

∥∥∥∥2
=
L

2

∥∥∥∥ 1

tn
(s+ (tn − 1)xn − tnxn+1)

∥∥∥∥2 − L

2

∥∥∥∥ 1

tn
(s+ (tn − 1)xn − tnyn)

∥∥∥∥2
=

L

2t2n
‖tnxn+1 − (s+ (tn − 1)xn)‖2 − L

2t2n
‖tnyn − (s+ (tn − 1)xn)‖2.

Focusing on ‖tnyn − (s+ (tn − 1)xn)‖2 for now. We can simplify it to

‖tnyn − (s+ (tn − 1)xn)‖2 =

∥∥∥∥tn(xn +
tn−1 − 1

tn
(xn − xn−1)

)
− (s+ (tn − 1)xn)

∥∥∥∥2
= ‖tnxn + (tn−1 − 1) (xn − xn−1)− s− tnxn + xn‖2

= ‖tn−1xn − tn−1xn−1 + xn−1 − s‖2

= ‖tn−1xn − (s+ (tn−1 − 1)xn−1)‖2 set: (?1)
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Combined with the fact that t2n+1 − tn+1 = t2n, (set: ?2) we get that

t2n−1δn − t2nδn+1 = (t2n − tn)δn − t2nδn+1 by: ?2

= t2n

((
1− 1

tn

)
δn − δn+1

)
≥ t2n

(
F

(
1

tn
s+

(
1− 1

tn

)
xn

)
− F (xn+1)

)
≥ L

2
‖tnxn+1 − (s+ (tn − 1))xn‖2 −

L

2
‖tnyn − (s+ (tn − 1))xn‖2

=
L

2
‖tnxn+1 − (s+ (tn − 1))xn‖2 −

L

2
‖tn−1xn − (s+ (tn−1 − 1))xn−1‖2 by: ?1

Recall δn = F (xn)− µ and define

un := tn−1xn − (s+ (tn−1 − 1)xn−1) .

Multiplying the inequality above by 2
L

and rearranging yields

‖un+1‖2 +
2

L
t2nsn+1 ≤ ‖un‖2 +

2

L
t2n−1sn

It follows that

2

L
t2n−1δn ≤ ‖un‖

2 +
2

L
t2nδn+1

≤ · · ·

≤ ‖u1‖2 +
2

L
t20δ1

= ‖t0x1 − (s+ (t0 − 1)x0)‖2 +
2

L
(1)(F (x1)− µ)

= ‖x1 − s‖2 +
2

L
(F (x1)− µ) ≤ ‖x0 − s‖2

where the last inequality follows from Proposition 3.43 with x 7→ s, y 7→ y0, y+ = Ty0 = x1,
which gives the equation below (and rearranging this yields the inequality above):

F (s)− F (x1) = µ− F (x1) ≥
L

2
‖s− x1‖2 −

L

2
‖x0 − δ‖2.

In other words, we have

F (xn)− µ = δn ≤
L

2
‖x0 − s‖2

1

t2n−1

≤ L

2
‖x0 − s‖2

4

(n+ 1)2
tn ≥

n+ 2

2

=
2L · d2S (x0)

(n+ 1)2
s = PS(x0)

�
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Section 21. The Iterative Shrinkage Thresholding Algorithm

3.57. Motivation: We now look at a special case of the PGM with g(x) = λ‖x‖1 where
λ > 0. Note this gives

1

L
g(x) =

λ

L
‖x‖1.

Previously, we have seen that

Prox 1
L
g(x) =

(
Prox λ

L
‖·‖1(x)

)n
i=1

=

(
sign (xi) max

{
0, |xi| −

λ

L

})n
i=1

Note that FISTA is the accelerated version of ISTA.

3.58. Note (Comparison of Norms): Let Ax = b is an undetermined system of equations
(i.e., fewer equations than unknowns) and consider the following two problems:

• (P1) : min ‖x‖2 s.t. Ax = b

• (P2) : min ‖x‖1 s.t. Ax = b

Recall that the L1 norm encourages sparsity.

3.59. Example (L1 Regularized Least Squares): Let λ > 0 and A ∈ Rn×m. Consider

(P ) : min
x∈Rm

1

2
‖Ax− b‖22 + λ‖x‖1,

where

• g(x) = λ‖x‖1 is convex, lsc, and proper.

• f(x) = 1
2
‖Ax− b‖22, which is smooth on Rm and ∇f(x) = AT (Ax− b).

• dom(f) = dom(g) = Rm.

• For ∇f to be Lipschitz, recall Corollary 2.108, which states that

∇f is L-Lipschitz ⇐⇒ λmax(∇2f(x)) ≤ L ⇐⇒ λmax(A
TA) ≤ L.

Thus, we can take L := λmax(A
TA).

• To see S 6= ∅, observe that

F (x) = f(x) + g(x) =
1

2
‖Ax− b‖22 + λ‖x‖1

is continuous, convex, coercive, with dom(F ) = Rm. Thus, S = arg minF 6= ∅. Here
we used the Fact below without proof.

3.60. Fact: If F is convex, lsc, proper, and coercive and C is convex, closed, and non-
empty, with dom(F ) ∩ C 6= ∅. Then F has a minimizer over C.
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3.61. (Cont’d): Continuing from the previous Example. Sometimes m is large and
computing the eigenvalues of ATA ∈ Rm×m is not so easy. In this case, we could use an
upper bound on eigenvalues, e.g., the Frobenius norm

‖A‖2F =
m∑
j=1

n∑
i=1

a2ij = tr(ATA) =
m∑
i=1

λi(A
TA).
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Section 22. Douglas-Rachford Algorithm

3.62. Motivation: Consider the problem

(P ) : min
x∈Rm
{F (x) := f(x) + g(x)}

where

• f and g are convex, lsc, and proper.

• S = arg minx∈Rm F (x) 6= ∅.

• No further assumptions of smoothness or domain inclusions.

Suppose there exists s ∈ S such that

0 ∈ ∂f(s) + ∂g(s) ⊆ ∂(f + g)(s).

One situation that this holds is when ri(dom(f)) ∩ ri(dom(g)) 6= ∅, for which the sum
rule applies, i.e., ∂(f + g) = ∂f + ∂g. Recall from A4 that proxf = (Id + ∂f)−1 and
proxg = (Id + ∂g)−1. Define

Rf = 2 · proxf − Id,

Rg = 2 · proxg − Id.

Define the Douglas-Rachford (DR) as follows.

T = Id− proxf + proxg(2proxf − Id) = Id− proxf + proxgRf .

3.63. Lemma:

• Rf and Rg are nonexpansive.

• T = 1
2
(Id +RgRf ).

• T is firmly nonexpansive.

Proof. (1) Recall Proposition 2.159, which states that proxf is fne when f is convex, lsc, and
proper. Then by 2.138, Rf = 2proxf − Id is nonexpansive.
(2) Expanding the definitions of Rg and Rf , we obtain T .
(3) Since RgRf is a composition of two nonexpansive mappings, it is nonexpansive. Let
N = Id which is nonexpansive,

T =
1

2
Id +

1

2
RgRf

so T is 1/2-averaged. Finally, by Remark 2.141, this tells us that T is fne. �

3.64. Remark: We have Fix(T ) = Fix(RgRf ). Let x ∈ Rm. Then

x ∈ Fix(T ) ⇐⇒ x = Tx ⇐⇒ x =
1

2
(x+RgRfx)

⇐⇒ 2x = x+RgRfx ⇐⇒ x = RgRfx ⇐⇒ x ∈ Fix(RgRf ).
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3.65. Proposition: proxf (Fix(T )) ⊆ S.

Proof. Let x ∈ Rm and set s = proxf (x) = (Id + ∂f)−1(x). Then

s = proxf (x) ⇐⇒ x ∈ (Id + ∂f)(s) = s+ ∂f(s)

⇐⇒ 2proxf (s)− 2(proxfx− x) ∈ s+ ∂f(s)

⇐⇒ 2s−Rf (s) ∈ s+ ∂f(s)

⇐⇒ 2s−Rf (s)− s ∈ ∂f(s)

⇐⇒ s−Rf (x) ∈ ∂f(s).

On the other hand,

x ∈ Fix(T ) ⇐⇒ x = Tx

⇐⇒ x = x− proxfx+ proxgRfx

⇐⇒ proxf = proxgRfx

⇐⇒ s = proxgRfx

⇐⇒ Rf (s) ∈ s+ ∂g(s)

⇐⇒ 0 ∈ s−Rf (s) + ∂g(s)

⇐⇒ Rfx− s ∈ ∂g(s).

It follows that 0 ∈ ∂f(s) + ∂g(s) ⊆ ∂(f + g)(s) =⇒ s ∈ S = arg minx∈Rm F (x). �

3.66. Remark: Recall that (firmly) nonexpansive operators are continuous and iterat-
ing a fne operator tends to a fixed point.

3.67. Theorem: Let x0 ∈ Rm. Update via

xn+1 := xn − proxfxn + proxg(2proxfxn − xn).

Then proxf (xn)→ s ∈ S.

Proof. Rewrite xn+1 as

xn+1 = (Id− proxf + proxg(2proxf − Id))xn = Txn = T n+1x0.

By Corollary 2.157, xn+1 → x̄ ∈ Fix(T ). Observe that proxf is (firmly) nonexpansive by
Proposition 2.159 and hence continuous by Proposition 2.145. Consequently, proxf (xn) will
converge to proxf (x̄) =: s ∈ S. Finally, s ∈ proxf (Fix(T )) ⊆ S by Proposition 3.65. �
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Section 23. Stochastic Projected Subgradient Method

3.68. Motivation: Consider the problem

(P ) : min
x∈C

f(x)

where

• f is convex, lsc, and proper;

• C ⊆ int(dom(f)) is non-empty, closed, and convex;

• S := arg minx∈C f(x) 6= ∅;

• µ := min f(C).

3.69. Recap: Recall the update rule of the projected subgradient method,

xn+1 ← PC(xn − tnf ′(xn))

where f ′(xn) ∈ ∂f(xn) is a subgradient of f at xn.

3.70. Note (SPSM): Given x0 ∈ C, update via

xn+1 := PC(xn − tngn).

As before, we have the following assumptions on tn’s:

• ∀n ∈ N : tn > 0;

•
∑∞

n=0 tn →∞;

•
∑n
k=0 t

2
k∑n

k=0 tk
→ 0 as k →∞.

For example, we may take tn = α/(n+ 1) for some α > 0.

3.71. (Cont’d): Choose gn to be a random vector such that the following assumptions
are satisfied:

• “Unbiased subgradient”: The conditional expectation of gn given xn is a subgradient
of f at xn.

∀n ∈ N : E[gn | xn] ∈ ∂f(xn);

or equivalently,

∀y ∈ Rm : f(xn) + 〈E[gn | xn], y − xn〉 ≤ f(y).

• “Boundedness”:

∃L > 0,∀n ∈ N : E[‖gn‖2 | xn] ≤ L2.

We now show why these assumptions are useful.
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3.72. Theorem: Assuming the previous assumptions on tn and gn hold. Then

E[µk]→ µ as k →∞,

where µk := min{f(x0), . . . , f(xk)} ≥ µ.

Proof. Let s ∈ S and n ∈ N. Then

0 ≤ ‖xn+1 − s‖2 = ‖PC(xn − tngn)− PCs‖2 s ∈ S ⊆ C

≤ ‖(xn − tngn)− s‖2

=≤ ‖(xn − s)− tngn‖2

= ‖xn − s‖2 − 2tn 〈gn, xn − s〉+ t2n‖gn‖2.

Taking the conditional expectation given xn yields

E[‖xn+1 − s‖2 | xn] ≤ ‖xn − s‖2 + 2tn 〈E[gn | xn], s− xn〉+ t2nE[‖gn‖2 | xn]

≤ ‖xn − s‖2 + 2tn(f(s)− f(xn)) + t2nL
2 Assumptions 1 & 2

= ‖xn − s‖2 + 2tn(µ− f(xn)) + t2nL
2.

Taking the expectation wrt xn yields (?):

E[‖xn+1 − s‖2] ≤ E[‖xn − s‖2] + 2tn(µ− E[f(xn)]) + t2nL
2.

Let k ∈ N. Summing
∑k

n=0(?) and cancelling duplicate terms yields

0 ≤ E[‖xn+1 − s‖2] ≤ ‖x0 − s‖2 − 2
k∑

n=0

tn(E(f(xn))− µ) + L2

k∑
n=0

t2n.

Hence,

1

2

(
‖x0 − s‖2 + L2

k∑
n=0

t2n

)
≥

k∑
n=0

tn(E[f(xn)]− µ)

≥
k∑

n=0

tn(E[µk]− µ)

≥ 0 f(xn) ≥ µk ≥ µ.

Therefore, by assumption on tn, we have

0 ≤ E[µk]− µ ≤
‖x0 − s‖2 + L2

∑k
n=0 t

2
n

2
∑k

n=0 tn
→ 0 as k →∞.

�
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Section 24. Duality: The Fenchel Duality

3.73. Motivation: Let f, g : Rm → (−∞,∞] be convex, lsc, and proper. Consider

(P ) : min
x∈Rm

f(x) + g(x) ≡ min
x,z∈Rm

{f(x) + g(z) : x = z}.

Construct the Lagrangian

L(x, z; y) := f(x) + g(z) + 〈y, z − x〉 .

The dual objective function is obtained by minimizing the Lagrangian wrt x and z:

d(u) := inf
x,z
L(x, z;u)

= inf
x,z
{f(x)− 〈u, x〉+ g(z) + 〈u, z〉}

= − sup
x∈Rm
{〈u, x〉 − f(x)} − sup

z∈Rm
{〈−u, z〉 − g(z)}

= −f ∗(u)− g∗(−u).

We obtain the Fenchel dual problem

(D) : max
u∈Rm

(−f ∗(u)− g∗(−u)) = min
u∈Rm

(f ∗(u) + g∗(−u)).

Define the primal and dual optimal values as

p := inf
x∈Rm

f(x) + g(x)

d := inf
u∈Rm

f ∗(u) + g∗(−u)

Recall that p ≥ −d from assignments.

3.74. Note (The Fenchel-Rockafeller Duality): Let f : Rm → (−∞,∞], g : Rn →
(−∞,∞] be convex, lsc, and proper. Let A ∈ Rn×m, or equivalently, A : Rm → Rn.
Consider the following problem and its Fenchel-Rockafeller dual:

(P ) : min
x∈Rm

f(x) + g(Ax)

(D) : min
y∈Rn

f ∗(−ATy) + g∗(y).

As before, define p and d as the optimal primal and dual values. We know that p ≥ −d.

3.75. Lemma: Let h : Rm → (−∞,∞] be convex, lsc, and proper. Set

∀x ∈ Rm : hv(x) = h(−x).

The the following hold:

• hv is convex, lsc, and proper.

• ∂hv = −∂h ◦ (−Id).

111



Chapter 3. Constrained Convex Optimization

Proof. Clearly, dom(hv) = −dom(h), so dom(hv) 6= ∅. Moreover, −∞ 6∈ h(Rm) =
h(−Rm) = hv(Rm) so h is proper. Now let xn → x̄ (and so −xn → −x̄). Observe that

lim inf
n→∞

hv(xn) = lim inf
n→∞

h(−xn) ≥1 h(−x̄) = hv(x̄)

where ≥1 follows from the fact that h is lsc. This proves that hv is lsc. Finally, let x, y ∈
dom(hv) and λ ∈ (0, 1). We have

h2(λx+ (1− λ)y) = h(−λx− (1− λ)y)

= h(λ(−x) + (1− λ)(−y))

≤ λh(−x) + (1− λ)h(−y)

= λh2(x) + (1− λ)h2(y)

It follows that hv is convex. For the second claim, u ∈ Rm and x ∈ dom(∂h ◦ (−Id)). Then

u ∈ −∂h ◦ (−Id)(x) = −∂f(−x) ⇐⇒ −u ∈ ∂h(−x)
⇐⇒ ∀y ∈ Rm : h(y) ≥ h(−x) + 〈−u, y − (−x)〉
⇐⇒ ∀y ∈ Rm : h(−y) ≥ h(−x) + 〈−u,−y + x〉
⇐⇒ ∀y ∈ Rm : hv(y) ≥ hv(x) + 〈u, y − x〉
⇐⇒ u ∈ ∂hv(x)

�

3.76. Note: We now show that DR is a self-dual method. Recall that the DR operator
to solve (P) is defined as

Tp := Id− proxf + proxgRf =
1

2
(Id +RgRf ),

where Rf = 2proxf − Id. The DR operator to solve (D) is defined as

Td = Id− proxf∗ + prox(g∗)vRf∗ =
1

2
(Id +R(g∗)vRf∗).

3.77. Lemma: Let h : Rm → (−∞,∞] be convex, lsc, and proper. The following hold:

• proxhv = −proxh ◦ (−Id)

• Rh∗ = −Rh

• R(h∗)v = Rh ◦ (−Id)

Proof. For (i), recall that proxf = (Id + ∂f)−1 as well as ∂hv = −∂h ◦ (−Id),

Pr0x
v
h = (Id + ∂hv)−1

= (Id + (−Id)) ◦ ∂h ◦ (−Id))−1

= ((−Id) ◦ (Id + ∂h) ◦ (−Id))−1

= (−Id)−1(Id + ∂h)−1 ◦ (−Id)−1

= −Proxh ◦(−Id)
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For (2), we expand the definition of Rh∗ :

Rh∗ = 2 Proxh∗ −Id

= 2 (Id− Proxh)− Id A4

= 2Id− 2 Proxh−Id

= Id− 2 Proxh = −(2 Proxh−Id) = −Rh.

For (3), first note that

prox(h∗)v = −proxh∗ ◦ (−Id) (i)

= −(Id− proxh) ◦ (−Id) A4

= −Id ◦ (−Id) + proxh ◦ (−Id)

= proxh ◦ (−Id) + Id

= (proxh − Id) ◦ (−Id)

Therefore,

R(h∗)v = 2prox(h∗)v − Id

= 2(proxh − Id) ◦ (−Id)− Id

= (2proxh − 2Id + Id) ◦ (−Id)

= (2proxh − Id) ◦ (−Id) = Rh ◦ (−Id)

�

3.78. Theorem: Tp = Td.

Proof. By previous lemma,

Td :=
1

2

(
Id +R(g∗)vRf∗

)
=

1

2
(Id + [Rg ◦ (−Id)] ◦ (−Rf )) =

1

2
(Id +RgRf ) = Tp

�

3.79. Theorem: Let x0 ∈ Rm. Update via

xn+1 := xn − proxf (xn) + proxg(2proxf (xn)− xn) = Tpxn.

Then

• proxf (xn) converges to a minimizer of f + g,

• xn − proxf (xn) converges to a minimizer of f ∗ + (g∗)v.

Proof. We already know that proxf (xn) converges to a minimizer of f + g. Since Tp = Td,
proxf∗(xn) converges to a minimizer of f ∗ + (g∗)v. Using the fact that proxf∗ = Id− proxf ,
we conclude the proof. �
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