
Notes on CS-370:

Numerical Computation

Unversity of Waterloo

David Duan

Last Updated: May 2, 2021 (V1.0)

Contents

Contents

1 Floating Point Number Systems 1

1 Floating Point Number Systems . 1

2 Limitations of Floating Points Numbers . 2

3 Error of Floating-Point Representation . 3

2 Interpolation 7

4 Polynomial Interpolation . 7

5 Piecewise Polynomial Interpolation . 9

6 Cubic Spline Interpolation . 10

7 Bezier Curves . 14

3 Ordinary Differential Equations 15

8 Motivation . 15

9 Euler’s Methods . 18

10 SciPy’s ODE Suite . 20

11 Modified Euler’s Method . 21

12 Numerical Stability . 23

4 Fourier Transform 26

13 Review: Complex Numbers . 26

14 Fourier Series . 29

15 Discrete Fourier Transformation . 30

16 Properties of the Fourier Transform . 33

17 2-Dimensional DFT . 34

18 DFT and Convolution . 35

19 Fast Fourier Transform . 36

5 Linear Algebra 39

20 Linear Algebra Review . 39

21 Motivation: Google Page Rank . 40

ii

Contents

22 Markov Transition Matrices . 42

23 Solving Triangular Systems . 45

24 LU Factorization . 48

25 Matrix and Vector Norms . 51

26 Conditioning . 52

27 Singular Value Decomposition . 53

iii

Contents

iv

Chapter 1. Floating Point Number Systems

Section 1. Floating Point Number Systems

1.1. Note: Every number in R can be written in the normalized form relative to some
base β, i.e.,

± 0.d1d2d3 · · · × βp,

where

• dk ∈ {0, 1, . . . , β − 1} are digits in base-β;

• the first digit after the decimal point is non-zero, i.e., d1 6= 0; 1

• the exponent of β is an integer, i.e., p ∈ Z.

1.2. Note: The real number system R is infinite in two senses:

• infinite in extent, i.e., there are numbers x ∈ R such that |x| is arbitrarily large;

• infinite in density, i.e., any interval I = {x | a ≤ x ≤ b} ⊆ R is an infinite set.

Floating point number systems (FPNS) address these two issues by

• representing only a finite number of digits in the expansion, and

• forcing p to take only a finite number of integer values.

1.3. Note: Every FPNS is characterized by four integer parameters, {β, t, L, U}, where

• t denotes the number of digits representable in the FPNS;

• U and P denote the lower and upper bound of p, i.e., L ≤ p ≤ U .

The numbers in a FPNS characterized by {β, t, L, U} are precisely those of the form

±0.d1d2 . . . dt × βp L ≤ p ≤ U, d1 6= 0 OR 0.

Note that 0 is a very special floating point number.

1.4. Example: Two widely-used floating point number systems:

• IEEE single precision: {β = 2; t = 24;L = −126;U = 127}.
• IEEE double precision: {β = 2; t = 53;L = −1022;U = 1023}.

More on this later.

1Note that 0.0d2d3 . . .× βp = 0.d2d3 . . .× βp−1, i.e., one digit can be saved.

1

Chapter 1. Floating Point Number Systems

Section 2. Limitations of Floating Points Numbers

1.5. Note: Given a FPNS specified by (t, β, L, U) and a number

x = 0.d1d2 · · · dt−1dt dt+1 · · · × βp,

the approximated value µ(x) of x in this FPNS is given by

µ(x) =

{
0.d1d2 · · · dt × βp dt+1 <

β
2

0.d1d2 · · · (dt + 1)× βp dt+1 ≥ β
2
.

The difference |x− µ(x)| is called the round-off error.

1.6. (Cont’d): The largest and smallest value in the FPNS specified by (t = 8, β =
10, L = −35, U = 35) are

M = 0.99999999× 1035 and m = 0.10000000× 10−35,

respectively. Numbers larger than M causes an overflow and numbers smaller than m
causes an underflow (and gets rounded to zero).

1.7. Example: Exception handling in Python:

1 np.float64(0)/0 # nan

2 np.float64(1)/0 # inf

3 np.float64(-1)/0 # -inf

4 np.float64(1)/0 - np.float64(1)/0 # nan

2

3. Error of Floating-Point Representation

Section 3. Error of Floating-Point Representation

1.8. Definition: Let µ(x) be the approximation to x in a FPNS. The absolute error
is given by |x− µ(x)|. The relative error is given by

δ(x) :=
|x− µ(x)|
|x|

.

Let µ(x) and δ(x) denote the approximation and the relative error of x. Then

µ(x) = x(1 + δ).

1.9. Note: The relative error of µ(x) is bounded for all x representable by the FPNS.
The maximum relative error among all x is called the machine epsilon, denoted by E. In
other words,

|δ(x)| := |µ(x)− x|
|x|

≤ E for all x within the FPNS’s range.

Equivalently, E is defined to be the smallest number such that µ(1 + E) > 1. For example,
in the FPNS specified by (t, β, L, U), observe

1.00 · · · 0︸ ︷︷ ︸
d0.d1d2···dt−1

×β0 + 0.00 · · · 0︸ ︷︷ ︸
d0.d1d2···dt−1

β

2︸︷︷︸
dt

×β0 = 1.00 · · · 1︸ ︷︷ ︸
d0.d1d2···dt−1

> 1.

By the alternative definition above, the number

0.00 · · · 0︸ ︷︷ ︸
d0.d1d2···dt−1

β

2

is the machine epsilon. In general, we can compute the machine epsilon by

E =
β

2
× β−t =

1

2
β1−t

as this number will have exactly t − 1 digits after the decimal point (t if counting the 0 to
the left of the decimal point), the last digit will be β/2, and all other digits are zeros. For
example, in the IEEE double precision system, β = 2 and t = 52 so

E =
1

2
× 21−52 = 2−52 ≈ 10−16.

1.10. Definition: The machine epsilon is the smallest number E such that

µ(1 + E) > 1.

It is an upper-bound of all relative errors and can be computed as

E(t, β) =
1

2
β1−t

where t and β denotes the precision (number of digits) and base of the FPNS.

3

Chapter 1. Floating Point Number Systems

1.11. Note (Distribution of Floating-Point Numbers): Since relative error is bounded,

|x− µ(x)|
|x|

≤ E =⇒ |x− µ(x)| ≤ |x|E.

Let x ∈ R and a, b be two numbers representable by a FPNS such that round x down gives
a and rounding x up gives b:

a ←−−−−−−−−︸ ︷︷ ︸
≤|x|E

x −−−−−−−−→︸ ︷︷ ︸
≤|x|E

b

Then the distance between x and a and the distance between x and b are both bounded by
|x|E. It follows that the distance between a and b is bounded by 2|x|E.

1.12. (Cont’d): The spacing between numbers is proportional to their size. In partic-
ular, numbers of magnitude x are spaced approximated 2|x|E apart.

1.13. Example (Floating-Point Arithmetic Error Analysis): The result of an arithmetic
operation may need to be rounded to represent it as a floating-point number. Let F denote
the set of floating-point numbers and ⊕ denote the floating-point addition, i.e.,

x⊕ y = µ(x+ y) = (x+ y)(1 + δ(x+ y)).

We are interested in the relative error of (a⊕ b)⊕ c.

δ(a+ b+ c) =
|(a⊕ b)⊕ c− (a+ b+ c)|

|a+ b+ c|

=
|(a+ b)(1 + δ1)⊕ c− (a+ b+ c)|

|a+ b+ c|
δ1 = δ(a+ b)

=
|[(a+ b)(1 + δ1) + c](1 + δ2)− (a+ b+ c)|

|a+ b+ c|
δ2 = δ((a+ b)(1 + δ1) + c)

= · · ·

=
|(a+ b)δ1(1 + δ2) + (a+ b+ c)δ2|

|a+ b+ c|

≤ |a+ b|
|a+ b+ c|

|δ1(1 + δ2)|+ |δ2| triangle inequality

≤ |a+ b|
|a+ b+ c|

E(1 + E) + E |δ1| ≤ E, |δ2| ≤ E

1.14. Our goal now is to see some examples of round-off error yielding poor results.
Using the FPNS (t, β, L, U) = (3, 10,−20, 20), evaluate the true relative error and the upper
bound of (a⊕ b)⊕ c for each set of numbers {a, b, c}.

4

3. Error of Floating-Point Representation

1.15. Example: Let (a, b, c) = (5670, 7890, 123). The approximated value of a + b + c
is

µ(a+ b+ c) = (a⊕ b)⊕ c = (5670⊕ 7890)⊕ 123

= µ(13560)⊕ 123

= 13600⊕ 123 only 3 decimals available

= µ(13723) = 13700.

The real value of a+ b+ c = 13683. Thus, the relative error is

|13700− 13683|
|13683|

≈ 0.12%.

The upper bound of relative errors is

δ ≤ |a+ b|
|a+ b+ c|

E(1 + E) + E =
13560

13683
E(1 + E) + E ≈ 2E + E2 ≈ 2E.

In our case,

E =
1

2
β1−t =

1

2
10−2 = 0.005.

Thus the relative error is bounded by 2E = 0.01. This seems acceptable.

1.16. Example: Let (a, b, c) = (5670, 7890,−13500).

µ(a+ b+ c) = (a⊕ b)⊕ c = (5670⊕ 7890)⊕ 123

= µ(13560)⊕ 123

= 13600⊕ (−13500)

= µ(100) = 100.

The true value is 60. Thus, the relative error is

|100− 60|
|60|

≈ 67%.

The upper bound of relative errors is

δ ≤ |a+ b|
|a+ b+ c|

E(1 + E) + E

=
13560

60
E(1 + E) + E

= 226E(1 + E) + E ≈ 114%.

This number looks huge!

1.17. What we are observing here is called the cancellation error. This results from
round-off error when you are subtracting two large values that have almost the same mag-
nitude, as this leads to loss of significance digits and thus E is no longer small enough.

5

Chapter 1. Floating Point Number Systems

1.18. Note (Cancellation Error): Consider x = 1.23456 and y = 1.2341 and suppose
β = 10 and m = 4. Then they are represented as µ(x) = 1.235 and µ(y) = 1.234 in the
FPNS. When we subtract x from y, we are essentially doing and we have µ(x) 	 µ(y) =
(1.235	 1.234) ≡ µ(1.235− 1.234) = 0.001. Note we are not introducing any rounding error
in the last step. However,

|µ(x)	 µ(y)− (x− y)|
|x− y|

=
0.001− 0.00046

0.00046
≈ 1.17.

This big error is introduced because we rounded x and y in the first place. Formalizing this
argument, we are using µ(x) = x(1 + δx) and µ(y) = y(1 + δy). To compute µ(x)	 µ(y) we
will have to round µ(x)− µ(y). Therefore, we will have a third source of error δx−y:

µ(x)	 µ(y) = µ(µ(x)− µ(y))(1 + δx−y)

where

δx−y :=
|µ(µ(x)− µ(y))− (µ(x)− µ(y)|

|µ(x)− µ(y)|
.

Putting everything together, we get

µ(x)	 µ(y) = (x− y)(1 + δx−y) + (xδx + yδy)(1 + δx−y).

The relative error is

|µ(y)	 µ(y)− (x− y)|
|x− y|

=

∣∣∣∣δx−y +
xδx − yδy
x− y

(1 + δx−y)

∣∣∣∣.
Observe when x and y have the same sign and similar values, the denominator will be very
small and this error is in fact unbounded. 2

2What Every Computer Scientist Should Know About Floating-Point Arithmetic.

6

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

Chapter 2. Interpolation

Suppose we have a set of discrete samples {(xi, yi)}ni=1 of some unknown function, where the
xi’s are distinct. Interpolation is the act of finding a function f(x) such that

∀i = 1, . . . , n : f(xi) = yi.

In other words, the interpolation function f passes through the data points {(xi, yi)}ni=1.

Section 4. Polynomial Interpolation

2.1. The easiest type of function to use for interpolation is to let f(x) be a polynomial.
It is simple and easy to compute and has a nice existence and uniqueness property.

2.2. Theorem: Given n data points {(xi, yi)}ni=1 with distinct xi, there is a unique
polynomial p(x) of degree not exceeding n− 1 that interpolates the data.

2.3. We present two methods of constructing the interpolation polynomial, each based
on Vandemorde matrices and Lagrange bases, respectively. Both can serve as the proof for
the theorem above (i.e., proving the existence and uniqueness of such polynomial p(x)).

Vandermonde Matrices

2.4. Note: Polynomials of degree n − 1 or less are commonly represented in the form
p(x) = c1 + c2x + · · · + cnx

n−1 with n coefficients c1, . . . , cn ∈ R. Let us write out the
constraint p(xi) = yi explicitly, i.e.,

c1 + c2x1 + c3x1
2+ · · ·+ cnx1

x−1 = y1

c1 + c2x2 + c3x2
2+ · · ·+ cnx2

x−1 = y2
...

c1 + c2xn + c3xn
2+ · · ·+ cnxn

x−1 = yn

Observe this is a system of n equations sharing coefficients c1, . . . , cn, where the ith row
represents the relationship p(xi) = yi for data point (xi, yi) and entries in the jth column all
have the same power. Thus, we can set up a linear system V c = y where

V =


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
1 xn · · · xn−1

n

 , c =


c1

c2
...
cn

 , y =


y1

y2
...
yn

 .
Matrices of the form V are called Vandermonde matrices. All of the data required for
creating one is contained in its second column, i.e., Vi,2 = xi.

7

Chapter 2. Interpolation

2.5. (Cont’d): These facts have both practical and theoretical implications. The the-
oretical implication is that we can prove the theorem by showing that V is non-singular.
Indeed, the usual proof of this system is based on establishing that

det(V) =
∏
i<j

(xi − xj) 6= 0.

The practical implication is that have reduced computing the interpolating polynomial to
solving a linear system of equations.

2.6. (Cont’d): There are two main disadvantages of this approach:

• We need to solve a linear system, which takes O(n3).

• The matrix entries become large as n gets bigger. This causes the matrix X to become
nearly singular and is thus difficulty to solve accurately.

Lagrange Form

2.7. Note: Given a set of data {(xi, yi)}ni=1, the set of n Lagrange basis functions,
denoted {Lk(x)}nk=1, is defined as

Lk(x) =
(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

These polynomials have the property that

Li(xj) =

{
1 i = j

0 i 6= j

Thus, the polynomial given by

p(x) =
n∑
i=1

yiLi(x)

is a polynomial of degree n− 1 which interpolates the n points.

2.8. (Cont’d): One advantage of the Lagrange form is that the interpolant can be
written down directly, without needing to solve a linear system.

2.9. Note: There are problems with polynomial interpolation:

• The interpolant often does not follow the data in a ”reasonable” way (i.e., overfitting).

• Computation gets difficult if there exist points with similar x-values.

8

5. Piecewise Polynomial Interpolation

Section 5. Piecewise Polynomial Interpolation

2.10. Definition: Given n points {(xi, yi)}ni=1 satisfying x1 < · · · < xn, a piecewise
interpolating polynomial for these is a function p(x) such that

1. it is a function of (i.e., well-defined for) x for x1 ≤ x ≤ xn;

2. it is an interpolant, i.e., p(xi) = yi for 1 ≤ i ≤ n;

3. it is continuous on the whole interval [x1, xn].

In this case, we can break p into pieces according to x-values (known as knots, break points,
or nodes) into n− 1 components, each defined on a subinterval of [x1, xn]:

p(x) =


p1(x) x1 ≤ x < x2

p2(x) x2 ≤ x < x3

. . .

pn−1(x) xn−1 ≤ x ≤ xn.

2.11. Note: The simplest form of a piecewise interpolating polynomial is the function
that joins each consecutive pairs of points by a straight line. This is known as the piecewise
linear interpolation. It is easy to see that the derivatives of such functions are discon-
tinuous. In the next section, we will look at piecewise polynomials called splines which are
smooth at all points.

9

Chapter 2. Interpolation

Section 6. Cubic Spline Interpolation

2.12. Definition: S(α) is called a cubic spline if

1. S(x) is an interpolant, i.e., S(xi) = yi for i = 1, . . . , n;

2. S(x) is piecewise cubic;

3. S(x) is twice differentiable, i.e., S ′(x) and S ′′(x) are both continuous on (x1, xn).

2.13. Note: Let us represent the definition as constraints. 1

1. Interpolant constraint (note these conditions guarantees continuity of S(x)):

pi(xi) = yi, pi(xi+1) = yi+1 i = 1, . . . , n− 1

2. Differentiability constraint (continuity of S ′(x)):

p′i(xi+1) = p′i+1(xi+1) i = 1, . . . , n− 2.

3. Twice differentiability constraint (continuity of S ′′(x)):

p′′i (xi+1) = p′′i+1(xi+1) i = 1, . . . , n− 2.

In total, we have 4n− 6 constraints:

• Interpolant: 2 equations for each piece, so 2(n− 1).

• Differentiability: 1 equation for each internal node, so n− 2.

• Twice-differentiability: 1 equation for each internal node, so n− 2.

For each cubic piece, we have four unknowns:

pk(x) = C
(k)
0 + C

(k)
1 x+ C

(k)
2 x2 + C

(k)
3 x3.

Thus, we have 4n− 4 unknowns in total. Since there are 2 more unknowns than equations,
we need 2 more constraints to uniquely determine the interpolation function.

2.14. (Cont’d): Boundary conditions refer to constraints placed on the spline at the
first and last nodes.

• Clamped spline: S ′(x1) and S ′(xn) are specified/fixed.

– These quantities determine what our function looks like. For example, if we set
S ′(xn) = 1, then S will be increasing at the right endpoint xn. Similarly, setting
S ′(x1) < 0 will force the polynomial to decrease at that segment.

• Natural spline: S ′′(x1) = S ′′(Xn) = 0.

– Note this case corresponds to the minimum energy of an elastic band.

• Periodic spline: S ′(x1) = S ′(xn) and S ′′(x1) = S ′′(xn), assuming y1 = yn.

• Plus any combination of the above.

1Note we ignored the two endpoints in condition 2 and 3.

10

6. Cubic Spline Interpolation

2.15. Note: Alternatively, we can represent a cubic spline as

pi(x) = ai−1
(xi+1 − x)3

6hi
+ ai

(x− xi)3

6hi
+ bi(xi+1 − x) + ci(x− xi), (2.1)

where hi = xi+1 − xi for i = 1, . . . , n− 1. The first and second derivatives are given by

p′i(x) = −ai
(xi+1 − x)2

2hi
+ ai+1

(x− xi)2

2hi
− bi + ci.

p′′i (x) = ai
(xi+1 − x)

hi
+ ai+1

(x− xi)
hi

.

Our goal is to choose all the constants ai, bi, ci for 1 ≤ i ≤ n so that S(x) satisfies all the
constraints of a cubic spline.

2.16. (Cont’d): First, by the interpolation constraint, we have

pi (xi) = yi =⇒ 1

6
ai−1h

2
i + bihi = yi

pi (xi+1) = µi+1 ⇒
1

b
aih

2
i + cihi = yi+1

for i = 1, . . . , n − 1. Thus, the coefficients bi and ci can be computed from ai and the
interpolation data using

bi =
yi
hi
− aihi

6

ci =
yi+1

hi
− ai+1hi

6

Hence, only the ai’s need to be computed and stored, in addition to the interpolation data.

11

Chapter 2. Interpolation

2.17. (Cont’d): Next, we apply the 1st derivative conditions.

p′i(xi+1) = p′i+1(xi+1) =⇒ 3ai
h2
i

6hi
− bi + ci = −3ai

h2
i+1

6hi+1

− bi+1 + ci+1

=⇒ 1

2
aihi − bi + ci = −1

2
aihi+1 − bi+1 + ci+1

Plugging in the above formulas for bi and ci in terms of ai’s, we get, after rearranging the
terms (by putting terms involving ai’s on the LHS):

1

6
hiai−1 +

1

3
(hi + hi+1) ai +

1

6
hi+1ai+1ri =

(yi+2 − yi+1)

hi+1

− (yi+1 − yi)
hi

=: ri

for i = 1, . . . , n − 2. Note this is a tridiagonal linear system, as each equation consists of
{ai−1, ai, ai+1}, so the matrix form of this system is a band matrix that has nonzero elements
on the main diagonal, the first diagonal below this, and the first diagonal above the main
diagonal only (see below).

2.18. (Cont’d): Now we have a linear system of (n−2) equations (as i ∈ {1, . . . , n−2})
in the n unknowns {ai}n−1

i=0 . We must add two boundary conditions for the system to be
solvable (so n equations for n unknowns), which correspond to the first and last row in the
tridiagonal matrix:

t0a0 + t1a1 = r0

t2an−2 + t3an−1 = rn−1

where t0, t1, t2, t3, r0, rn−1 are constraints to be chosen, depending on the desired boundary
conditions. With these two conditions added, we obtain the following n×n tridiagonal linear
system Ta = r (where all empty entries are 0):

t0 t1
h1
6

h1+h2
3

h2
6

h2
6

h2+h3
3

h3
6

.
hn−2

6
hn−2+hn−1

3
hn−1

6

t2 t3




a0

a1

a2
...

an−1

 =


r0

r1

r2
...

rn−1


2.19. (Cont’d): Let us now apply the second derivative conditions. We get

p′′i (xi+1) = p′′i+1 (xi+1) =⇒ ai
hi
hi

= ai
hi+1

hi+1

=⇒ ai = ai,

In other words, one finds that the equation (2.1) has the very special property that

p′′i (xi+1) = p′′i+1(xi+1) i = 1, . . . , n− 2.

Thus, the continuity of the second derivative of S(x) at each interior breakpoint is assured
by this special form.

12

6. Cubic Spline Interpolation

2.20. (Cont’d): Let us demonstrate the last step of computing t0, t1, t2, t3, r0, rn−1 by
assuming we want a natural cubic spline, that is, the boundary conditions are given by

p′′1(x1) = 0 = p′′n−1(xn).

Thus,

a0
h1

h1

= 0 = an−1
hn−1

hn−1

= 0 =⇒ a0 = an−1 = 0.

It remains to find constants to satisfy

r0 = a1t1

rn−1 = an−2t2

The key is that we have to make sure T has no zero-row. One possible choice is

t0 = 1, t1 = 0, t2 = 0, t3 = 1, r0 = 0, rn−1 = 0.

This concludes our derivation of the matrix T.

2.21. Note: Advantages of using this formulation:

• S ′′(x) is continuous by design, so those constraints do not factor into the problem.

• Many of the equations are largely decoupled, so the b’s and c’s are eas to compute once
you know the a’s.

• The system involving the a’s is tridiagonal. In general, an n × n system takes O(n3)
floating-point operations to solve while a tridiagonal system only requires O(n).

In other words, this formulation is much easier and faster to compute.

13

Chapter 2. Interpolation

Section 7. Bezier Curves

2.22. A Bezier curve is a parametric curve that uses the Bernstein polynomials as a
basis. They are designed to shape a smooth curve influenced by the control points.

2.23. Definition: The Bernstein polynomials of degree N are defined by

Bi,N(t) =

(
N

i

)
ti(1− t)N−i, i = 0, 1, . . . , N.

2.24. Example: When N = 3, we have

B0,3 = (1− t)3, B1,3(t) = 3t(1− t)2, B2,3(t) = 3t2(1− t), B3,3(t) = t3.

2.25. Proposition: Any polynomial of degree N can be written as a linear combination
of the Bi,N(t) polynomials.

2.26. Definition: A Bezier curve for the points (x0, y0), . . . , (xn, yn) is given by

P (t) =
N∑
i=0

Bi,N(t)(xi, yi).

In terms of the x and y-coordinates, we have

x(t) =
N∑
i=0

xiBi,N(t), y(t) =
N∑
i=0

yiBi,N(t)

2.27. Proposition: Properties of Bezier Curves:

• Endpoints interpolate:

P (0) = (x0, y0)

P (1) = (xn, yn)

• Derivative at endpoints:

P ′(0) = N (x1 − x0, y1 − y0)

P ′(1) = N (xn − xn−1, yn − yn−1)

• The Bezier curve lies in the convex hull of its set of control points.

2.28. Note: Hence, for a set of points (x0, y0), . . . , (xn, yn)

• The Bezier curve passes through (x0, y0) and (xn, yn).

• The Bezier curve is tangent to the curve produced.

14

Chapter 3. Ordinary Differential Equations

Section 8. Motivation

3.1. Let Pt denote the population (in thousands) at time t (in years) and suppose the
following two factors affect Pt:

• immigration: I persons/year;

• net birth rate: r persons/(persons-year);1

We can model the change from time t to time t+ τ as

Pt+τ ≈ Pt + rPtτ + Iτ (3.1)

3.2. (Cont’d): Let us pick a fixed interval of years, h, and model the population evolu-
tion as a sequence {p(n), n = 0, 1, 2, . . .}, where p(n) is the model’s estimate of Pt0+nh. Given
the initial population of p(0) = Pt0 , we can compute p(n+1) from p(n) using

p(n+1) = (1 + rh)p(n) + Ih. (3.2)

Let α = 1 + rh, we can rewrite (3.2) as

p(n+1) = αp(n) + Ih

= α
(
αp(n−1) + Ih

)
+ Ih

= α2
(
αp(n−2) + Ih

)
+ (α + 1)Ih

= · · ·

Continuing this process, we eventually get down to p(0), so we can write

p(k) = αkp(0) +
αk − 1

α− 1
Ih

= αk
(
p(0) +

Ih

α− 1

)
− Ih

α− 1

= (1 + rh)k
(
p(0) +

I

r

)
− I

r
.

• If r > 0, then p(k) k→∞−→ ∞ and the model predicts an unlimited population growth.

• If r < 0∧ rh ≥ −1 then p(k) k→∞−→ −I/r and the model predicts a stable, finite population.

• If r < 0 and rh < −1 then the contribution of (1 + rh)p(n) to p(n+1) is negative, a model
prediction that doesn’t make sense. This is because h is too large for this negative r value.

1Intuitively, the number of people coming in is constant, while the net birth rate (births minus deaths)
depends on the size of population. That’s why r has the funny denominator in their units.

15

Chapter 3. Ordinary Differential Equations

3.3. Note: Let us rewrite (8.1) as

1

τ
(Pt+τ − Pt) ∼= rPt + I.

If we introduce a continuous function of t, p(t), as a mathematical model for the population
at time t then, letting τ → 0, we see that p(t) must satisfy the equation

dp(t)

dt
= rp(t) + I (3.3)

This is known as an ordinary differential equation. It is ordinary as the DE does not
contain any partial derivatives. The solution to (3.3), assuming p(t0) = p(0), is given by

p(t) =

(
p0 +

I

r

)
er(t−t0) − I

r
. (3.4)

Observe that (3.4) can be derived from (3.2) by letting h→ 0. Let us formalize these notions.

3.4. Definition: A general system of m ODEs consists of:

• Anm-vector valued-function, f(t, z), of 1+m variables (t and z = z(t) = [z1(t), . . . , zm(t)]),
sometimes referred to as the system dynamics function.

f(t, z) =

 f1 (t, z1, z2, . . . , zm)
...

fm (t, z1, z2, . . . , zm)


The input variable t is the independent variable, while the input vector z represents
the current state of the system. From now on, we will simply write f(t, z) = f(t, z).

• An m×m matrix M . We will mostly assume that M is the identity matrix in CS370.

A solution of the general first order system determined by f(t, z) is an M -vector valued
function of time, y(t), that satisfies

M
dy(t)

dt
= f(t, y(t))

over some interval of time, t0 ≤ t ≤ tfinal.

3.5. Remark: The dynamics function f takes as input z, the m-vector of state variables.
Assuming that M = Im, the function f outputs an m-vector corresponding to the derivatives
of these state variables, all listed in the same order as the input z. So, the dynamic function
f is simply a way to calculate the RHS for the system of ODEs.

3.6. Definition: An initial value problem (IVP) for a system of this form specifies
a starting time, t0, and a starting state, us. The solution of the IVP is an m-vector valued
function, u(t), that satisfies this system and the initial condition u(t0) = us.

3.7. Example: Population model: m = 1, M = I, f(t, z) = rz + I and some given z0.

16

8. Motivation

3.8. Example: Suppose we want to simulate the path of a golf ball in a (x, y)-coordiante
system. The ball starts at (x0, y0) = (0, 0). At time t = 0, we hit the ball with an initial
velocity (Vx, Vy) ∈ R2

>0. Then we can model the trajectory of the ball (x(t), y(t)) by DEs

dx(t)

dt
= Vx,

d2y(t)

dt2
= −g.

To convert this second-order DE to first order, let us introduce new variables and equations.
Let z1 = x, z2 = y, and z3 = dy

dt
= dz2

dt
. Then we havez1

z2

z3

 =

 x
y
dz2
dt

 , f(t, z) =
d

dt

z1

z2

z3

 =

Vxz3

−g

 , z0 =

 0
0
Vy.

 .
It is worth mentioning that the initial state of z3 by definition corresponds to the initial
velocity in the y-direction.

3.9. Example: Suppose there is a target and a pursuer, the latter moving in such a
manner that its direction of motion is always towards the target. Represent the trajectory
of the target by T (t) = (xT (t), yT (t), zT (t)) in 3D with parameter t being the time. Let
P (t) = (xP (t), yP (t), zP (t)) be the unknown parametric curve of the trajectory of the pursuer.
At any time t, the (normalized) direction of the pursuer is given by

xT − xP
‖xT − xP‖

=
(xT − xP , yT − yP , zT − zP)√

(xT − xP)2 + (yT − yP)2 + (zT − zP)2
.

Denote the speed (constant, the length of the velocity vector) of the pursuer by sP , we can
compute the velocity of the pursuer in each of the axis:

dxP (t)

dt
= sP

xT − xP
‖xT − xP‖

dyP (t)

dt
= sP

yT − yP
‖xT − xP‖

dzP (t)

dt
= sP

zT − zP
‖xT − xP‖

In standard form, we have m = 3,M = I, andz1

z2

z3

 =

xPyP
zP

 , f(t, z) =
sP

‖xT − xP‖

xT − xPyT − yP
zT − zP

 , z0 =

0
0
0

 .
The initial state is (0, 0, 0) as we assume the pursuer starts at the origin.

3.10. Definition: A terminal event occurs when something happens in the simulation
that is not incorporated in the dynamics model.

3.11. Example: The goal ball hits the ground or barrier; the pursuer catches the target.

17

Chapter 3. Ordinary Differential Equations

Section 9. Euler’s Methods

3.12. Note: Most DEs don’t have analytical solutions, so we approximate the solutions
numerically. That is, we choose a set of times t0 < t1 < · · · < tN at which we estimate the
value of the solutions y0, y1, . . . , yN . The most common class of methods for determining a
numerical solution for a first order initial value problem are called time stepping methods.
A time step is the interval hn = tn+1−tn which is determined by the method. Time stepping
methods carry a candidate size hcand for the next time step which may be revised during
each time step. The general form is given by:

1. Initialize y0, t0, hcand, n = 0

2. Repeat:

(a) Compute yn+1 and hn using data tn, yn, h
cand and f(t, z).

(b) tn+1 ← tn + hn.

(c) Recompute hcand.

(d) n← n+ 1.

3.13. Note: Suppose we have the IVP

y′(t) = f(t, y(t)), y(t0) = y0

and we assume that we have a given set of t points t0 < t1 < · · · < tN with our problem
being to find the yi.

The Forward Euler method uses slope as an approximation to the derivative and
then develops a recursive scheme for determining the yn values. In particular, for each
n = 0, . . . , N − 1 we make use of the approximation

y(tn+1)− y(tn)

tn+1 − tn
≈ y′(tn) = f(tn, y(tn)).

Rearranging the term and replace ≈ with =, we get Euler’s method:

y0 = y(t0), yn+1 = yn + f(tn, yn)(tn+1 − tn), n = 0, . . . , N − 1.

18

9. Euler’s Methods

3.14. Example: Suppose we are given the IVP y′ = y and y(0) = 1. The true solution
is y(t) = et. We can solve this numerically with Euler’s method. Consider ht = 1 so that
t = 0, 1, 2, 3, 4. We can set up a table and approximate the solution:

t y dy
dt

0 1
1
2
3

→

t y dy
dt

0 1 1
1
2
3

→

t y dy
dt

0 1 1
1 2
2
3

→ · · · →

t y dy
dt

0 1 1
1 2 2
2 4 4
3 8 8

→ · · ·

The leftmost table is the starting point. Since dy/dt = y′(t) = y, we see that dy/dx at (0, 1)
is 1. This gives us the second table. Now for the next row, y(1) = y(0)+ dy

dt
·ht = 1+1 ·1 = 2.

This gives us the third table. Continuing like this, we eventually fill the rest of the entries.

3.15. Definition: Let us denote the true solution through (xn, yn) as ŷn(x). The local
error is defined as the difference between our prediction at the current step and the true
value, assuming all previous steps are correct:

`n+1 = |ŷn(xn+1)− yn+1|

The global error is defined to be the difference between our prediction at the current step
and the actual true solution:

εn+1 = |ŷ0(xn+1)− yn+1|.

3.16. Example: In the given figure, the local error `2 is determined by the difference
between (x2, y2), our prediction, and ŷ1(x2), the true solution through (x1, y1). It can be
viewed as a “shifted” version of the true solution. This local error intuitively measures the
error we had at the current step. On the other hand, the global error ε2 is the difference
between our prediction (x2, y2) and the real value ŷ0(x2).

3.17. Note: It can be shown that the local error of Euler’s method is O(h2). To integrate
a solution through a fixed domain of length c, the number of steps of length h would be
N = c/h, which is inversely proportional to h. Thus, the global error for Euler’s emthod is
O(N · h2) = O(h).

19

Chapter 3. Ordinary Differential Equations

Section 10. SciPy’s ODE Suite

3.18. Python’s SciPy module has a built-in ODE solver, scipy.solve ivp. It’s wrapper
for various numerical ODE solvers.

3.19. To set up the IVP in standard form:

1. Create the dynamics function: simple de(t, z).
2. Set the initial state: z0 = 1.
3. Choose start and end times: tspan=[0, 1].
4. Call the ODE solver: sol = solve ivp(simple de, tspan, z0).
5. Interpret output: plot(sol.t, sol.y[0]) or plot(sol.y[0], sol.y[1]), etc.

3.20. Example: Consider dy
dt

= t− y with y(0) = 1. Then we can do

1 def simple_de(t, y):

2 return t - y

3 sol = solve_ivp(simple_de, [0, 3], 1)

4 plt.plot(sol.t, sol.y[0])

3.21. What if your dynamics function has more than just 2 parameters?

1 def simple_golf(t, z):

2 '''

3 z[0] = x(t), z[1] = y(t), z[2] = y'(t)

4 '''

5 return [Vx, z[2], -9.81] # Vx is defined globally (hardcoded)

How can we pass Vx through as a parameter, i.e., changing the signature to simple golf2(t,

z, Vx)? The answer is to create a wrapper function that sets those values, then pass this
new wrapper function to the ODE solver.

1 Vx = 30.

2 fun = lambda t, x: simple_golf2(t, x, Vx)

3 sol = solve_ivp(fun, tspan, y0)

Events and Options in SciPy’s ODE Suite

3.22. Before calling the ODE solver, you might need to set up some of the options that
govern how the solver behaves, e.g., events, error tolerances, step sizes, output spacing. These
options are set in the call to the solver. For example,

1 # To specify the maximum step size

2 sol = solve_ivp(simple_golf, tspan, y0, max_step=0.5)

3

4 # To specify an event function

5 sol = solve_ivp(fun, tspan, y0, events=my_event)

20

11. Modified Euler’s Method

Section 11. Modified Euler’s Method

3.23. Note (Modified Euler): Let hn denote the step size and f(t, y) denote the DE.
The next prediction yn+1 and the local error using Euler’s method are given by

yn+1 = yn + hnf(tn, yn)

`n+1 = |ŷn(tn+1)− yn+1|

We here introduce modified Euler’s method, also known as improved Euler and 2nd order
Runge-Kutta, which gives more accurate results.

1. Start with an Euler step. Define f̄1 = f(tn, yn).

yEn+1 = yn + hnf(tn, yn).

2. Evaluate f at the new point, i.e., get derivatives at (tn+1, y
E
n+1):

f̄2 = f(tn+1, y
E
n+1).

3. Use the average of the two slopes

yMn+1 = yn + hn
f̄1 + f̄2

2
.

The modified Euler is a 2nd-order method with local error O(h3) and global error O(h2).
We can estimate the local error of Euler’s Method using

`En+1 ≈ |yMn+1 − yEn+1|.

3.24. Note (Adaptive Time-Stepping): There is a tradeoff between step size and per-
formance. We can use our estimate of the local error to choose our time steps. Pseudocode:

1. Compute yMn+1 and yEn+1 based on some chosen hn.

2. Compute `En+1.

3. If `En+1 is too big, cut step in half, i.e., replace hn with hn/2 and go back to (1).

4. If `En+1 is really small, take larger steps, i.e., replace hn+1 with 2hn for the next step.

3.25. Note: solve ivp allows you to set two bounds on the size of the local error.

• atol is the maximum allowable local error, i.e., if |yMn+1 − yEn+1| > atol then decrease
the step size and try again.

• rtol is the maximum allowable relative local error, i.e., if |yMn+1 − yEn+1|/|yMn+1| > rtol

then decrease the step size and try again.

You can set these tolerances in the call to solve ivp. Note that solve ivp will accept a
time step if it satisfies at least one of atol and rtol (i.e., it does NOT have to satisfy both).

21

Chapter 3. Ordinary Differential Equations

3.26. Note: The third order Runge-Kutta is given below:

f̄1 = f (tn, yn)

f̄2 = f

(
tn +

hn
3
, yn +

hn
3
f̄1

)
f̄3 = f

(
tn +

2hn
3
, yn +

2

3
hnf̄2

)
yn+1 = yn + hn

(
1

4
f̄1 + 0f̄2 +

3

4
f̄3

)
⇒ RK23

22

12. Numerical Stability

Section 12. Numerical Stability

3.27. Motivation: Numerical stability refers to how a malformed input affects the
execution of an algorithm. In a numerically stable algorithm, errors in the input lessen in
significance as the algorithm executes, having little effect on the final output. Consider

y′(t) = f(t, y(t)), y(0) = y0 + ε0,

an IVP with a slightly perturbed initial condition. Such a perturbation may be due to
round-off error, discretization error, or just data errors in the initial conditions. Suppose
we computed y(t1), y(t2), . . . , y(T) with no other errors introduced in the intermediate steps.
We are interested in the effect of this initial perturbation of the approximate solution at the
end point T . If the effect of this initial error becomes unbounded as the number of points
0 = t0, t1, . . . , tn = T is large (i.e., as n → ∞), then our algorithm is said to be unstable.
Otherwise, the algorithm is said to be stable.

3.28. (Cont’d): One way to test for the stability of an algorithm is by introducing
an error ε0 and observing if becomes amplified exponentially as n → ∞. Consider a test
equation

y′(t) = −λy(t), y(0) = y0, λ > 0.

The exactly solution is given by y(t) = y0e
−λt. Note the exact solution tends to 0 as t→∞

and it is positive if y0 is positive. A stable algorithm would give the same behavior even with
small initial perturbation introduced. Let’s see how Euler’s method with constant increments
h behaves with the IVP:

yn+1 = yn − λhyn = (1− λh)yn

= (1− λh)2yn−1

= · · · = (1− λh)n+1y0

Recall the exact solution of equation decays to 0 as t → ∞ (n → ∞). We obtain the same
behavior only if

|1− λh| ≤ 1 ⇐⇒ h <
2

λ
.

since in this case (1− λh)n → 0 as n→∞. On the other hand, if h > 2
λ
, then

(1− λh)n
n→∞−→ ∞.

In this case, the algorithm will “blow up”. In this case, we say that Euler’s method is
conditionally stable, that is, the method is stable only if h is sufficiently small.

3.29. Note: So far, we’ve only looked at “explicit” methods, as we have an explicit
formula to calculate the next point based on previous points. An “implicit” method yields
an equation involving the next point, as well as the previous point, but must be solved to
find out what the next point is. We here introduced the trapezoid method.

23

Chapter 3. Ordinary Differential Equations

3.30. (Cont’d): Given y′(x) = f(x, y). In order to find the relationship between two
consecutive points, let us integrate both sides from xn to xn+1:∫ xn+1

xn

y′(x) dx =

∫ xn+1

xn

f(x, y(x)) dx.

If we know y(x), then ∫ xn+1

xn

y′(x) dx = y(x)

]xn+1

x=xn

= y(xn+1)− y(xn).

To How do we approximate
∫ xn+1

xn
f(x, y(x)) dx? Recall the integral represents the curve. We

can approximate this area by looking at the area of the trapezoid:∫ xn+1

xn

f(x, y(x)) dx ≈ 1

2
(f(xn, y(xn)) + f(xn+1, y(xn+1))) · h

=⇒ y(xn+1)− y(xn) =
h

2
(f(xn, y(xn)) + f(xn+1, y(xn+1))).

Since we don’t know the true y(xn) and y(xn+1), we can approximate them by

yn+1 = yn +
h

2
(f(xn, yn)) + f(xn+1, yn+1).

An important remark is to see that yn+1 appears on both sides. This was not the case in
Euler’s method. To find yn+1, you need to solve a (possibly non-linear) equation.

3.31. (Cont’d): The global error for the trapezoid method is O(h2), as opposed to O(h)
of Euler’s method. Also, implicit methods tend to be more numerically stable than explicit
methods. Consider y′ = λy, y(0) = 1, λ < 0. The exact solution is y(x) = eλt with behavior
limx→∞ y(x) = 0. Now observe

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1))

yn+1 = yn +
h

2
(λyn + λyn+1)

yn+1

(
1− hλ

2

)
= yn

(
1 +

hλ

2

)
yn+1 =

1 + hλ
2

1− hλ
2

yn.

Recall we want limn→∞ yn+1 = 0. Notice that

lim
n→∞

yn+1 = lim
n→∞

1 + hλ
2

1− hλ
2

yn = lim
n→∞

(
1 + hλ

2

1− hλ
2

)n

y0 = lim
n→∞

(
1 + hλ

2

1− hλ
2

)n

.

24

12. Numerical Stability

For this to go to 0, we need

−1 <
1 + hλ

2

1− hλ
2

< 1.

But this holds for any h. Thus, we can take larger time steps and still remain numerically
stable. We say it’s unconditionally stable.

3.32. Note:

• Stability of modified Euler: h <
2

|λ|
.

• Stability of RK4: h <
2785

|λ|
.

25

Chapter 4. Fourier Transform

Chapter 4. Fourier Transform

Section 13. Review: Complex Numbers

4.1. Note: We start with some basic facts. Let a, b ∈ R.

• z = a+ bi, we call a = <(z) the real part and b = =(z) the imaginary part.

• z̄ = a− bi, known as the complex conjugate of z.

• z1 + z2 = (a1 + a2) + (b1 + b2)i.

• z1 · z2 = (a1a2 − b1b2) + (a1b2 + a2b1)i.

4.2. Definition: The polar form of a complex number z = a+ bi ∈ C is

z = r(cos(θ) + i sin(θ))

where r =
√
a2 + b2 = |z| is the modulus of z and θ = arg z is called the argument of z

and can be found by solving θ = arctan(b/a).

4.3. Theorem (Euler’s Identity): eiθ = cos θ + i sin θ.

Proof. Define ez as the infinite series
∑∞

n=0
zn

n!
. Then

eiθ = 1 + iθ +
θ2i2

2!
+
θ3i3

3!
+
θ4i4

4!
+
θ5i5

5!
+ · · · .

Now recall the Taylor expansion of cos(θ) and sin(θ):

cos(θ) = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

sin(θ) = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

i sin(θ) = iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

=⇒ cos(θ)+i sin(θ) = 1+iθ−θ
2

2!
−iθ

3

3!
+
θ4

4!
+
iθ5

5!
− · · · = eiθ.

4.4. Corollary: cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Proof. Using the identity above, we see that

eiθ + e−iθ = cos(θ) + i sin(θ)− cos(θ)− i sin(θ) = 2 cos θ

eiθ − e−iθ = cos(θ) + i sin(θ)− cos(θ) + i sin(θ) = 2i sin θ.

The result follows immediately.

26

13. Review: Complex Numbers

4.5. Definition: The exponential form of z = r(cos(θ) + i sin(θ)) ∈ C is

z = reiθ

where r = |z| is the modulus and θ = arg z is the argument.

4.6. Note: Operations in exponential form:

• Given z1 = r1e
iθ1 and z2 = r2e

−θ2 , then z1z2 =
(
rie

iθ1
) (
r2e

iθ2
)

= r1r2e
i(θ1+θ2).

• Given z = reiθ, its complex conjugate is given by z̄ = reiθ = re−iθ.

4.7. Definition: Let u,v ∈ Cn. The standard inner product on C is given by

〈u,v〉 =
n−1∑
i=0

uiv̄i.

4.8. Note: Let u,v ∈ Cn and c ∈ C.

• 〈u,v〉 = 〈v,u〉.
• 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 and 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉.
• 〈cu,v〉 = c 〈u,v〉 and 〈u, cv〉 = c̄ 〈u,v〉.
• 〈u,u〉 = ‖u‖ ≥ 0 ∈ R and 〈u,u〉 = ‖u‖ = 0 ⇐⇒ u = 0.

4.9. Definition: A root of unity is any complex number that yields 1 when raised to
some n ∈ Z+. The Nth root of unity, where n is a positive integer, is a number

WN = exp

(
2πi

N

)
= cos

2π

N
+ i sin

2π

N
∈ C,

which satisfies

WN
N = exp

(
2πi

N

)N
= e2πi = 1.

4.10. Example: In general, if W is an Nth root of unity, then so is W . For example,
exp(πi/4) is an 8th root of unity as exp(πi/4)8 = exp(2πi) = 1. It’s easy to verify that
exp(−πi/4) is also an 8th root of unity.

4.11. Example: Graphically speaking, the roots are evenly-spaced points on the unit
circle (of the complex plane). We again consider the 8th roots of unity:

27

Chapter 4. Fourier Transform

4.12. Definition (Vector of Roots): Consider the vector defined by

WN(n) =
(

1,W n
N ,W

2n
N , . . . ,W

(N−1)n
N

)
=

(
exp

(
2πi

N

)
, exp

(
2πi(n)

N

)
, exp

(
2πi(2n)

N

)
, . . . , exp

(
2πi((N − 1)n)

N

))
.

This is a vector of length N where the kth entry of this vector is given by

[WN(n)]k = W nk
N = exp

(
2πikn

N

)
.

4.13. Proposition (Orthogonality of W (n) and W (m)):

〈WN(n),WN(m)〉 =

{
0 n 6= m

N n = m

Proof. Observe that

〈WN(n),WN(m)〉 =
N−1∑
k=0

[WN(n)]k[WN(m)]k

=
N−1∑
k=0

exp

(
2πink

N

)
exp

(
2πimk

N

)

=
N−1∑
k=0

exp

(
2πi(n−m)

N

)k
.

Using the formula for finite geometric series, we see that

〈WN(n),WN(m)〉 =

{
0 n 6= m

N n = m

It follows that WN(n) and WN(m) are orthogonal.

28

14. Fourier Series

Section 14. Fourier Series

4.14. A Fourier series is a representation of a signal as a linear combination of waves
of varying frequencies. The Fourier coefficients a’s, b’s (or c’s) gives the amplitude of each
frequency. The Fourier transformation is a frequency decomposition of a signal.

4.15. Motivation: Consider the trigonometric functions of x,

∀k ∈ Z : sin
2πkx

N
, cos

2πkx

N
.

They repeat when x increases by N/k, or equivalently, they repeat k times in the range
0 ≤ x ≤ N . In the examples below, observe that the left curve repeated once in the range
[0, 4] and the right curve repeated 3 times in the range [0, 4]. Equivalently, it takes 4/1 = 4
for the left curve to repeat itself while it takes 4/3 for the right curve to repeat itself.

Figure 4.1: Left: sin
2πx

4
. Right: cos

2π3x

4
.

4.16. Note: Suppose f is a “nice” N -periodic function. Then there exist coefficients
ak, bk such that

f(x) = a0 +
∞∑
k=1

[
ak cos

2πkx

N
+ bk sin

2πkx

N

]
.

This is known as a Fourier Series. In practice, we approximate f with a truncated version:

f(x) = a0 +
m∑
k=1

[
ak cos

2πkx

N
+ bk sin

2πkx

N

]
.

4.17. Note: Instead of treating a’s and b’s separately, we can use a more sophisticated
and compact complex notation as follows:

f(x) =
m∑

k=−m

ck

[
cos

2πkx

N
+ i sin

2πkx

N

]
where ck ∈ C. Notice the sum is now from −m to m. This is twice as many parameters,
because this complex version can approximate complex-valued functions. We omit the proof
that shows this complex form is equivalent to the one given above.

29

Chapter 4. Fourier Transform

Section 15. Discrete Fourier Transformation

4.18. Motivation: Consider the sampled signal

{fn ∈ C | n = 0, . . . , N1},

which can be thought of as an N -dimensional vector f . Our goal is to represent f as a linear
combination of our Fourier basis vectors

WN = exp

(
2πi

N

)
.

4.19. Note: Here is the main result of this section:

Figure 4.2: Time-Intensity vs Frequency-Intensity.

(Space/Time Domain) fn
DFT−−−−⇀↽−−−−
IDFT

Fk (Frequency Domain)

Discrete Fourier Transform (DFT):

From a time-amplitude plot to a frequency-amplitude plot:

Fk =
〈
f,WN(k)

〉
=

1

N

N−1∑
n=0

fnW
nk

N , k = 0, 1, . . . , N − 1.

F measures the contribution of each frequency (x-axis) to the overall signal (y-axis).

Inverse Discrete Fourier Transform (IDFT):

From a frequency-amplitude plot to a time-amplitude plot:

fn =
1

N

〈
F,WN(n)

〉
=

1

N

N−1∑
k=0

FkW
nk
N , n = 0, 1, . . . , N − 1.

f measures the signal at each time or location (x-axis).

30

15. Discrete Fourier Transformation

4.20. Note (Matrix Form of DFT):

Fk =
N−1∑
n=0

fnW
nk
, k = 0, 1, . . . , N − 1.

Writing out all terms:

F0 = f0W
0·0

+ f1W
1·0

+ · · ·+ fN−1W
(N−1)·0

F1 = f0W
0·1

+ f1W
1·1

+ · · ·+ fN−1W
(N−1)·1

...

FN−1 = f0W
0·(N−1)

+ f1W
1·(N−1)

+ · · ·+ fN−1W
(N−1)·(N−1)

Using Matrix-Vector notation:

F0

F1

F2

F3
...

FN−1


=



1 1 1 · · · 1

1 W
1

W
2 · · · W

N−1

1 W
2

W
4 · · · W

2(N−1)

1 W
3

W
6 · · · W

3(N−1)

...
...

...
. . .

...

1 W
N−1

W
2(N−1) · · · W

(N−1)(N−1)





f0

f1

f2

f3
...

fN−1


.

Hence, we get

F = Mf

where M ∈ CN×N is symmetric.

4.21. (Cont’d): Let us now derive the formula for M−1. Recall that

WN(n) =
[
W

0k

N W
1k

N W
2k

N · · · W
(N−1)k

N

]T
.

Thus, we can write

M = MT =

[
WN(0) WN(1) · · · WN(N − 1)

]
=



WN(0)T

WN(1)T

...

WN(N − 1)T



31

Chapter 4. Fourier Transform

Using some algebra, we get

M
T
M =



WN(0)T

WN(1)T

...

WN(N − 1)T


[
WN(0) WN(1) · · · WN(N − 1)

]

=


〈WN(0),WN(0)〉 〈WN(0),WN(1)〉 · · ·

〈WN(1),WN(0)〉 〈WN(1),WN(1)〉 · · ·

...
...

. . .

 =


N 0 · · · 0
0 N · · · 0
...

...
. . .

...
0 0 · · · N

 = NI

Thus, the inverse of M is given by

M
T
M = NI =⇒

(
1

N
M

)
M = I =⇒ M−1 =

1

N
M.

4.22. Note (IDFT): Given the Fourier coefficients {Fk ∈ C}N−1
k=0 , the IDFT gives the

signal composed of the frequencies with coefficients Fk. RecallF = Mf . This gives

f = M−1F =
1

N
MF.

This is the inverse DFT (IDFT), which takes Fourier coefficients and converts them to the
spatial or temporal domain. Thus, the IDFT can be written as

f0

f1

f2

f3
...

fN−1


=

1

N



1 1 1 · · · 1
1 W 1 W 2 · · · WN−1

1 W 2 W 4 · · · W 2(N−1)

1 W 3 W 6 · · · W 3(N−1)

...
...

...
. . .

...
1 WN−1 W 2(N−1) · · · W (N−1)(N−1)





F0

F1

F2

F3
...

FN−1


.

and in summation notation, we have

fn =
1

N

N−1∑
k=0

FkW
nk
N , n = 0, 1, . . . , N − 1.

32

16. Properties of the Fourier Transform

Section 16. Properties of the Fourier Transform

4.23. Motivation: By the nature of the DFT, both f and F are periodic. The following
proposition tells us that we only store and manipulate one period.

4.24. Proposition: F−k = FN−k.

Proof. First recall that exp(−2πin) = [exp(−2πi)]n = 1n = 1, which is used on Line 4:

FN−k =
N−1∑
n=0

fnW
n(N−k)

N

=
N−1∑
n=0

fnW
nN

N W
−kn
N =

N−1∑
n=0

fn exp

(
−2πinN

N

)
W

n(−k)

N =
N−1∑
n=0

fnW
n(−k)

N = F−k.

4.25. Remark: When looking at the Fourier coefficients, we can look at any single
period, e.g.,you can look at [0, N − 1], or you can use the period shifted by N/2, i.e.,
[−N/2, N/2−1]. The functions fftshift and ifftshift in NumPy do this transformation
for you. In particular, they shift the interval so that the zero frequency is in the middle.

4.26. Proposition: If f is real-valued, i.e., fn = fn, then FN−k = F k. Consequently,
|FN−k| = |F−k| = |F k|.

Proof.

FN−k =
N−1∑
n=0

fnW
n(N−k)

N =
N−1∑
n=0

fnW
nN

N W
(−nk)

N =
N−1∑
n=0

fnW
nk
N =

N−1∑
n=0

fnW
nk

N = F k

33

Chapter 4. Fourier Transform

Section 17. 2-Dimensional DFT

4.27. Note: Consider a 2D vector (e.g., an image)

fnj, 0 ≤ n ≤ N − 1, 0 ≤ j ≤M − 1.

The 2D DFT (from time/space domain to frequency domain) is defined as

Fk` =
N−1∑
n=0

M−1∑
j=0

fnj ·W
nk

N ·W
j`

M .

The 2D IDFT (from frequency domain to time/space domain) is defined as

fnj =
1

NM

N−1∑
k=0

M−1∑
`=0

Fk` ·W nk
N ·W

j`
M .

4.28. Note (Computing 2D DFT Using 1D DFT): Observe that

Fk` =
N−1∑
n=0

M−1∑
j=0

fnjW
nk

N W
j`

M

=
N−1∑
n=0

W
nk

N

[
M−1∑
j=0

fnjW
j`

M

]

=:
N−1∑
n=0

W
nk

N ·Hn`

We can view Hn` with n fixed as a signal itself and we can apply a 1D DFT t it. In particular,
Hn` is the DFT of nth row of f (for n = 0, 1, . . . , N − 1). Therefore, we can first compute
N 1D DFTs and then combine them by computing

Fk` =
N−1∑
n=0

Hn` ·W
nk

N

where ` is fixed and k = 0, 1, . . . ,M − 1. This is the DFT of the `th column of H, so we
need M 1D DFTs.

34

18. DFT and Convolution

Section 18. DFT and Convolution

4.29. Definition: A convolution is a sum/integral of the form

(f ∗ g)a =
N−1∑
n=0

fnga−n = f0ga + f1ga−1 + · · ·+ fN−2ga−N+2 + fN−1ga−N+1.

4.30. Note: Just for fun, let’s take the DFT of the (f ∗ g)a:

DFT(f ∗ g)k =
N−1∑
a=0

(f ∗ g)aW
ak

=
N−1∑
a=0

[
N−1∑
n=0

fnga−n

]
W

ak

N ×W
nk

N W
−nk
N︸ ︷︷ ︸

=1

=
N−1∑
n=0

[
fnW

nk

N

N−1∑
a=0

ga−nW
(a−n)k

N

]
.

Now change of variables, setting b = a− n so that a = b+ n.

DFT(f ∗ g)k = · · ·

=
N−1∑
n=0

[
fnW

nk

N

N−1−n∑
k=−n

gbW
bk

N

]

=

[
N−1∑
n=0

fnW
nk

N

][
N−1∑
b=0

gbW
bk

N

]
= DFT(f)k ·DFT(g)k = Fk ·Gk.

where Fk and Gk are the kth Fourier coefficient of f and g. This tell us that can evaluate a
convolution using Fourier transform:

DFT(f ∗ g)k = Fk ·Gk

(f ∗ g) = IDFT(DFT(f)�DFT(g))

Note � denotes the Hadamard product (component-wise multiplication).

35

Chapter 4. Fourier Transform

Section 19. Fast Fourier Transform

4.31. Motivation: In this section we show how to compute the N Fourier coefficients
F0, . . . , FN−1 in O (N logN) (vs O(N2) naively) using a divide and conquer approach.

4.32. Note: WLOG, assume that N = 2m for some m. Otherwise, pad the input signal
with zeros (which does not effect the sums). Start by splitting the sums into two parts:

Fk =
1

N

N∑
n=0

fnW
nk

N =
1

N

N/2−1∑
n=0

fnW
nk

N +
1

N

N−1∑
n=N/2

fnW
nk

N

Letting m = n−N/2 ⇐⇒ n = m+N/2, these summations can be written

Fk =
1

N

N/2−1∑
n=0

fnW
nk

N +
1

N

N/2−1∑
m=0

fm+N
2
W

(m+N
2)k

N

=
1

N

N/2−1∑
n=0

fnW
nk

N +
1

N

N/2−1∑
n=0

fn+N
2
W

nk

N W
N
2
k

N renaming m 7→ n

=
1

N

N/2−1∑
n=0

(
fn +W

N
2
k

N fn+N
2

)
W

nk

N

We know that

W
N
2
k

N = exp

{
−2niNk

2N

}
= exp{−ink} = (−1)k.

Thus, for even values of k, this equation becomes

F2k =
1

N

N/2−1∑
n=0

(
fn + (−1)2kfn+N

2

)
W

nk

N

=
1

N

N/2−1∑
n=0

(
fn + fn+N

2

)
W

2nk

N k = 0, . . . ,
N

2
− 1

while for odd values of k, the equation above becomes

F2k+1 =
1

N

N/2−1∑
n=0

(
fn + (−1)2k+1fn+N

2

)
W

nk

N

=
1

N

N/2−1∑
n=0

(
fn − fn+N

2

)
W

n(2k+1)

N

=
1

N

N/2−1∑
n=0

[(
fn − fn+N

2

)
W

n

N

]
W

2nk

N k = 0, . . . ,
N

2
− 1

36

19. Fast Fourier Transform

Now observe that

W
2nk

N = exp

{
−2πi2nk

N

}
= exp

{
−2ninj

N/2

}
= W

nk

N/2.

If we set

gn =
1

2

(
fn + fn+N

2

)
, hn =

1

2

(
fn − fn+N

2

)
W

N

n

for every n ∈ {0, 1, . . . , N/2− 1}, then the above equations become

F2k =
1

N/2

N/2−1∑
n=0

gnW
2nk

N = DFT(g,N/2)k

F2k+1 =
1

N/2

N/2−1∑
n=0

hnW
2nk

N = DFT(h,N/2)k

for k = 0, . . . , N
2
−1. Both of those summations look like new Fourier transforms themselves,

but of gn and hn instead of fn. We can represent this visually as

Figure 4.3: Divide and conquer.

Eventually, you get a DFT of a vector of length 1 and for any c ∈ C, DFT(c) = c. This
brings us the following recursive algorithm:

Function {Fk} = FFT({fn}, N)

If N = 1

F0 = f0

Else

For n = 0 to N/2− 1:

gn = fn + fn+N/2

hn = (fn − fn+N/2)W
n

N

G = FFT(g,N/2)

H = FFT(h,N/2)

For k = 0 to N/2− 1:

F2k = Gk

F2k+1 = Hk

37

Chapter 4. Fourier Transform

4.33. Note: The final topic before concluding this chapter is the FFT Butterfly Di-
agram. Recall that each step of the FFT computation requires fn and fn+N/2.

4.34. Example (Decomposition Stage 1): Suppose we start with f = [5, 4, 1, 3]. Using
the rules

gn =
1

2

(
fn + fn+N

2

)
, hn =

1

2

(
fn − fn+N

2

)
W

N

n ,

We have

g0 = f0 + f0+2 = 5 + 1 = 6

g1 = f1 + f1+2 = 4 + 3 = 7

h0 = (f0 − f0+2)W
0

4 = (f0 − f2) · 1 = 5− 1 = 4

h1 = (f1 + f1+2)W
1

4 = (f1 − f3) · i = (4− 3) · i = i

4.35. Example (Decomposition Stage 2): Similar to above, we have

gg = g0 + g1 = 6 + 7 = 13

hg = (g0 − g1)W
0

2 = 6− 7 = −1

gh = h0 + h1 = 4− i

hh = (h0 − h1)W
0

2 = 4 + i

In summary, we decomposed f into |f | vectors. We now wish to combine the results.

4.36. Example (Recombination Stage 1):

[13]

[1]

[4− i]
[4 + i]

even→
odd→
even→
odd→

[
13

−1

]
[

4− i
4 + i

] →


13

4− i
−1

4 + i


Note the last transformation corresponds to the flip of the indices as follows:

00
01
10
11

→


00
10
01
11



38

Chapter 5. Linear Algebra

Section 20. Linear Algebra Review

5.1. Definition: An eigenvector of Q is a non-zero vector that changes by a scalar
factor when that matrix is applied to it. The corresponding eigenvalue, often denoted by
λ, is the factor by which the eigenvector is scaled.

5.2. Note: By definition, any non-zero vector x is an eigenvector of Q iff Qx = λx.
Equivalently, x is an eigenvector iff

(λI −Q)x = 0.

For there to be a non-trivial solution (0 cannot be an eigenvector!), the matrix λI −Q has
to be singular, i.e., det(λI −Q) = 0. This determinant, which is a polynomial in λ, is called
the characteristic polynomial; its roots are the eigenvalues; the vectors x that solves
(λI −Q)x = 0 are the corresponding eigenvectors.

39

Chapter 5. Linear Algebra

Section 21. Motivation: Google Page Rank

5.3. Motivation: Naively, we can represent R, the set of web pages, with a DAG:

Gij =

{
1 if node j links to node i

0 otherwise

Consider, instead, a matrix P ∈ [0, 1]R×R given by

Pij =

{
1

outdeg(j)
if node j links to node i

0 otherwise

where outdeg(j) denotes the out-degree of j (number of children in the DAG). Then Pij can
be viewed as the probability of following a link to node i given that you are at node j, i.e.,

Pij = Pr(i | j).

(If you are familiar with DTMC from STAT-333, it’s easy to see that this P behaves like the
transpose of a transition matrix of a DTMC. We will explore this idea soon.)

5.4. (Cont’d): Instead of following a single surfer, we can track the progress of an
infinite number of surfers using the matrix P . Assuming all surfers starts at state X0 = 2,
i.e., the initial distribution is given by x = x(0) = (0, 1, 0, 0), then the distribution after k
clicks, Xk, can be represented by x(k) = P kx. Observe that all entries of P are non-negative
and each column of P sums up to 1. In other words, each column of P is a valid probability
distribution. (If you are familiar with DTMC from STAT-333, you should clearly see that we
are modelling this process using a DTMC. Compare and contrast µn = µP n with x(k) = P kx:
this difference is caused by the differences in definition of the transition matrix.)

5.5. (Cont’d): Two problems remain. First, what happens if a page has no outlinks?
In this case, we let the surfer teleports to another page at random. More precisely, let d be
an indicator (True if the state has no children) R-dimensional column vector such that

di =

{
1 deg(i) = 0

0 otherwise

and let e = [1, . . . , 1] be the R-dimensional column vector of ones. We can define a new
transition matrix P ′ to include the teleportation property as follows:

P ′ = P +
1

R
e · dT .

Note the outer product e ·dT gives a R×R matrix and we add a normalized version of this
matrix (normalized by a factor of 1/R) to the original transition matrix P .

5.6. (Cont’d): To address the issue of terminal branches (i.e., a closed subgraph, one
that with no out-arcs), we add a background randomness. More precisely, let α ∈ [0, 1]

40

21. Motivation: Google Page Rank

denote the probability where the surfer will follow a link from the current node, which
means it has (1−α) probability to randomly teleport to some other node in the graph. The
new transition matrix is thus given by

M = αP ′ + (1− α) · 1

R
e · eT .

Again, we can interpret Mij as the probability that the random surfer will move from j to i.

41

Chapter 5. Linear Algebra

Section 22. Markov Transition Matrices

5.7. Definition:

• A vector q is a probability vector if 0 ≤ qi ≤ 1 and
∑

i qi = 1.

• A matrix Q is a Markov matrix if 0 ≤ Qij ≤ 1 and
∑

iQij = 1 for all j.

5.8. Note: The Markov matrix defined above is the same as in STAT-333 but trans-
posed. Again from STAT-333, we see that multiplying a Markov matrix by a probability
vector yields another probability vector.

5.9. Motivation: Recall our goal was to rank a set of web pages based on their im-
portance. Suppose the surfer visits each page initially with equal probability, i.e., the initial
distribution of the DTMC is given by

p0 =
1

R
e.

Then the rank of page i is defined as

p∞ = lim
n→∞

Mnp0,

where the transition matrix

M = αP ′ + (1− α) · 1

R
e · eT

was defined in the previous section. Observe we have reduced the problem to finding a
stationary distribution p such that

p = Mp,

which will give us the rank of the pages. Equivalently, we wish to solve (I − M)p = 0.
We will spend the rest of this section showing that such stationary distribution p exists, or
equivalently, the sequence {p(n)}∞n=0 converges to some fixed p.

5.10. Note: Now it’s the time to read the linear algebra review section. It’s easy to see
that we are looking for an eigenvector p of M associated with an eigenvalue of 1:

(I −M)p = 0.

We start with some easy results.

5.11. Lemma: Every Markov matrix M has 1 as an eigenvalue.

Proof. For any square matrix M , we have (λI−M)T = (λI−MT) as I is symmetric. Thus,

det(λI −MT) = det((λI −M)T) = det(λI −M).

Thus, M and MT have the same eigenvalues. Since MTe = e, λ = 1 is an eigenvalue of MT .
It is thus an eigenvalue of M as well.

42

22. Markov Transition Matrices

5.12. Proposition: Every (possibly complex) eigenvalue λ of a Markov matrix M sat-
isfies |λ| ≤ 1. In other words, 1 is the largest eigenvalue of M .

Proof. Omitted.

5.13. Corollary: If all entries of M are strictly positive, then there is a unique eigen-
vector (up to a scaling factor) of M with |λ| = 1.

5.14. Note: By this corollary, there exists a vector p = p∞ such that p = Mp. We are
now ready to show that the limiting distribution of this DTMC is exactly this stationary
distribution.

5.15. Theorem: If M is a positive Markov matrix, then

lim
n→∞

Mnp0 = p∞

for any initial distribution p0.

Proof. With some assumptions, we can represent p0 using a basis of eigenvectors:

p0 = c1x1 +
R∑
i=2

cixi

where we order the eigenvalues by decreasing magnitude. This means that x1 is the unique
eigenvector associated with eigenvalue λ1 = 1. Applying M to both sides and using the fact
that {x1, . . . , xR} are the eigenvectors of M , we have

Mp0 = λ1c1x1 +
R∑
i=2

λicixi

...

(Mn)p0 = λn1c1x1 +
R∑
i=2

λni cixi.

Since λn1 = 1n → 1 and λni → 0 for all i (as their magnitudes are less than 1), we get

lim
n→∞

(M)np0 = c1x1 = p∞.

5.16. Note: Here’s the interpretation. No matter what initial distribution is given,
the DTMC eventually converges to the stationary distribution. The rate of convergence,
however, depends on the second-largest eigenvalue. If λ2 is close to 1, then the convergence
is slow, because the convergence results from waiting for the other eigen-terms to decay down
close to zero.

43

Chapter 5. Linear Algebra

5.17. Note: We now look at some implementation details. To find the importance for
each web page, p∞, we can start with some probability vector p0 and iterate, so that for
sufficiently large n,

Mnp0 ≈ p∞.

Recall that

M = αP ′ + (1− α)
1

R
· e · eT

= α

(
P +

1

R
· e · dT

)
+ (1− α)

1

R
· e · eT

Mp = α

(
P +

1

R
· e · dT

)
p + (1− α)

1

R
· e · eTp

Now eTp = 1Tp = 1; dTp is a scalar, which takes O(R) time to compute. Thus,

Mp = αPp +
α

R
e(dTp) +

1− α
R

e.

Since P is sparse, it can be stored and applied in O(R). Overall, the multiplication Mp
takes O(R) flops. This concludes the the section on MCs.

44

23. Solving Triangular Systems

Section 23. Solving Triangular Systems

5.18. Motivation: In the next few sections, we look at algorithms for efficiently solving
systems of linear equations. We start by looking at forward and backward substitution meth-
ods for solving triangular systems of linear equations (O(N2)), then Gaussian elimination
for general system of linear equations (O(N3)), and finally the LU decomposition for better
performance (O(N3)).

5.19. Definition: A square matrix is called lower triangular if all the entries above
the main diagonal are zero. A square matrix is called upper triangular if all the entries
below the main diagonal are zero.

5.20. Note (Back Substitution): We first discuss how to solve upper-triangular systems
using back substitution. Suppose Ux = z where U is an upper-triangular matrix.

u11 u12 · · · · · · u1N

0 u22 · · · · · · u2N
... 0

. . .
...

...
...

. . . 0 uN−1,N−1 uN−1,N

0 · · · · · · 0 uN,N




x1

x2
...

xN−1

xN

 =


z1

z2
...

zN−1

zN


Starting with the last row, we have

uN,NxN = zN =⇒ xN =
zN
uN,N

.

For xN−1 in the second-last row, we have

uN−1,N−1xN−1 + uN−1,NxN = zN−1 =⇒ xN−1 =
zN−1 − uN−1,NxN

uN−1,N−1

.

In general, the i-th row/equation is given by

ui,ixi + ui,i+1xi+1 + · · ·+ ui,NxN = zi =⇒ xi =
zi −

∑N
j=i+1 ui,jxj

ui,i
.

5.21. (Cont’d) (Complexity of Backward Substitution): For each i, the j-loop performs
2(N − i) flops (floating-point operations). Adding the final step of division, we need 2(N −
i) + 1 in total. Summing over i, we see that the total number of flops is given by

N∑
i=1

(2(N − i) + 1) ∈ O(N2).

45

Chapter 5. Linear Algebra

5.22. Note (Forward Substitution): A similar approach, forward substitution, can
be used for solving lower-triangular systems. Consider Lx = z where L is an N ×N lower-
triangular matrix:

l1,1 0 · · · 0 0
l2,1 l2,2 0 · · · 0
...

. 0
...

...
. lN−1,N−1 0

lN,1 · · · · · · lN,N−1 lN,N




x1

x2
...

xN−1

xN

 =


z1

z2
...

zN−1

zN


From the first row/equation, we have

l1,1x1 = z1 =⇒ x1 =
z1

l1,1
.

For x2 in the second row/equation, we have

l2,1x1 + l2,2x2 = z2 =⇒ x2 =
l2,1x1

l2,2
.

In general, for the i-th row/equation, we have

li,1x1 + · · ·+ li,ixi = zi =⇒ xi =
zi −

∑i−1
j=1 li,jxj

li,i
.

A similar complexity analysis shows that forward elimination requires O(N2) flops.

5.23. Note (Gaussian Elimination): To solve a system of linear equations Ax = b where
A is not necessarily triangular, one can use Gaussian elimination:

1. Form the augmented matrix.

2. Perform linear row operations to convert it to an upper triangular form.

3. Now use back substitution.

5.24. Example: Consider the system 1 1 2
−1 −2 3
3 −7 4

x1

x2

x3

 =
[
8 1 10

]
.

Step 1. Form the augmented matrix:

 1 1 2 8
−1 −2 3 1
3 −7 4 10

 .
Step 2. Perform linear row operations to obtain an upper-triangular form:

1 1 2 8
0 1 −5 −9
0 0 1 2

 .
Step 3. Perform back substitution and obtain (x1, x2, x3) = (3, 1, 2).

46

23. Solving Triangular Systems

5.25. Note: We conclude this section by discussing some technical details for imple-
menting Gaussian elimination. First, the high-level description of Gaussian elimination:

For i from 1 to N − 1:

Eliminate xi from rows i+ 1 to N.

How exactly do we eliminate xi from rows i+ 1 to N? Suppose in the ith stage of Gaussian
elimination we are given the matrix below and we wish to eliminate the aki entry:

X X X X
0 aii X X
0 0 X X
0 aki X X

 −→

X X X X
0 aii X X
0 0 X X
0 0 X ′ X ′


It’s easy to see that we would perform the following operation:

row k ← row k − aki
aii
· row i.

This gives the more explicit version of Gaussian elimination:

For i from 1 to N − 1:

For k from i+ 1 to N

mult ← aki/aii

For j from i+ 1 to N:

akj = akj − mult · aij
aki = 0

Additional comments:

• Outer for-loop: Perform the body for each row.

• Middle for-loop: Perform the body for each entry below the main diagonal.

• Define the multiplier by aki/aii. This is how we cancel out the target entry aki.

• Inner for-loop: Multiply the multiplier to each entry of the kth row.

• Finally, we set aki = 0.

After Gaussian elimination, the lower-triangular part is all 0, so we may use those elements
to store the multipliers (to save space).

47

Chapter 5. Linear Algebra

Section 24. LU Factorization

5.26. Motivation: In this section, we show that any square matrix A can be factored
into a product of an upper-triangular U and lower-triangular L matrices such that LU = PA
where P is a permutation matrix used to swap rows. LU factorization is closely related to
Gaussian elimination and takes O(N3) flops.

5.27. Note: Here’s why LU factorization helps solving Ax = b:

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb.

Define z = Ux. It takes two steps to compute x:

1. Solve Lz = Pb for z, which takes O(N2).

2. Solve Ux = z for x, which takes O(N2).

Thus, we see that

Gaussian Elimination = LU Factorization + Forward Sub + Backward Sub

= O(N3) +O(N2) +O(N2) = O(N3).

5.28. Note: Now suppose we have a system of m equations

Ax1 = b1

...

Axm = bm

Equivalently, we are solving the system AX = B using LU factorization:

A
[
X1 · · · XM

]
=
[
b1 · · · bM

]
Naively, we could do Gaussian eliminationm times, which takesO(m·N3). A better approach
is to first carry out an LU factorization, then apply the result m times:

1. Factor LU = PA, which takes O(N3).

2. Solve the systems LUx1 = Pb1, . . . , LUxM = PbM , which in total takes O(M ·N2).

Lesson: do the expensive LU factorization once, and use it repeatedly.

5.29. Note: Consider the first step of Gaussian elimination.

A =

a1,1 · · · a1,N
...

. . .
...

aN,1 · · · aN,N

 −→
a

(1)
1,1 · · · a

(1)
1,N

0
. . .

...

0 · · · a
(1)
N,N

 = A(1)

Recall that row operations can be represented as matrix multiplication. Thus, we can rep-

48

24. LU Factorization

resent this step as M (1)A = A(1) where

M (1) =


1 0 · · · 0
−a2,1
a1,1

1 · · · 0
... 0

. . . 0
−aN,1

a1,1
0 · · · 1


In words, every entry on the main diagonal of M (1) equals 1; entries on the first column
(except the first row) is −ak,1

a1,1
; everything else is zero.

5.30. (Cont’d): In general, at the i-th step of Gaussian elimination, we do M (i)A(i−1) =
A(i) where

M (i) =



1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0
...

...
...

. . .
... · · · · · · ...

0 0 0 · · · 1 0 · · · 0

0 0 0 · · · −a
(i−1)
i+1,i

a
(i−1)
i,i

1 · · · 0

0 0 0 · · · ... · · · . . . 0

0 0 0 · · · −a
(i−1)
N,i

a
(i−1)
i,i

· · · · · · 1


In words, every entry on the main diagonal of M (1) equals 1; entries on the ith column have

0 as the first i− 1 entries, 1 on the (i, i)-th entry, and −a
(i−1)
k,i

a
(i−1)
i,i

on the rest entries; everything

else is zero. The effect of left-multiplying A(i−1) by M (i) is to eliminate xi from rows i+ 1 to
N . After the final step, A(N−1) is upper-triangular.

5.31. (Cont’d): Recall that M (i)A(i−1) = A(i). Expanding this relation, we have

M (N−1) · · ·M (2)M (1)A = A(N−1) = U.

Thus, we can write A = [M (N−1) · · ·M (1)]−1U.

5.32. Note: Recall the following two facts from linear algebra:

• If B and C are lower-triangular and unit diagonal, then so is BC.

• If B is lower-triangular and unit diagonal, then so is B−1.

By Fact 1, M (N−1) · · ·M (1) is lower-triangular and unit diagonal. By Fact 2, the inverse of this
product of matrices is lower-triangular and unit diagonal. Let us define L = [M (N−1) · · ·M (1)]−1.
Then for any square matrix A, we have A = LU , where L is lower-triangular and unit diag-
onal and U is upper-triangular.

49

Chapter 5. Linear Algebra

5.33. Note (Stability of LU Factorization): In LU factorization, a problem arises when
we have a zero or close to zero pivot.

• If akk = 0, then the multipliers
ajk
akk

are undefined.

• If akk ≈ 0, then the multipliers become large and the calculations become unstable.

This problem can be avoided if we use pivoting, i.e., reordering the equations. In the matrix
factorization view of Gaussian elimination, if a

(k)
kk = 0 at some stage, then we examine all

entries in the kth column below a
(k)
kk . Find

max
j=k,...,n

|a(k)
jk | = |a

(k)
k∗k|,

then swap row k∗ with row k and use a
(k)
k∗k to form the multiplier. Note that at least one of

{a(k)
kk , . . . , a

(k)
nk }

is non-zero, or the matrix is singular. Evidently, this produces a re-ordering of the rows
of A that could be described by a matrix multiplication by a permutation matrix P . This
same re-ordering would have to be applied to the RHS b, to get a new system with the same
solution as the original system Ax = b.

50

25. Matrix and Vector Norms

Section 25. Matrix and Vector Norms

5.34. Definition: Let V be a finite-dimensional vector space over R. A vector norm
‖ · ‖ on V is a mapping V → R that satisfies the following conditions for all x, y ∈ V and
α ∈ R:

1. ‖x ≥ 0‖ and ‖x‖ = 0 ⇐⇒ x = 0.

2. ‖αx‖ = |α|‖x‖.
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

5.35. Note: Let x ∈ Rn.

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

p = 1, 2, . . .

‖x‖2 =

√√√√ n∑
i=1

x2
i =
√
xTx

‖x‖1 =
n∑
i=1

|xi|

‖x‖∞ = max
i∈i≤n

|xi|

5.36. Note: Let A ∈ Rn×n.

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

= max
‖z‖p=1

‖Az‖p

‖A‖∞ = max
i≤i≤n

{
n∑
j=1

|aij|

}
max absolute row sum

‖A‖1 = max
i≤j≤n

{
n∑
i=1

|aij|

}
max absolute col sum

5.37. Proposition: An induced matrix norm satisfies all properties below:

• ‖A‖p ≥ 0.

• ‖A‖p = 0 ⇐⇒ A = 0.

• ‖αA‖p = |a| · ‖A‖p.
• ‖A+B‖p ≤ ‖A‖p + ‖B‖p.
• ‖Ax‖p ≤ ‖A‖p · ‖x‖p.
• ‖AB‖p ≤ ‖A‖p‖B‖p.

51

Chapter 5. Linear Algebra

Section 26. Conditioning

5.38. Motivation: Consider a system of equations Ax = b. What would happen to x
if we perturb b? Replacing b by b+ ∆b, we get

A(x+ ∆x) = b+ ∆b.

We are looking for the relative change of x to the relative change in b, i.e., find κ such that

‖∆x‖
‖x‖

= κ · ‖∆b‖
‖b‖

.

5.39. Note: If x is the exact solution, then Ax = b and we obtain ∆x = A−1∆b. Next,

Ax = b =⇒ ‖b‖ ≤ ‖A‖‖x‖ =⇒ ‖A‖
‖b‖
≥ 1

‖x‖
.

Combined with the fact that

x = A−1∆b =⇒ ‖∆x‖ ≤ ‖A−1‖‖∆b‖,

we obtain

‖∆x‖
‖x‖

≤ ‖A‖‖A−1‖‖∆b‖
‖b‖

.

Note this holds for any ‖ · ‖p norm. We have derived the κ we want.

5.40. Definition: Define the condition number of A as κ(A) = ‖A‖‖A−1‖. The
problem is well-conditioned if κ(A) is small (∼ 1) and ill-conditioned if κ(A) is large.

5.41. Remark:

• κ(A) ≥ 1 since 1 = ‖AA−1‖ ≤ ‖A‖‖A−1‖.

• κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
=
|λmax(A)|
|λmin(A)|

where the last equality requires A = AT .

52

27. Singular Value Decomposition

Section 27. Singular Value Decomposition

5.42. Motivation: Like LU, the SVD is a type of matrix factorization that decomposes
any matrix into 3 factors with special qualities.

5.43. Theorem: Every matrix A ∈ Rm×n can be decomposed into the product

A = UΣV T

where

• U ∈ Rm×m is orthogonal, so UTU = UUT = I;
• V ∈ Rn×n is orthogonal, so V TV = V V T = I;
• Σ ∈ Rm×n is all zeros except the top r × r diagonal submatrix, where r = min{m,n}.

The diagonal elements of Σ are the singular values and appear in decreasing order.

5.44. Note: If A is a square matrix, then all of U,Σ, V are square matrices. Now
suppose m > n. If A is not square, then the right m− n columns of U are all zeros and the
bottom m−n rows are all zeros. To save space, we can simply remove them, which gives us

Figure 5.1: Reduced SVD.

5.45. Note: We now look at the applications of SVD.

1. The rank of A equals the number of non-zero singular values.
2. Null(A) = span{vj} (right singular vectors corresponding to zero singular values).
3. The condition number of A is given by A = σ1/σn = σ(A)max/σ(A)min.
4. The 2-norm of A is given by ‖A‖2 = σ1 = σ(A)max.
5. Singular values of the SVD decomposition of A is the square root of the eigenvalues of

the matrix AAT or ATA; the two are identical with positive eigenvalues.
6. Principal component analysis: Place the coordinates of the points in the rows of A, then

compute the SVD A = UΣV T . Let Σ2 = diag(σ1, σ2, 0, . . . , 0). Then A2 = UΣ2V
T

holds the projection of all points onto the best plane of approximation.

53

Chapter 5. Linear Algebra

54

27. Singular Value Decomposition

55

	Floating Point Number Systems
	Floating Point Number Systems
	Limitations of Floating Points Numbers
	Error of Floating-Point Representation

	Interpolation
	Polynomial Interpolation
	Piecewise Polynomial Interpolation
	Cubic Spline Interpolation
	Bezier Curves

	Ordinary Differential Equations
	Motivation
	Euler's Methods
	SciPy's ODE Suite
	Modified Euler's Method
	Numerical Stability

	Fourier Transform
	Review: Complex Numbers
	Fourier Series
	Discrete Fourier Transformation
	Properties of the Fourier Transform
	2-Dimensional DFT
	DFT and Convolution
	Fast Fourier Transform

	Linear Algebra
	Linear Algebra Review
	Motivation: Google Page Rank
	Markov Transition Matrices
	Solving Triangular Systems
	LU Factorization
	Matrix and Vector Norms
	Conditioning
	Singular Value Decomposition

