
Notes on STAT-330:

Mathematical Statistics

Unversity of Waterloo

David Duan

Last Updated: April 16, 2021 (V1.0)



Contents

Contents

1 Univariate Random Variables 1

1 The Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Random Variables and CDFs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 The Expectation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 The Variance Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Moments of a Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Multivariate Random Variables 15

1 Joint and Marginal Cumulative Distribution Functions . . . . . . . . . . . . 15

2 Bivariate Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Bivariate Continuous Distributions . . . . . . . . . . . . . . . . . . . . . . . 18

4 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Joint Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Covariance and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Conditional Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Joint Moment Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 27

10 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 Bivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Transformations of Random Variables 30

1 The Cumulative Distribution Function Technique . . . . . . . . . . . . . . . 31

2 Univariate 1-1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Bivariate 1-1 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The Moment Generating Function Technique . . . . . . . . . . . . . . . . . . 41

5 Important Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ii



Contents

4 Limiting/Asymptotic Distributions 45

1 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Convergence in Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 More Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Point Estimation 56

1 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



Contents

iv



Chapter 1. Univariate Random Variables

Section 1. The Probability Model

1.1. Definition: The probability model consists of three components:

• sample space, S, the set of all distinct outcomes of a random experiment;

• events, A, a collection of subset of the sample space, known as a sigma algebra;

• probability measure, Pr : A → R, which assigns, to each event A ∈ A, a probability
Pr(A). We require the following properties:

– Pr(A) ≥ 0 for all A ⊆ S.

– Pr(S) = 1.

– For a countable set of events {A1, A2, A3, . . .} ⊆ S that are mutually exclusive,

Pr

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

Pr(Ai).

1.2. Proposition: Let A,B be events in a sample space S. Then

• Pr(∅) = 0.

• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

• Pr(A ∩Bc) = Pr(A)− Pr(A ∩B).

• Pr(Ac) = 1− Pr(A).

• A ⊆ B =⇒ Pr(A) ≤ Pr(B).

• 0 ≤ Pr(A) ≤ 1.

1.3. Definition: Let A,B be events. The conditional probability of A given B is

Pr(A | B) =
Pr(A ∩B)

Pr(B)
, provided Pr(B) > 0.

1.4. Definition: Two events A and B are independent, denoted A ⊥ B, if

Pr(A ∩B) = Pr(A) Pr(B).

1.5. Intuition: It’s helpful to think that A, B are independent iff Pr(A | B) = Pr(A)
and Pr(B | A) = Pr(B). In other words, the occurrence of one event does not influence the
probability of the other.
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Chapter 1. Univariate Random Variables

Section 2. Random Variables and CDFs

1.6. Definition: A random variable X is a function from S to R such that the set
{X ≤ x} := {A ∈ S : X(A) ≤ x} is defined (i.e., is a valid event) for all x ∈ R.

Figure 1.1: Random Variable.

1.7. Intuition: A random variable X assigns each outcome A ∈ S a value X(A) ∈ R.
Its main purpose is to quantify the outcomes of a random experiment. For example, if we
let X denote the number of heads among 3 coin flips and the outcome of a given random

experiment is A = {T,H,H}, then we have A
X7→ 2 (or X(A) = 2) as there are two heads.

1.8. Definition: The cumulative distribution function (cdf) of a random variable
X, FX : R→ [0, 1], is defined as FX(x) = Pr(X ≤ x) for x ∈ R.

1.9. Proposition: Let F be the cdf of some random variable X.

(1). F is non-decreasing, i.e., x1 ≤ x2 =⇒ F (x1) ≤ F (x2).

(2). limx→∞ F (x) = 1 and limx→−∞ F (x) = 0.

(3). F is right-continuous, i.e., ∀a ∈ R : limx→a+ F (x) = F (a).

(4). ∀a < b : Pr(a < X ≤ b) = Pr(X ≤ b)− Pr(X ≤ a) = F (b)− F (a).

(5). ∀a ∈ R : Pr(X = a) = limx→a+ F (x)− limx→a− F (x) = F (a)− limx→a− F (x).

1.10. Example: Suppose that X is a random variable with CDF

F (x) =


0 x < −2
x+4
8
−2 ≤ x < 2

1 x ≥ 2

Proposition 1.9 (4) allows us to compute the probability within an interval a < X ≤ b:

Pr(−1 < X ≤ 1) = F (1)− F (−1) =
5

8
− 3

8
=

1

4
Pr(3 < X ≤ 4) = F (4)− F (3) = 1− 1 = 0

Proposition 1.9 (5) allows us to compute the probability at a single value X = a:

Pr(X = 0) = F (0)− lim
x→0−

F (x) =
1

2
− 1

2
= 0

Pr(X = 2) = F (2)− lim
x→2−

F (x) = 1− 3

4
=

1

4

2



3. Discrete Random Variables

Section 3. Discrete Random Variables

1.11. Definition: A discrete random variable takes on a finite or countable number
of values. The cdf of a discrete random variable looks like a right-continuous step function.

1.12. Example: Let X be a discrete random variable with cdf

F (x) =


0 x < 0
1
4

0 ≤ x < 1
3
4

1 ≤ x < 2

1 2 ≤ x

Let’s plot its cdf:

Figure 1.2: The cumulative distribution function of a discrete random variable X.

Observe that each component of the cdf of a discrete random variable will be of the form
ai ≤ x ≤ ai+1, except the first component looks like x < a1 and the last one looks like
an ≤ x. Intuitively, the set of discontinuities A = {a1, a2, . . . , an} are the set of values X
can take. As we see below, this set A is called the support set of X.

1.13. Definition: The probability function or probability mass function (pmf)
of a discrete random variable is given by

f(x) =

{
Pr(X = x) if X can take value x

0 if X cannot take value x

The set of values that X can take, AX = {x : f(x) > 0}, is called its support set of X.

1.14. Proposition: Let f be the pmf of some discrete random variable X.

(1). ∀x ∈ R : f(x) ≥ 0.

(2).
∑

x∈AX f(x) = 1, where AX denotes the support set of X.

(3). F (x) = Pr(X ≤ x) =
∑

xi≤x f(xi), where F denotes the cdf of X.

3



Chapter 1. Univariate Random Variables

Section 4. Continuous Random Variables

1.15. Definition: Suppose X is a random variable with cdf F (x) such that

• F (x) is continuous at every x ∈ R, and

• F is differentiable everywhere except at countably many points (hint: measure zero),

then X is a continuous random variable.

1.16. Definition: Let X be a continuous random variable with cumulative distribution
function FX . The probability density function (pdf) of X is given by

fX(x) =

{
F ′X(x) if FX(x) is differentiable at x

0 otherwise.

The support of X is the set AX := {x : f(x) > 0}.

1.17. Example: Let X be a random variable with CDF

F (x) =


0 x < 0

x2 0 ≤ x ≤ 1

1 x > 1

Since F is differentiable at every x ∈ R \ {1}, we get

f(x) =

{
2x 0 < x < 1

0 otherwise

Since f(x) > 0 for every x ∈ (0, 1), the support of X is the open interval (0, 1). �

1.18. Remark: It is important to note that f(x) 6= Pr(X = x) when X is continuous!
In fact, statement (4) below tells us that Pr(X = x) at a single point x ∈ R is always zero.

1.19. Proposition: Let f be the pdf of a continuous random variable X.

(1). ∀x ∈ R : f(x) ≥ 0.

(2).
∫∞
−∞ f(x) dx = limx→∞ F (x)− limx→−∞ F (x) = 1.

(3). The probability over an interval is given by the integral of the pdf over that interval:

Pr(a < X ≤ b) = Pr(X ≤ b)− Pr(X ≤ a) = F (b)− F (a) =

∫ b

a

f(x) dx.

(4). Pr(X = b) = 0 for all b ∈ R.

4



4. Continuous Random Variables

1.20. Note (From cdf to pdf): Let X be a continuous random variable with cdf F (x).
We can find its pdf f(x) by differentiating F (x):

f(x) = lim
h→0

F (x+ h)− F (x)

h
= lim

h→0

Pr(x ≤ X ≤ x+ h)

h
= F ′(x),

provided the limit exists.

1.21. Example (From cdf to pdf): Consider the following cdf where b > a:

F (x) =


0 x ≤ a
x−b
b−a a < x ≤ b

1 x > b

=⇒ F ′(x) =


0 x < a
1
b−a a < x < b

0 x > b

Note that F ′(x) does not exist at x ∈ {a, b} because the one-sided derivatives at x ∈ {a, b}
do not match. By definition, f(x) = 0 at x ∈ {a, b} and f(x) = F ′(x) otherwise, i.e.,

f(x) =

{
1
b−a a < x < b

0 otherwise

1.22. Note (From pdf to cdf): Let X be a continuous random variable with pdf f(x).
We can find its cdf F (x) by integrating f(x):

F (x) =

∫ x

−∞
f(t) dt.

1.23. Example (From pdf to cdf): Consider the following pdf.

f(x) =

{
1
x2

x ≥ 1

0 x < 1.

To verify this is a valid pdf, observe that f(x) ≥ 0 for all x ∈ R and∫ ∞
−∞

f(x) dx =

∫ ∞
1

1

x2
dx = −1

x

∣∣∣∣∞
1

= 1.

To find its cdf, let us integrate f(x):

x < 1 : F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t) dt =

∫ x

−∞
0 dt = 0

x ≥ 1 : F (x) = Pr(X ≤ x) =

∫ x

−∞
f(t) dt =

∫ x

1

1

t2
dt = 1− 1

x

Therefore, the cdf of X is given by

F (x) =

{
1− 1/x x ≥ 1,

0 x < 1.

5



Chapter 1. Univariate Random Variables

1.24. Example: Continuing from above, let us demonstrate two ways of computing

Pr(−2 < X < 3).

First, by Proposition 1.9 (4), we have

Pr(−2 < X < 3) = Pr(−2 < X ≤ 3) = F (3)− F (−2) =

(
1− 1

3

)
− 0 =

2

3
.

Alternatively, by 1.19 (3), we could integrate F (x) over the interval (−2, 3) and obtain

Pr(−2 < X < 3) =

∫ 3

−2
f(x) dx =

∫ 3

1

1

x2
dx = −1

x

∣∣∣∣3
1

= 1− 1

3
=

2

3
.

1.25. Before we conclude this section, let us introduce the Gamma function. It appears
in the pdf of many famous distributions and its properties often help you evaluate integrals
in probability theory.

1.26. Definition: The Gamma function, denoted Γ(α), is defined as

Γ(α) =

∫ ∞
0

yα−1e−ydy α > 0.

1.27. Proposition: Useful properties of the Gamma function:

(1). Γ(α) = (α− 1) · Γ(α− 1) for all α > 1.

(2). Γ(n) = (n− 1)! for all α ∈ Z+.

(3). Γ(1/2) =
√
π.

6



5. The Expectation Operator

Section 5. The Expectation Operator

1.28. Definition: Let X be a discrete random variable with support A and pdf f(x).
The expectation or expected value of X is given by

E[X] =
∑
x∈A

xf(x) provided
∑
x∈A

|x|f(x) <∞.

If the series does not converge absolutely, then E[X] does not exist.

1.29. Example: Let X be a discrete random variable with pdf

f(x) =
1

x(x+ 1)
, x = 1, 2, . . .

Then A = {1, 2, . . .}. We first verify that f(x) is a valid pdf:∑
x∈A

f(x) =
∞∑
x=1

(
1

x
− 1

x+ 1

)
= 1− 1

2
+

1

2
− 1

3
+ · · · = 1.

We now check if its expectation exists:∑
x∈A

|x|f(x) =
∞∑
x=1

x
1

x(x+ 1)
=
∞∑
x=1

1

x+ 1
=∞.

Thus, E[X] does not exist.

1.30. Definition: Let X be a continuous random variable with support A and pdf f(x).
The expectation or expected value of X is given by

E[X] =

∫ ∞
−∞

xf(x) dx provided

∫ ∞
−∞
|x|f(x) dx <∞

If the integral does not converge absolutely, then E[X] does not exist.

1.31. Example: Let X be a continuous random variable with pdf

f(x) =
1

π(x2 + 1)
x ∈ R.

First, let’s check this is a valid pdf:∫ ∞
−∞

1

π(x2 + 1)
dx = 1.

We again observe that the expectation does not exist for this X:∫ ∞
−∞
|x|f(x) dx =

∫ ∞
−∞
|x| 1

x2 + 1
dx = 2

∫ ∞
0

x

x2 + 1
dx = log(x2 + 1)

∣∣∣∣∞
0

=∞.

1.32. Warning: Thus, always verify that the series/integral converges absolutely first!

7



Chapter 1. Univariate Random Variables

1.33. Let us now look at the expectation of functions of random variables. The expected
value operator can be viewed as a special case where g(X) = I, the identity function.

1.34. Definition: Let X be a discrete random variable with pdf f(x) and support A.
Let g be a function of X. Then

E[g(X)] =
∑
x∈A

g(x)f(x) provided
∑
x∈A

|g(x)|f(x) <∞.

Otherwise, E[g(x)] does not exist.

1.35. Definition: Let X be a continuous random variable with pdf f(x) and support
A. Let g be a function of X. Then

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx provided

∫ ∞
−∞
|g(x)|f(x) dx <∞.

Otherwise, E[g(x)] does not exist.

1.36. Proposition: Let X be a random variable, a, b, c ∈ R be constants, and g, h be
functions of X. Then

E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + c.

In other words, the expectation operator is linear.

Proof. By linearity of summation and integral.

8



6. The Variance Operator

Section 6. The Variance Operator

1.37. Definition: Let X be a random variable. The variance of X is the expected
value of the squared deviation from the mean of X, i.e.,

Var[X] = E[(X − E[X])]2.

1.38. Proposition: Let X be a random variable. Then

Var[X] = E[X2]− E2[X].

Proof.

Var(X) = E[(X − E[X])2]

= E[X2 − 2XE[X] + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2

1.39. Proposition: Let X be a random variable.

• The variance of a constant is zero (indeed, there is no deviation at all), i.e., for a ∈ R,

Var(a) = 0.

• The variance is non-negative, because the squares are non-negative:

Var(X) ≥ 0.

• The variance is invariant wrt changes in a location parameter, i.e., for a ∈ R,

Var(X + a) = Var(X).

• If all values are scaled by a constant, the variance is scaled by squared of that constant:

Var(aX) = a2Var(X).

• The variance of a sum of two random variables is given by

Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X, Y ),

Var(aX − bY ) = a2 Var(X) + b2 Var(Y )− 2abCov(X, Y ).

• Since independent random variables are uncorrelated, for X1, . . . , Xn independent,

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

The variance of the mean of X1, . . . , Xn is given by

Var(X) = Var

(
1

n

n∑
i=1

Xi

)
=
σ2

n
.

9



Chapter 1. Univariate Random Variables

Section 7. Moments of a Random Variable

1.40. The moments of a function are quantitative measures related to the shape of the
function’s graph. For a probability distribution on a bounded interval, the collection of all
the moments (of all orders, from 0 to∞) uniquely determines the distribution.1 Expectation
and variance discussed in the previous two sections are two very special moments.

1.41. Definition: Let X be a random variable.

• The kth moment of X is given by E[Xk] for k = 1, 2, . . .

– Also known as the kth moment about the origin.
– The 1st moment of X is the mean of X:

µX = E[X].

• The kth central moment of X is given by E[(X − µ)k] for k = 1, 2, . . .

– Also known as the kth moment about the mean.
– The 2nd central moment of X is the variance of X:

Var(X) = σ2 = E[(X − µ)2].

1The same is not true on unbounded intervals.
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8. Moment Generating Functions

Section 8. Moment Generating Functions

1.42. So far, we have seen two types of functions that uniquely determines a distribution:
pdf and cdf. A third type of functions, known as moment generating functions, also uniquely
determines a distribution. Moment generating functions provide the basis of an alternative
route to analytical results compared with working directly with pdfs and cdfs. As its name
implies, this function can be used to compute a distribution’s moments.

1.43. Definition: Let X be a random variable. The function

M(t) = E[etX ]

is called the moment generating function (mgf) if E[etX ] exists for all t in some neigh-
bourhood around 0, i.e., for all t ∈ (−h, h) for some h > 0.

1.44. Note: We now demonstrate how to derive the mgf given the pdf of a random
variable. Recall that for a random variable X with pdf f(x) and support A, the expectation
of a function g(X) is given by

E[g(X)] =


∑
x∈A

g(x)f(x) x is discrete,

∫
x∈A

g(x)f(x) dx x is continuous.

Let g(X) = etX . Then

E[etX ] =


∑
x∈A

etxf(x) x is discrete,

∫
x∈A

etxf(x) dx x is continuous.

1.45. Example: Let X ∼ Poisson(λ) with pdf f(x) = λxe−λ

x!
, x ∈ Z≥0. Then

M(t) = E[etX ] =
∞∑
x=0

etxf(x) =
∞∑
x=0

etx
λxe−λ

x!

= e−λ
∞∑
x=0

λxetx

x!

= e−λ
∞∑
x=0

(λet)x

x!

= e−λeλe
t

ey =
∞∑
n=0

yn

n!

= eλ(e
t−1) ∀t ∈ R.

11



Chapter 1. Univariate Random Variables

1.46. Let Y = aX+b. The following proposition gives us a way to directly derive MY (t)
given MX(t) without going through the computation involving expected values again.

1.47. Proposition: Let X be a random variable with mgf MX(t) that exists for all
t ∈ (−h, h), h > 0. Define Y = aX + b for a, b ∈ R, a 6= 0. Then the mgf for Y is given by

MY (t) = ebtMX(at), t ∈
(
− h

|a|
,
h

|a|

)
.

Proof. Observe

MY (t) = E[etY ] = E[et(aX+b)]

= ebtE[etaX ] exists for |at| < h

= ebtMX(at). for |t| < h

|a|
Pay attention to the third line: MX(tX) is defined for all tX ∈ (−h, h), which implies that

E[etaX ] = E[etXX ]

is defined only if tX = ta ∈ (−h, h), or equivalently, |at| < h. Since a and h are fixed, we
require |t| < h/|a|. This is the domain where MY (t) is defined.

1.48. Example: Let us derive the mgf of X ∼ N(µ, σ2). First, recall that X = σZ + µ
where Z ∼ N(0, 1). The mgf of the standard normal Z is given by

MZ(t) = E[etZ ] =

∫ ∞
−∞

etx
1√
2π
e−x

2/2 dx

=

∫ ∞
−∞

1√
2π

exp

(
−x2 + 2tx

2

)
dx

=

∫ ∞
−∞

1√
2π

exp

(
−(x− t)2 + t2

2

)
dx

= exp

(
t2

2

)∫ ∞
−∞

1√
2π

exp

(
−(x− t)2

2

)
dx︸ ︷︷ ︸

pdf for N(t,1), thus integrate to 1

= exp

(
t2

2

)
.

Now use the proposition above,

MX(t) = eµtMZ(σt)

= eµt exp

(
(σt)2

2

)
= exp

(
µt+

σ2t2

2

)
.
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8. Moment Generating Functions

1.49. Note: The following proposition gives us a way of computing the kth moment
about the origin. In particular, given the mgf of X, we can find its mean and variance by

(1). Calculate the first and second derivative M ′
X(t) and M ′′

X(t) of MX(t).

(2). The mean of is given by E[X] = M ′
X(0).

(3). The variance is given by Var[X] = E[X2]− E2[X] = M ′′
X(0)− (M ′

X(0))2.

1.50. Proposition: Let X be a random variable with mgf M(t) defined on t ∈ (−h, h)
for h > 0. Then M(0) = 1 and for k = 1, 2, . . ., the kth moment about the origin is given by

E[Xk] = M (k)(0)

where

M (k)(t) :=
dk

dtk
M(t)

is the kth derivative of M(t).

Proof. Note that M(0) = E[X0] = E[1] = 1 and that

dk

dtk
etx = xketx for k = 1, 2, . . . (1.1)

Let X be a continuous r.v. with mgf M(t) defined for t ∈ (−h, h) for some h > 0, then

M (k)(t) =
dk

dtk
E[etX ] =

dk

dtk

∫ ∞
−∞

etxf(x) dx =

∫ ∞
−∞

dk

dtk
etxf(x) dx k = 1, 2, . . .

Note that we are allowed to interchange differentiation and integration here (proof omitted).
Using (1.1), we have

M (k)(t) =

∫ ∞
−∞

xketxf(x) dx = E[XketX ] t ∈ (−h, h) for some h > 0.

Letting t = 0, we obtain M (k)(0) = E[Xk], k = 1, 2 . . . as required.

1.51. Example: Let us derive the mean and variance for a random variable X ∼
Poisson(λ). Recall in Example 1.48, we derived that the mgf of X is given by

MX(t) = exp(λ(et − 1)).

Compute its first and second derivatives:

M ′
X(t) = exp(λ(et − 1))λet = eλ(e

t−1)+t,

M ′′
X(t) = λeλ(e

t−1)+t(λet + 1).

By the proposition above, we see that

E[X] = M ′
X(0) = λ,

Var[X] = E[X2]− µ2 = M ′′(0)− λ2 = λ2 + λ− λ2 = λ.

13



Chapter 1. Univariate Random Variables

1.52. The following result is often known as the uniqueness of mgf and can be used to
show that a random variable follows a certain distribution.

1.53. Proposition: Let X, Y be random variables with mgfs MX(t), MY (t), respec-
tively. Then the mgfs coincide in a neighbourhood around 0 iff X and Y have the same
distribution, i.e.,

∃h > 0,∀t ∈ (−h, h) : MX(t) = MY (t)

⇐⇒ ∀s ∈ R : Pr(X ≤ s) = FX(s) = FY (s) = Pr(Y ≤ s).

Proof. Omitted.

14



Chapter 2. Multivariate Random Variables

Section 1. Joint and Marginal Cumulative Distribution Functions

2.1. Definition: Let X and Y be random variables defined on a sample space S. The
joint cumulative distribution function of X and Y is given by

F (x, y) = Pr(X ≤ x, Y ≤ y), ∀(x, y) ∈ R2.

2.2. Remark: This notion is well-defined as both {X ≤ x} and {Y ≤ y} are valid
events, so their intersection {X ≤ x, Y ≤ y} is also valid.

2.3. Proposition:

(1). Fix y, F is non-decreasing in x. Similarly, fix x, F is non-decreasing in y.

(2). limx→−∞ F (x, y) = 0 = limy→−∞ F (x, y).

(3). lim(x,y)→(−∞,−∞) F (x, y) = 0 and lim(x,y)→(∞,∞) F (x, y) = 1.

2.4. Definition: The marginal cumulative distribution function of X is given by

FX(x) = lim
y→∞

F (x, y) = Pr(X ≤ x) ∀x ∈ R.

Similarly, the marginal cumulative distribution function of Y is given by

FY (y) = lim
x→∞

F (x, y) = Pr(Y ≤ y) ∀y ∈ R.

2.5. Warning: Note that given joint cdfs, we can find marginal pdfs. But, given
marginal pdfs, we cannot find the joint cdfs. In other words, it’s possible to have (X1, Y1)
and (X2, Y2) such that FX1(x) = FX2(x) and FY1(y) = FY2(y) but FX1,Y1(x, y) 6= FX2,Y2(x, y).

15



Chapter 2. Multivariate Random Variables

Section 2. Bivariate Discrete Distributions

2.6. Definition: Let X and Y be random variables defined on sample space S. If there
exists A ⊆ R2 such that A is countable and Pr((x, y) ∈ A) = 1, then X and Y are a pair of
bivariate discrete random variables.

2.7. Definition: The joint pmf of discrete random variables X and Y is given by

f(x, y) = Pr(X = x, Y = y) ∀(x, y) ∈ R2.

The joint support of (X, Y ) is given by

A = {(x, y) : f(x, y) > 0}.

2.8. Proposition:

(1). f(x, y) ≥ 0 for all (x, y) ∈ R2.

(2).
∑

(x,y)∈A f(x, y) = 1.

(3). For R ⊆ R2, Pr((x, y) ∈ R) =
∑

(x,y)∈R f(x, y).

2.9. Definition: Let f(x, y) be the joint pmf for X, Y . Then the marginal pmfs are
obtained by summing out the other variable, i.e.,

fX(x) = Pr(X = x) =
∑
y

f(x, y) ∀x ∈ R,

fY (y) = Pr(Y = Y ) =
∑
x

f(x, y) ∀y ∈ R.

2.10. Example: Let p ∈ (0, 1) and X, Y be discrete random variables with joint pmf

f(x, y) =

{
k(1− p)2px+y x ≥ 0, y ≥ 0

0 otherwise

(1). Find the value of k.

First, f(x, y) ≥ 0 so k ≥ 0. Next,

∞∑
x=0

∞∑
y=0

f(x, y) = 1

=⇒
∞∑
x=0

∞∑
y=0

k(1− p)2pxpy = 1

=⇒ k(1− p)2
(
∞∑
x=0

px

)(
∞∑
y=0

py

)
= k(1− p)2

(
1

(1− p)2

)
= k

=⇒ k = 1.

16



2. Bivariate Discrete Distributions

(2). Find marginal pmfs.

fX(x) =
∞∑
y=0

(1− p)2px+y = (1− p)2px
∞∑
y=0

py = (1− p)px, x = 0, 1, 2, . . .

fY (x) = (1− p)py, x = 0, 1, 2, . . .

We conclude that X and Y marginally follow a geometric distribution.

(3). Find Pr(X ≤ Y ).

Pr(X ≤ Y ) =
∞∑
x=0

∞∑
y=x

(1− p)2px+y

= (1− p)2
∞∑
x=0

px
∞∑
y=x

py

= (1− p)2
∞∑
x=0

px

(
px

∞∑
y=1

py

)

= (1− p)2
∞∑
x=0

px
(
px

1

1− p

)
=

(1− p)2

1− p

∞∑
x=0

p2x

= (1− p) 1

1− p2

=
1

1 + p
.

17



Chapter 2. Multivariate Random Variables

Section 3. Bivariate Continuous Distributions

2.11. Definition: If F (x, y) is continuous and the derivative

∂2

∂x∂y
F (x, y)

exists and is continuous except along a finite number of curves, then we say that X, Y are
bivariate continuous and we define its joint pdf to be

f(x, y) =


∂2

∂x∂y
F (x, y) if exists

0 otherwise

The joint support of (x, y) is given by

A = {(x, y) : f(x, y) > 0}.

2.12. Proposition:

(1). f(x, y) ≥ 0 for all (x, y) ∈ R2.

(2).
∫∞
−∞

∫∞
−∞ f(x, y) = 1.

(3). For R ⊆ R2, Pr((x, y) ∈ R) =
∫∫

R
f(x, y) dx dy.

2.13. Definition: Let f(x, y) be the joint pdf of X, Y . Then the marginal pdfs are
obtained by integrating out the other variable, i.e.,

fX(x) =

∫ ∞
−∞

f(x, y) dy

fY (y) =

∫ ∞
−∞

f(x, y) dx

2.14. Note: To evaluate a double integral:

(1). Integrate over y then x: ∫ [∫
f(x, y) dy

]
dx

(2). Integrate over x then y: ∫ [∫
f(x, y) dx

]
dy

To figure out the bounds for the integrals using approach 1 (mirror for approach 2):

(1). Outer integral (over x): figure out the range of x in the region.

(2). Inner integral (over y): fix x, figure out the range of y in the region.

18



3. Bivariate Continuous Distributions

2.15. Example: Suppose that (X, Y ) is a pair of continuous variables with joint pdf

f(x, y) =

{
1, 0 < x < 1, 0 < y < 1

0, otherwise.

(1). Find Pr(X ≤ Y ).

Pr(X ≤ Y ) = Pr(X − Y ≤ 0)

=

∫∫
x−y≤0

f(x, y) dx dy

1
=

∫ 1

0

∫ 1

x

1 dy dx

=

∫ 1

0

y

∣∣∣∣1
x

dx

=

∫ 1

0

(1− x) dx

=

∫ 1

0

1 dx−
∫ 1

0

x dx

= x

∣∣∣∣1
0

− 1

2
x2
∣∣∣∣1
0

= 1− 1

2
=

1

2
.

Focus on
1
=. The outer bound is easy as we know x ∈ (0, 1). For the inner bound, fix

x ∈ (0, 1), we see that y ∈ [x, 1) satisfies the inequality x − y ≤ 0. This gives us the inner
bound.

(2). Find the marginal pmfs.

fX(x) =

∫ ∞
−∞

f(x, y) dy =

∫ 1

0

1 dy = y

∣∣∣∣1
0

= 1 =⇒ fX(x) =

{
1 0 < x < 1

0 otherwise

fY (y) =

∫ ∞
−∞

f(x, y) dx =

∫ 1

0

1 dx = x

∣∣∣∣1
0

= 1 =⇒ fY (y) =

{
1 0 < y < 1

0 otherwise
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Chapter 2. Multivariate Random Variables

Section 4. Independent Random Variables

2.16. Recall that two events A and B are independent iff Pr(A ∩B) = Pr(A) Pr(B).

2.17. Definition: Two random variables X and Y are independent iff

∀A,B ⊆ R : Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A) Pr(Y ∈ B).

2.18. Theorem: Let X, Y be random variables.

• Let F (x, y) be the joint cdf and FX(x), FY (y) be the marginal cdfs. Then

X ⊥ Y ⇐⇒ ∀(x, y) ∈ R2 : F (x, y) = FX(x)FY (y).

• Let f(x, y) be the joint pdf/pmf and fX(x), fY (y) be the marginal pdfs/pmfs. Define
the supports AX = {x : fX(x) > 0} and AY = {y : fy(y) > 0}. Then

X ⊥ Y ⇐⇒ ∀(x, y) ∈ AX × AY : f(x, y) = fX(x)fY (y).

2.19. Theorem (Factorization Theorem for Independence): Let X, Y be random vari-
ables with joint pdf/pmf f(x, y) and joint support A. Let AX , AY be the support of X, Y ,
respectively. Then

X ⊥ Y ⇐⇒ ∃g(x) ≥ 0, h(y) ≥ 0 : f(x, y) = g(x)h(y)

for all (x, y) ∈ A1 × A2.

2.20. Remark:

• If RHS holds, then fX(x) ∝ g(x) and fY (y) ∝ h(y).

• If A is not rectangular, then X and Y must be dependent. Indeed, not rectangular
means there exists (x, y) 6∈ A such that x ∈ A1, y ∈ A2. This means that fX(x) > 0,
fY (y) > 0, but f(x, y) = 0. Therefore, f(x, y) 6= fX(x)fY (y) for this (x, y).

2.21. Theorem: If X, Y are independent random variables and g, h are functions, then
g(X), h(Y ) are independent.

2.22. Remark: Note the reverse does not always hold, that is, we could have g(X) and
h(Y ) independent for some g, h but X and Y are dependent.
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5. Joint Expectation

Section 5. Joint Expectation

2.23. Definition: Suppose X, Y are bivariate discrete and h(X, Y ) is a function. Then

E[h(X, Y )] =
∑

(x,y)∈A

h(x, y)f(x, y)

provided that the series converges absolutely:∑
(x,y)∈A

|h(x, y)|f(x, y) <∞.

Otherwise, we say that E[h(X, Y )] DNE.

2.24. Definition: Suppose X, Y are bivariate discrete and h(X, Y ) is a function. Then

E[h(X, Y )] =

∫∫
(x,y)∈A

h(x, y)f(x, y) dx dy

provided that the integral converges absolutely:∫∫
(x,y)∈A

|h(x, y)|f(x, y) dx dy <∞.

Otherwise, we say that E[h(X, Y )] DNE.

2.25. Proposition (Linearity of Expectation): For random variables X1, . . . , Xn,

E

[
n∑
i=1

aiXi

]
=

n∑
i=1

aiE[Xi] a1, . . . , an ∈ R.

2.26. Proposition: If X1, . . . , Xn are independent, then

E

[
n∏
i=1

gi(Xi)

]
=

n∏
i=1

E[gi(Xi)].

In particular, E[XY ] = E[X]E[Y ].
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Chapter 2. Multivariate Random Variables

Section 6. Covariance and Correlation

2.27. Motivation: Covariance is a measure of the joint probability of two random
variables. The sign of the covariance shows the tendency in the linear relationship between
the variables. The normalized version of the covariance, the correlation coefficient, gives the
strength of the linear relation.

2.28. Definition: The Covariance of X and Y is given by

σXY = Cov(X, Y ) = E[(X − µX)(Y − µY )]

= E[XY ]− E[X]E[Y ].

When Cov(X, Y ) = 0, we say that X and Y are uncorrelated.

2.29. Definition: The correlation coefficient of X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

Var[X]
√

Var[Y ]
∈ [−1, 1].

In particular, ρ(X, Y ) = ±1 indicates that X and Y have a perfect linear relationship.

2.30. Proposition:

(1). X ⊥ Y =⇒ Cov(X, Y ) = 0.

(2). Cov(X,X) = Var(X).

(3). Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).

(4). Var(
∑n

i=1 aiXi) =
∑n

i=1 a
2
iVar[Xi] +

∑
i 6=j aiajCov(XiXj).

(5). If X1, . . . , Xn are independent, Var(
∑n

i=1 aiXi) =
∑n

i=1 a
2
iVar(Xi).

2.31. Remark: Focus on the first statement. If two random variables are independent,
then there does not exist any relationship between them. In particular, no linear relationship
exists. Therefore X and Y are uncorrelated.

2.32. Remark: Here’s an example of the last property. Let X1, . . . , Xn be independent
with Var[Xi] = σ2 for all i. Then

Var

[
1

n

n∑
i=1

Xi

]
=

n∑
i=1

1

n2
Var[Xi] = n

1

n2
σ2 =

σ2

n
.
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7. Conditional Distributions

Section 7. Conditional Distributions

2.33. Definition: Suppose X and Y are bivariate discrete random variables with joint
pmf f(x, y). The conditional pmf of X given Y = y is

fX(x | y) =
f(x, y)

fY (y)
, provided fY (y) > 0,

where fY (y) is the marginal pmf of Y . We can interpret this as

Pr(X = x | Y = y) =
Pr(X = x, Y = y)

Pr(Y = y)
, provided Pr(Y = y) > 0.

The conditional pmf of Y given X = x is

fY (y | x) =
f(x, y)

fX(x)
, provided fX(x) > 0,

where fX(x) is the marginal pmf of X. We can interpret this as

Pr(Y = y | X = x) =
Pr(X = x, Y = y)

Pr(X = x)
, provided Pr(X = x) > 0.

2.34. Proposition: fX(x | y) and fY (y | x) are valid probability distributions, i.e.,

• fX(x | y) ≥ 0 and
∑

x fX(x | y) = 1.

• fY (y | x) ≥ 0 and
∑

y fY (y | x) = 1.

2.35. Definition: Suppose X and Y are bivariate continuous random variables with
joint pdf f(x, y). Then the conditional pdf of X given Y = y is

fX(x | y) =
f(x, y)

fY (y)
, provided fY (y) > 0.

The conditional pmf of Y given X = x is

fY (y | x) =
f(x, y)

fX(x)
, provided fX(x) > 0.

2.36. Remark: One can show that

Pr(X ≤ x | Y = y) =

∫ x

−∞
fX(t | y) dt

Pr(Y ≤ y | X = x) =

∫ y

−∞
fY (t | x) dt

2.37. Proposition: fX(x | y) and fY (y | x) are valid probability distributions, i.e.,

• fX(x | y) ≥ 0 and
∫∞
−∞ fX(x | y) = 1.

• fY (y | x) ≥ 0 and
∫∞
−∞ fY (y | x) = 1.
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Chapter 2. Multivariate Random Variables

2.38. Proposition: Let X, Y be random variables with marginal pdfs/pmfs fX(x), fY (y),
marginal supports AX , AY , conditional pdfs/pmfs fX(x | y) and fY (y | x). Then

X ⊥ Y ⇐⇒ ∀x ∈ AX : fX(x | y) = fX(x) ∧ ∀y ∈ AY : fY (y | x) = fY (y).

Proof. Recall that X and Y are independent iff f(x, y) = fX(x)fY (y).

2.39. Theorem: f(x, y) = fX(x | y)fY (y) = fY (y | x)fX(x).

Proof. This follows directly from

fX(x | y) =
f(x, y)

fY (y)
.
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8. Conditional Expectation

Section 8. Conditional Expectation

2.40. Definition: Let Y be a random variable and g(Y ) be a function. The conditional
expectation of g(Y ) given X = x is

E[g(Y ) | X = x] =


∑
y

g(y)fY (y | x) provided that
∑
y

|g(y)|fY (y | x) <∞

∫ ∞
−∞

g(y)fY (y | x) provided that

∫ ∞
−∞
|g(y)|fY (y | x) <∞

2.41. Definition:

• For g(y) = y, E[Y | X = x] is called the conditional mean.

• For g(y) = (y − E[Y | X = x])2,

Var[Y | X = x] = E[(Y − E[Y | X = x])2 | X = x]

= E[Y 2 | X = x]− [E[Y | X = x]]2

is called the conditional variance.

2.42. Proposition: If X and Y are independent, then

∀g,∀h : E[g(X) | Y = y] = E[g(X)] ∧ E[h(Y ) | X = x] = E[h(Y )].

Proof. Observe that

E[g(X) | Y = y] =

∫ ∞
−∞

g(x)fX(x | y) dx =

∫ ∞
−∞

g(x)fX(x) = E[g(X)]

as X and Y are independent. The other statement is similar.

2.43. Corollary: If X and Y are independent, then

E[Y | X = x] = E[Y ]

Var[Y | X = x] = E[Y 2 | X = x]− E2[Y | X = x] = E[Y 2]− E2[Y ] = Var[Y ].

2.44. Theorem (Substitution Rule):

E[h(X, Y ) | X = x] = E[h(x, Y ) | X = x].

2.45. Example:

E[X + Y | X = x] = E[x+ Y | X = x] = x+ E[Y | X = x]

E[XY | X = x] = E[xY | X = x] = xE[Y | X = x].

2.46. Remark: Note that E[g(X) | Y ] 6= E[g(X) | Y = y]. LHS is a random variable
(as it’s a function of Y ) while RHS is a scalar value.
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Chapter 2. Multivariate Random Variables

2.47. Theorem (Double-Expectation Formula):

E[E[g(X) | Y ]] = E[g(X)].

Proof.

E[E[g(X) | Y ]] = E
[∫ ∞
−∞

g(x)fX(x | Y ) dx

]
.

=

∫ ∞
−∞

[∫ ∞
−∞

g(x)fX(x | Y )dx

]
fY (y) dy

=

∫ ∞
−∞

∫ ∞
−∞

g(x) fX(x | y)fY (y)︸ ︷︷ ︸
f(x,y)

dx dy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)f(x, y) dx dy.

=

∫ ∞
−∞

∫ ∞
−∞

g(x)f(x, y) dy dx.

=

∫ ∞
−∞

g(x)

[∫ ∞
−∞

f(x, y) dy

]
︸ ︷︷ ︸

fX(x)

dx.

=

∫ ∞
−∞

g(x)fX(x) dx = E[g(x)].

2.48. Theorem (Law of Total Variance):

Var[Y ] = E[Var[Y | X]] + Var[E[Y | X]].
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9. Joint Moment Generating Functions

Section 9. Joint Moment Generating Functions

2.49. Definition: Let X, Y be a pair of random variables. If there exist hX , hY ∈ R+

such that E[etXX+tY Y ] exists for tX ∈ (−hX , hX) and tY ∈ (−hY , hY ), then

M(tX , tY ) = E[etXX+tY Y ]

is called the joint mgf of X and Y . More generally, the joint mgf of n random variables
X1, . . . , Xn is given by

M(t1, . . . , tn) = E[e
∑n
i=1 tiXi ]

provided that ∃h1, . . . , hn > 0 such that E[e
∑
tiXi ] exists for all ti ∈ (−hi, hi), i = 1, . . . , n.

2.50. Proposition: Given M(t1, t2), we can find the marginal mgfs by

MX(tX) = M(tX , 0) = E[etXX+0Y ] = E[etXX ]

MY (tY ) = M(0, tY ) = E[e0X+tY Y ] = E[etY Y ].

2.51. Proposition: Let X, Y be a pair of random variables with MGF M(tX , tY ), then

X ⊥ Y ⇐⇒ M(tX , tY ) = MX(tX)MY (tY ).

More generally, X1, . . . , Xn are independent iff M(t1, . . . , tn) =
∏

iMXi(ti).
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Chapter 2. Multivariate Random Variables

Section 10. Multinomial Distribution

2.52. The multinomial distribution is a generalization of the binomial distribution. For
n independent trials each of which leads to a success for exactly one of k categories, with each
category having a given fixed success probability pk, the multinomial distribution gives the
probability of any particular combination of numbers of successes for the various categories.

2.53. Definition: Let (X1, . . . , Xk) be discrete random variables with joint pmf

f (x1, . . . , xk) =
n!

x1! · · ·xk!
px11 · · · p

xk
k ,

where x1, . . . , xk ∈ {0, 1, . . . , n} and
k∑
i=1

xi = n;

p1, . . . , pk ∈ [0, 1] and
k∑
i=1

pi = 1.

Then (X1, . . . , Xk) is said to follow a Multinomial distribution. We write

(X1, . . . , Xk) ∼ Multinomial (n; p1, . . . , pk) .

2.54. Proposition: If (X1, . . . , Xk) ∼ Multinomial (n; p1, . . . , pk) , then

(1). (X1, . . . , Xk−1) has joint moment generating function

M (t1, . . . , tk−1) = E
(
et1X1+···+tk−1Xk−1

)
=
(
p1e

t1 + · · ·+ pk−1e
tk−1 + pk

)n
, (t1, . . . , tk−1) ∈ Rk−1.

(2). Any subset of {X1, . . . , Xk} also has a Multinomial distribution. In particular, each Xi

follows a binomial distribution with success probability pi, i.e., Xi ∼ Binomial(n, pi).

(3). If T = Xi +Xj with i 6= j, then T ∼ Binomial (n, pi + pj)

(4). For i 6= j, Cov (Xi, Xj) = −npipj.

(5). The conditional distribution of any subset of (X1, . . . , Xk) given the remaining of the
coordinates is a Multinomial distribution. In particular, the conditional probability
function of Xi given Xj = xj, i 6= j, is

(Xi | Xj = xj) ∼ Binomial

(
n− xj,

pi
1− pj

)
.

(6). The conditional distribution of Xi given T = Xi +Xj = t, i 6= j, is

(Xi | Xi +Xj = t) ∼ Binomial

(
t,

pi
pi + pj

)
.
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Section 11. Bivariate Normal Distribution

2.55. Definition: Suppose X1 and X2 are random variables with joint pdf

f (x1, x2) =
1

2π|Σ|1/2
exp

{
−1

2
(x− µ)Σ−1(x− µ)T

}
for (x1, x2) ∈ R2

where

x =

[
x1
x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, |Σ| = det(Σ),

and Σ is a non-singular positive definite matrix. Then X = (X1, X2) is said to have a
bivariate normal distribution with mean µ and covariance matrix Σ. We write

X ∼ BVN(µ,Σ).

2.56. Proposition: If X = [X1, X2]
T ∼ BVN(µ,Σ), then

(1). X1, X2 has joint moment generating function

M (t1, t2) = E
(
et1X1+t2X2

)
= E

[
exp

(
XtT

)]
= exp

(
µtT +

1

2
tΣtT

)
for all t = (t1, t2) ∈ R2

(2). X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2).

(3). Cov (X1, X2) = ρσ1σ2, Cor (X1, X2) = ρ, where −1 ≤ ρ ≤ 1.

(4). X1 ⊥ X2 ⇐⇒ ρ = 0.

(5). For 0 6= a ∈ R2×1,

aTX = a1X1 + a2X2 ∼ N(aTµ, aTΣa).

(6). For non-singular A ∈ R2×2 and b ∈ R2×1,

AX + b ∼ BVN(Aµ + b,AΣAT ).

(7). The conditional probability function of one given the other is

(X2 | X1 = x1) ∼ N

(
µ2 + ρ(x1 − µ1)

σ2
σ1
, σ2

2(1− ρ2)
)
,

(X1 | X2 = x2) ∼ N

(
µ1 + ρ(x2 − µ2)

σ1
σ2
, σ2

1(1− ρ2)
)
.

(8). (x− µ)TΣ−1(x− µ) ∼ χ2
2.
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Chapter 3. Transformations of Random Variables

3.1. Motivation: Let X1, . . . , Xn be random variables and suppose we want to find the
distribution of a new random variable

Y := h(X1, . . . , Xn).

We discuss three approaches:

(1). the cdf technique;

(2). 1-1 transformation technique (for continuous random variables only);

(3). the mgf technique.

30



1. The Cumulative Distribution Function Technique

Section 1. The Cumulative Distribution Function Technique

3.2. Motivation: Given the pdf of X1, . . . , Xn, we wish to find the cdf and/or pdf/pmf
of Y = h(X1, . . . , Xn).

3.3. Note (CDF Technique, Discrete): The discrete case is pretty simple. To find the
probability of Y = y, we just need to figure out all cases of X1 = x1, . . . , Xn = xn, such that
h(x1, . . . , xn) = y, then add up the probabilities Pr(X1 = x1, . . . , Xn = xn) = f(x1, . . . , xn)
for each of these assignments to get the pdf. The cdf is obtained by summing up all values
of Y ≤ y as usual. More specifically, for all y ∈ R,

fY (y) = Pr(Y = y) = Pr(h(X1, . . . , Xn) = y)

= Pr((X1, . . . , Xn) ∈ {(x1, . . . , xn) : h(x1, . . . , xn) = y})

=
∑

(x1,...,xn):h(x1,...,xn)=y

Pr(X1 = x1, . . . , Xn = xn)

=
∑

(x1,...,xn):h(x1,...,xn)=y

f(x1, . . . , xn)

FY (y) = Pr(Y ≤ y) =
∑
t:t≤y

fY (t).

3.4. Example: Consider

fX(x) =


1/4 |x| = 1

1/2 x = 0

0 otherwise

and define Y = X2. Let us first write out the probability Pr(Y = y) in terms of X:

Pr(Y = y) = Pr(X2 = y) =


Pr(X =

√
y) + Pr(X = −√y) y > 0

Pr(X = 0) y = 0

0 y < 0

• y > 0: Y = X2 = y ⇐⇒ X = ±√y =⇒ Pr(Y = y) = Pr(X =
√
y)+Pr(X = −√y).

• y = 0: Y = X2 = 0 ⇐⇒ X = 0 =⇒ Pr(Y = 0) = Pr(X = 0) = 1/2.

• y < 0: Since Y is a squared value, it can never be negative, so Pr(Y < 0) = 0.

Now plug in the actual value, we obtain

Pr(Y = y) =


1/2 y = 0

1/2 y = 1

0 otherwise

We conclude that Y ∼ Bernoulli(1/2).
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3.5. Note (CDF Technique, Continuous): The continuous case is a bit more complex
and we need to find the cdf first. We break the procedure into three steps:

(1). For all y ∈ R, find Ry = {(x1, . . . , xn) : h(x1, . . . , xn) ≤ y}. This R can be viewed as
all possible assignments of X1, . . . , Xn that contribute densities to the cdf.

(2). Find the cdf of Y by integrating the joint pdf of X1, . . . , Xn over Ry:

∀y ∈ R : FY (y) = Pr(Y ≤ y) = Pr(h(X1, . . . , Xn) ≤ y)

= Pr((X1, . . . , Xn) ∈ Ry)

=

∫
Ry

f(x1, . . . , xn) dx1 · · · dxn.

(3). Find the pdf of Y by differentiating FY (y), i.e., fY (y) = F ′y(y).

3.6. Example: Consider X ∼ Exponential(θ) with cdf

F (x) =

{
0 x ≤ 0

1− e−x/θ x > 0

Define Y by applying F onto X:

Y = F (X) =

{
0 X ≤ 0

1− e−X/θ X > 0.

Step 1. For all y ∈ R, find Ry = {x : F (x) ≤ y}.

• If y < 0, then Ry<0 = ∅ because F (x) ≥ 0 by definition.

• If y = 0, then we need x ≤ 0, so Ry=0 = {x : x ≤ 0}.
• If y ≥ 1, then any x satisfies F (x) ≤ 1 ≤ y, so Ry≥1 = R.

• Finally, we get R0<y<1 = {x : F (x) ≤ y} = {x : x ≤ 0} ∪ {x > 0 : 1 − e−x/θ ≤ y}.
Solving the last inequality, we have R0<y<1 = {x : x ≤ 0}∪{x > 0 : x ≤ −θ log(1−y)}.

Step 2. Find the cdf of Y .

FY (y) = Pr(X ∈ Ry) =


Pr(X ∈ ∅) = 0 y < 0

Pr(X ≤ 0) =
∫
x∈R≤0

0 dx = 0 y = 0

Pr(X ∈ R) =
∫∞
−∞ f(x) dx = 1 y ≥ 1

Pr(X ≤ −θ log(1− y)) = F (−θ log(1− y)) = 1− eθ log(1−y)/θ = y 0 < y < 1

Note in the last case, {x : x ≤ 0} contributes zero probability as in case 2. To summarize:

FY (y) =


0 y ≤ 0

y 0 < y < 1

1 y ≥ 1

By the uniqueness of cdfs, we conclude that Y ∼ Uniform(0, 1).
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1. The Cumulative Distribution Function Technique

3.7. Remark: We have shown that when applying the cdf to a exponential random
variable, the result is a Uniform(0, 1) random variable. In fact, this holds for all continuous
random variables, not just the ones following an exponential distribution.

3.8. Theorem: If X is a continuous random variable with cdf F , then the random
variable F defined by applying the cdf of X onto X,

Y := F (X) =

∫ X

−∞
f(t) dt,

has a Uniform(0, 1) distribution.

Proof. Suppose the continuous random variable X has support set A = {x : f(x) > 0}. For
all x ∈ A, F is an increasing by the definition of cdf. Therefore, F has an inverse on the
domain A. For 0 < y < 1, the cdf of Y = F (X) is

G(y) = Pr(Y ≤ y)

= Pr(F (X) ≤ y)

= Pr(X ≤ F−1(y))

= F (F−1(y))

= y,

which is the cdf of a Uniform(0, 1) random variable. It follows that Y = F (X) ∼ Uniform(0, 1)
as required.

3.9. Remark: This provides a method for generating observations from a continuous
distribution. Let u be an observation generated from a Uniform(0, 1) distribution using a
random number generator. Then by the corollary below, x = F−1(u) is an observation from
the distribution with cdf F .

3.10. Corollary: Let F be the cdf of some continuous random variable. If U ∼ Uniform(0, 1),
then the random variable X = F−1(U) has cdf F .

Proof. Suppose that the support set of the random variable X = F−1(U) is A. For x ∈ A,
the cdf of X = F−1(U) is

Pr(X ≤ x) = Pr(F−1(U) ≤ x)

= Pr(U ≤ F (x))

= F (x)

as Pr(U ≤ u) = u for 0 < u < 1 given that U ∼ Uniform(0, 1). Therefore, X = F−1(U) has
cdf F as claimed.
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3.11. Example: Let X ∼ N(0, 1) and Y = X2. First,

Ry = {x : x2 ≤ y} =

{
∅ y < 0

[−√y,√y] y ≥ 0

where the second case follows from the fact that x2 ≤ y ⇐⇒ |x| ≤ y. Now

Fy(y) = Pr(X ∈ Ry) =

{
0 y < 0

Pr(X ∈ [−√y,√y]) = FX(
√
y)− FX(−√y) y ≥ 0

For pdf,

fY (y) = F ′y(y) = F ′X(
√
y)

1

2
√
y
− F ′X(−√y)

(
− 1

2
√
y

)
=

1

2
√
y

(fX(
√
y) + fX(−√y))

=
1

2
√
y

2√
2π
e−y/2

=
1√
2π
y−1/2e−y/2, y > 0.

We conclude that Y ∼ χ2
1.

3.12. Example: Let X1, X2
iid∼ Uniform(0, 1). Then

f(x1, x2) =

{
1 (x1, x2) ∈ (0, 1)× (0, 1)

0 otherwise

with joint support A = (0, 1)× (0, 1). Graphically speaking, if we view the Cartesian plane
as x1 × x2 and the “height” of the graph as f(x1, x2), then the bars within the unit square
(0, 1)× (0, 1) have height 1 and all other places are flat/of value zero.

Define Y = X1 +X2. Find cdf and pdf of Y .

Step 1. Consider Ry = {(x1, x2) : x1 + x2 ≤ y} for different y’s. Note that

x1 + x2 ≤ y =⇒ x2 ≤ −x1 + y,

so by viewing the Cartesian plane as x1×x2, this line x2 = −x1+y has slope −1 and intercept
y, and thus Ry is a halfspace (to the left/bottom of) determined by the line x2 = −x1 + y.
Let us split y into cases. (The figure on the next page will be helpful.)

• Case 1. If y < 0, then Ry ∩A = ∅ as the unit square A is completely to the right/top
of the line x1 + x2 = y. If y = 0, then A intersects Ry at exactly (0, 0). In both cases,
Ry≤0 contributes 0 probability density.

• Case 2. If y ≥ 2, then Ry ∩A = A as the unit square A is completely contained in the
halfspace Ry. In this case, Ry≥2 contributes 1 probability density.
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1. The Cumulative Distribution Function Technique

• Case 3. If 0 < y ≤ 1, then the line x1 + x2 = y intersects the “left” and the “bottom”
sides of A. In this case, Ry contributes a triangle: y2/2.

• Case 4. If 1 < y < 2, then the line x1 + x2 = y intersects the “top” and the “right”
sides of A. In this case, Ry contributes a square subtract a triangle: 1− (2− y)2/2.

Figure 3.1: Pink: Halfplace. Gray: Support. Dashed line: x1 + x2 = y.

Time to evaluate the integral.

FY (y) = Pr((X1, X2) ∈ Ry)

=

∫
Ry

f(x1, x2) dx1dx2

=

∫
Ry∩A

f(x1, x2) dx1dx2.

Therefore,

Fy(y) =


0 y ≤ 0

y2/2 0 < y ≤ 1

1− (2− y)2/2 1 ≤ 2 < 2

1 y ≥ 2.

Finally,

fY (y) =


y 0 < y ≤ 1

2− y 1 < y ≤ 2

0 otherwise

Lesson from this example: The first step is often the most complex one. Be patient.
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Chapter 3. Transformations of Random Variables

3.13. Example: The next example is an extremely important one. Let X1, . . . , Xn
iid∼

Uniform(0, θ). Find the distribution of X(n) = maxiXi and X(1) = miniXi.

For X(n),

FX(n)
(y) = Pr(X(n) ≤ y)

= Pr(max
i
Xi ≤ y)

= Pr(X1 ≤ y, . . . , Xn ≤ y)

=
n∏
i=1

Pr(Xi ≤ y)

= [F (y)]n

=


0 y ≤ 0

(y/θ)n 0 < y ≤ θ

1 y > θ

fX(n)
(y) =

{
(n/θn)yn−1 0 < y < θ

0 otherwise

Now for X(1),

FX(1)
(y) = Pr(min

i
Xi ≤ y)

= 1− Pr(min
i
Xi > y)

= 1− Pr(X1 > y, . . . , Xn > y)

= 1−
n∏
i=1

Pr(Xi > y)

= 1−
n∏
i=1

(1− Pr(Xi ≤ y))

= 1− (1− F (y))n

=


0 y ≤ 0

1− (1− y/θ)n 0 < y ≤ θ

1 y > θ

fX(1)
(y) =

{
n/θ(1− y/θ)n−1 0 < y < θ

0 otherwise

Note this approach works for random variables with other distributions as well (i.e., not
limited to the uniform distribution).
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Section 2. Univariate 1-1 Transformation

3.14. Motivation: If the transformation h is injective (or one-to-one) on A, i.e.,

∀x1, x2 ∈ A : h(x1) = h(x2) =⇒ x1 = x2,

then we can take a shortcut (which can be viewed as a special case of the cdf technique).
This technique is useful when you only need the pdf of Y .

3.15. Theorem (Univariate 1-1 Transformation): If X is continuous with support A
and the transformation h is 1-1 on A, then the pdf of Y = h(X) is

fY (y) =

fX(h−1(y)) ·
∣∣∣∣ ddyh−1(y)

∣∣∣∣ y ∈ {h(x) : x ∈ A}

0 otherwise

where h−1 satisfies h−1(h(x)) = x for all x ∈ A.

Proof. Apply cdf technique. Proof omitted.

3.16. Example: Let θ > 0 and consider X with pdf

f(x) =

{
θ/xθ+1 x > 1

0 otherwise

Note that AX = (1,∞). Find the pdf of Y = log(X).

Proof. The log function is injective so we can use this technique. Let us find the inverse
function and its derivative.

y = log(x) ⇐⇒ x = ey =⇒ h−1(y) = ey

=⇒ d

dy
h−1(y) = ey.

Thus,

fY (y) =

fX(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ y ∈ {h(x) : x ∈ A}

0 otherwise

=

{
θe−θy y > 0

0 otherwise

as

fX(ey)|ey| = θ

(ey)θ+1
ey = θe−θy.

By uniqueness of pdf, we recognize that Y ∼ Exponential(θ).
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Section 3. Bivariate 1-1 Transformation

3.17. Motivation: We now look at the joint distribution of a one-to-one (injective)
transformation of two random variables. We begin with some notation and a theorem that
gives sufficient conditions for determining whether a transformation is one-to-one in the
bivariate case followed by the theorem, which gives the joint pdf for the two new random
variables.

3.18. Note: Suppose the transformation S defined by

u = h1(x, y)

v = h2(x, y)

is a one-to-one transformation for all (x, y) ∈ RXY and that S maps the region RXY into the
region RUV in the uv plane. Since S : (x, y) → (u, v) is a one-to-one transformation, there
exists an inverse transformation T defined by

x = w1(u, v)

y = w2(u, v)

such that T = S−1 : (u, v)→ (x, y) for all (u, v) ∈ RUV . The Jacobian of the transformation
T is

∂(x, y)

∂(u, v)
=


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

 =

[
∂(u, v)

∂(x, y)

]−1
,

where
∂(u, v)

∂(x, y)
is the Jacobian of the transformation S.

3.19. We now given some sufficient but not necessary conditions for the inverse to exist.

3.20. Theorem (Inverse Mapping Theorem): Consider the transformation S defined by

u = h1(x, y)

v = h2(x, y)

If
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
are continuous functions and

∂(u, v)

∂(x, y)
6= 0 for all (x, y) ∈ R, then S is

one-to-one on R and S−1 exists.

3.21. We are now ready for the main result of this section.
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3.22. Theorem (Bivariate Transformation Theorem): If U = h1(X, Y ), V = h2(X, Y )
defines an one-to-one transformation on the joint support A = {(x, y) : f(x, y) > 0}, then
the joint pdf of U and V is given by

g(u, v) =

f(w1(u, v), w2(u, v)) ·
∣∣∣∣∂(w1, w2)

∂(u, v)

∣∣∣∣ ∀(u, v) ∈ {(h1(x, y), h2(x, y)) : (x, y) ∈ A}

0 otherwise

where

∂(w1, w2)

∂(u, v)
=


∂w1

∂u

∂w1

∂v

∂w2

∂u

∂w2

∂v


is the Jacobian matrix and ‖ · ‖ denotes its determinant∥∥∥∥∂(w1, w2)

∂(u, v)

∥∥∥∥ =
∂w1

∂u
· ∂w2

∂v
− ∂w1

∂v
· ∂w2

∂v
.

3.23. Example: Consider[
X
Y

]
∼ BVN

([
0
0

]
,

[
1 0
0 1

])
.

Define U = X + Y and V = X − Y . The joint pdf of X and Y is given by

f(x, y) =
1

2π
exp

(
−1

2
(x2 + y2)

)
.

with joint support R2. Let us first find the inverse mapping which shows that U, V is injective:

X =
1

2
(U + V ), Y =

1

2
(U − V )

Apply the one-to-one bivariate transformation theorem. Also, AU,V = AX,Y = R2. First,

∣∣∣∣∂(w1, w2)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∂w1

∂u

∂w1

∂v

∂w2

∂u

∂w2

∂v


∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣


1

2

1

2

1

2
−1

2


∣∣∣∣∣∣∣∣ =

1

2

(
1

2

)
− 1

2
· 1

2
= −1

2
.

Now the joint pdf of U, V is given by

g(u, v) = f

(
1

2
(u+ v),

1

2
(u− v)

)
·
∣∣∣∣∂(w1, w2)

∂(u, v)

∣∣∣∣
=

1

2π
exp

{
−1

2

((
u+ v

2

)2

+

(
u− v

2

)2
)}
·
∣∣∣∣−1

2

∣∣∣∣ =
1

4π
exp

{
−1

4
(u2 + v2)

}
.

Thus,

[
U
V

]
∼ BVN

([
0
0

]
,

[
2 0
0 2

])
.
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3.24. Example: Let X, Y be independent exponential variables with θ = 1. Then

f(x, y) =

{
e−xe−y 0 < x <∞, 0 < y <∞
0 otherwise

Define U = X + Y and V = X. We wish to show that X + Y ∼ Gamma(2, 1).

Find the inverse mapping first:

X = V

Y = U − V

Figure out the joint support of U and V :

{(x+ y, x) : x > 0, y > 0} = {(u, v) : 0 < v <∞, v < u <∞}
= {(u, v) : 0 < v < u <∞}.

The determinant of the derivative:

∣∣∣∣∂(w1, w2)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∂w1

∂u

∂w1

∂v

∂w2

∂u

∂w2

∂v

∣∣∣∣∣∣∣∣ =

∣∣∣∣ 0 1
1 −1

∣∣∣∣ = −1.

The joint pdf:

f(w1(u, v), w2(u, v)) = e−ve−(u−v) = e−u =⇒ g(u, v) =

{
e−u 0 < v < u <∞
0 otherwise

Finally,

gU(u) =

{∫ u
0
e−u dv = ue−u 0 < u <∞

0 otherwise

This is the pdf of U = X + Y which shows that U = X + Y ∼ Gamma(2, 1).

3.25. Remark: This concludes the sections on transformation theorems.
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Section 4. The Moment Generating Function Technique

3.26. Motivation: The mgf technique is particularly useful in determining the distri-
bution of a sum of two or more independent random variables if the mgfs of the random
variables exist.

3.27. Theorem: Suppose X1, . . . , Xn are independent random variables and Xi has mgf
Mi(t) which exists for t ∈ (−h, h) for some h > 0. Then Y = X1 + · · ·+Xn has mgf

MY (t) =
n∏
i=1

Mi(t), t ∈ (−h, h).

If the Xi’s are iid each with mgf M(t), then Y = X1 + · · ·+Xn has mgf

MY (t) = [M(t)]n, t ∈ (−h, h).

3.28. Example: We prove a useful result on transformations of normal random vari-
ables. Let X ∼ N(µ, σ2) and Y = aX + b with a 6= 0. We know that

MX(t) = exp

{
µt+

σ2t2

2

}
, t ∈ R.

Then

MY (t) = E[etY ] = E[et(aX+b)] = etbE[eatX ] = etbMX(at) = exp

{
t(aµ+ b) +

(aσ)2t2

2

}
By uniqueness of mgf, we see that Y = aX + b ∼ N(aµ+ b, a2σ2).

3.29. Example: Let Xi
iid∼ N(µi, σ

2
i ) and Y =

∑n
i=1 aiXi. Then

MXi(t) = exp

{
µit+

σ2
i t

2

2

}
.

MY (t) =
n∏
i=1

Mxi (ait)

=
n∏
i=1

exp

{
µiait+

σ2
i a

2
i t

2

2

}

= exp

{
t

n∑
i=1

µiai + t2
n∑
i=1

σ2
i a

2
i

}
By uniqueness of mgf, we see that

Y =
n∑
i=1

aiXi ∼ N

(
n∑
i=1

µiai,
n∑
i=1

σ2
i a

2
i

)
.
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Chapter 3. Transformations of Random Variables

Section 5. Important Distributions

3.30. Note: The Chi-Squared distribution with k degrees of freedom:

k∑
i=1

Z2
i ∼ χ2

k, Z1, . . . , Zk
iid∼ N(0, 1).

Some properties of χ2
k:

• mgf of χ2
1: M(t) = (1− 2t)−1/2.

• mgf of χ2
k:

M∑k
i=1 Z

2
i
(t) = E[et

∑k
i=1 Z

2
i ] =

k∏
i=1

E[etZ
2
i ] =

k∏
i=1

(1− 2t)−1/2 = (1− 2t)−k/2.

• If Y1, . . . , Ym are independent with Yi ∼ χ2
ki, then

m∑
i=1

Yi ∼ χ2∑k
i=1 ki

.

as its mgf is given by

M∑m
i=1 Yi

(t) =
m∏
i=1

MYi(t) =
m∏
i=1

(1− 2t)−ki/2 = (1− 2t)−
1
2

∑m
i=1 ki .

3.31. Note (t-Distribution): Let X ∼ N(0, 1) and Y ∼ χ2
n be independent. Then

X√
Y/n

∼ t(n)

with support R.

3.32. Note (F -Distribution): Let X ∼ χ2
(n) and Y ∼ χ2

(m) be independent, then

X/n

Y/n
∼ F(n,m)

with support (0,∞).

3.33. Example: Let Xi
iid∼ N(µ, σ2). Define the mean and sample variance

X =
1

n

n∑
i=1

Xi, s2 =
1

n− 1

n∑
i=1

(Xi −X)2.

We look at the one-sample T -statistic for H0 : µ = µ0:

T =
X − µ
s/
√
n
∼ t(n−1).
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Write Z =
X − µ
σ/
√
n

so that T =
Z

s/σ
=

Z√
s2/σ2

=
Z√

(n−1)s2
(n−1)σ2

=:
Z√

Y/(n− 1)
where Y =

(n− 1)s2

σ2
∼ χ2

n−1. We need to show three things:

(1) Z =
X − µ
σ/
√
n
∼ N(0, 1). (2) Y =

(n− 1)s2

σ2
∼ χ2

n−1. (3) Z and Y are independent.

Proof of (1). We have

X ∼ N

(
n∑
i=1

aiµ,

n∑
i=1

a2iσ
2

)
= N

(
µ,
σ2

n

)
.

Define Z = aX + b, a =

√
n

σ
, b =

−µ
√
n

σ
, we get Z ∼ N

(
aµ+ b, a2

σ2

n

)
= N(0, 1).

Proof of (2). We first show that X is independent with each of X1 − X, . . . , Xn − X. For
this claim, recall that

Xi
iid∼ N(µ, σ2) ⇐⇒

X1
...
Xn

 ∼ MVN


µ...
µ

 ,
σ

2 0
. . .

0 σ2


 .

Now we can take a linear transformation of (X1, . . . , Xn) to obtain
X

X1 −X
...

Xn −X

 =


1
n

1
n
· · · 1

n

1− 1
n

1
n
· · · 1

n
...

...
. . .

...
1
n

1
n
· · · 1− 1

n


︸ ︷︷ ︸

A


X1

X2
...
Xn

 ∼ MVN

A
µ...
µ

 , A
σ

2 0
. . .

0 σ2

AT
 .

Skipping some steps, the covariate matrix evaluates to[
σ2/n O

O
. . .

]
Since the first row and columns besides the (0, 0)-th entry is zero, the claim follows. Now∑n

i=1(Xi − µ)2

σ2
=

∑n
i=1(Xi −X)2

σ2
+
n(X − µ)2

σ2
.

Now LHS ∼ χ2
n as it is a sum of n iid standard normals. The middle term can be written as

(n−1)s2
σ2 and the right term can be written as

(
X−µ
σ/
√
n

)2
∼ χ2

1. Computing its mgf and simplify,

we get the desired result. To verify your answer, note that MY (t) = (1− 2t)−(n−1)/2.

Proof of (3). Y and Z are independent as Z is a function of the sample mean X and Y is a
function of the sample variance.
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3.34. Corollary: Given two independent samples

X1, . . . , Xn
iid∼ N(µ, σ2

1),

Y1, . . . , Ym
iid∼ N(µ, σ2

2),

then

T =
1

n−1
∑n

i=1(Xi −X)2/σ2
1

1
m−1

∑m
i=1(Yi − Y )2/σ2

2

∼ Fn−1,m−1.

Proof. We can write

T =

[
(n− 1)s21

σ2

]
/(n− 1)[

(m− 1)s22
σ2

]
/(m− 1)

.

Note that

(n− 1)s21
σ2

∼ χ2
n−1,

(m− 1)s12
σ2

∼ χ2
m−1,

and the numerator of T is a function of Xi’s while the denominator of T is a function of the
Yi’s. Now use previous results and we are done.
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Chapter 4. Limiting/Asymptotic Distributions

Section 1. Convergence in Distribution

4.1. Definition: Let {Xi}∞i=1 be a sequence of random variables and {Fi(x)}∞i=1 be the
corresponding cdfs, i.e., Xi has cdf Fi(x) = Pr(Xi ≤ x). Let X be the random variable with
cdf F (x) = Pr(X ≤ x). We say Xn converges in distribution to X and write Xn →D X
if limn→∞ Fn(x) = F (x) at all points x at which F (x) is continuous. We call F the limiting
or asymptotic distribution of Xn.

4.2. Remark: There are a few points to note in this definition.

(1). Intuitively, Xn →D X means that for large n, the distributions of Xn becomes close to
X. Thus, all functions of Xn that uniquely determines the distribution of a random
variable, such as cdf, pdf, mgf, etc., will approach that of X. Taking cdf as an example,
Xn →D X implies that for large n, Fn(x) = Pr(Xn ≤ x) ≈ Pr(X ≤ n) = F (x).

(2). However, convergence in distribution does not mean that the value of Xn will converge
to the value of X. See Example 4.3.

(3). Note in the definition above, we only care about points where F (x) is continuous. See
Example 4.4.

4.3. Example: Let W ∼ Bernoulli(1/2), X = 1−W , and Xn = W for all n = 1, 2, . . .
Here, Xn →D X (indeed, both are Bernoulli(1/2) random variables) but do we have Xn ≈ X?
No! We always Xn = W and X = 1−W . In particular, |Xn −X| = 1 for all n.

4.4. Example: Let Xn ∼ Uniform(0, 1/n) and X = 0 (a constant random variable).
Intuitively, the support of Xn shrinks as n→∞ and eventually approaches X. Let us prove
this formally.

Fn(x) =


0 x ≤ 0

nx 0 < x < 1/n

1 x ≥ 1/n

=⇒ lim
n→∞

Fn(x) = F̃ (x) =

{
0 x ≤ 0

1 x > 0

Comparing this with the cdf of X, which is

F (x) =

{
0 x < 0

1 x ≥ 0

we see that they do not match at x = 0. In fact, F̃ (x) is not right continuous, so it is not even
a cdf! Luckily, in the definition of convergence in distribution, we only care about points in
R \ {0} as 0 is a point of discontinuity of F (x). Thus, we still have limn→∞ Fn(x) = F (x)
for all x such that F is continuous at x, so Xn →D X (which matches our intuition).
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Chapter 4. Limiting/Asymptotic Distributions

4.5. The following theorem is very useful in determining the limiting distribution of
random variables.

4.6. Theorem: Let b, c ∈ R and φ : N→ R such that limn→∞ φ(n) = 0. Then

lim
n→∞

[
1 +

b

n
+
φ(n)

n

]cn
= ebc.

In particular, taking φ to be the constant zero function, we have

lim
n→∞

(
1 +

b

n

)cn
= ebc.

Proof. Omitted.

4.7. Example: LetXi
iid∼ Uniform(0, 1), X(1) = min{X1, . . . , Xn} andX(n) = max{X1, . . . , Xn}.

Find the asymptotic distribution of nX(1).

Proof. Recall the following from a previous example:

FX(1)
(y) =


0 y ≤ 0

1− (1− y)n 0 < y ≤ 1

1 y > 1

Now observe that

Fn(x) = Pr(nX(1) ≤ x)

= Pr(X(1) ≤ x/n)

=


0 x/n ≤ 0

1− (1− x/n)n 0 < x/n ≤ 1

1 x/n > 1

=


0 x ≤ 0

1− (1− x/n)n 0 < x ≤ n

1 x > n

lim
n→∞

Fn(x) = F̃ (x) =

{
0 x ≤ n

1− e−x x > 0

Now recall that the cdf of X ∼ Exponential(1) is given by

F (x) =

{
1− e−x x ≥ 0

0 x < 0

Since F̃ (x) and F (x) match at all points besides 0, we see that the asymptotic distribution
of nX(1) is Exponential(1).
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4.8. Example: LetXi
iid∼ Uniform(0, 1), X(1) = min{X1, . . . , Xn} andX(n) = max{X1, . . . , Xn}.

Find the asymptotic distribution of n(1−X(n)).

Proof. Recall the following from a previous example:

FX(n)
(y) =


0 y ≤ 0

yn 0 < y ≤ 1

1 y > 1

As before, we want to find the cdf of Fn(x).

Fn(x) = Pr(n(1−X(n)) ≤ x)

= Pr(X(n) ≥ 1− x/n)

= 1− Pr(X(n) ≤ 1− x/n)

= 1− FX(n)
(1− x/n)

=


1 1− x/n ≤ 0

1− (1− x/n)n 0 < 1− x/n ≤ 1

0 1− x/n > 1

=


0 x < 0

1− (1− x/n)n 0 < x ≤ n

1 x > n

lim
n→∞

Fn(x) = F̃ (x) =

{
0 x ≤ 0

1− e−x x > 0

It follows that n(1−X(n))→D Exponential(1) as well.
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Section 2. Convergence in Probability

4.9. Definition: A sequence of random variables {Xi}∞i=1 converges in probability
to a random variable X, denoted Xn →p X if, for all ε > 0, limn→∞ Pr(|Xn −X| ≥ ε) = 0,
or equivalently, limn→∞ Pr(|Xn −X| < ε) = 1.

4.10. Remark: Convergence in probability is a stronger form of convergence than con-
vergence in distribution, in the sense that Xn →p X ⇒ Xn →D X. The converse is false.

4.11. Example: Let W ∼ Uniform(0, 1), X = 0 be a constant random variable, and

Xn =

{
1 0 < W < 1/n

0 otherwise

We proceed by definition. Let ε > 0, observe that

Pr(|Xn −X| ≥ ε) = Pr(Xn ≥ ε) = Pr(Xn = 1) = Pr(0 < W < 1/n)

=

∫ 1/n

0

1 dx =
1

n

n→∞−−−→ 0.

4.12. Here are two useful inequalities.

4.13. Theorem (Markov Inequality): Let X be a random variable.

Pr(|X| ≥ c) ≤ E(|X|k)
ck

, ∀k, c ≥ 0.

4.14. Theorem (Chebyshev’s Inequality): Suppose X is a random variable finite mean
µ and finite variance σ2. Then for any k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2
.

4.15. Example: Let {Xi}∞i=0 be a series of random variables with

E[Xn] = µ, Var[Xn] = σ2
n, lim

n→∞
σ2
n = 0.

Show that Xn →p µ.

Proof. Let ε > 0. Then,

0 ≤ Pr(|Xn − µ| ≥ ε) ≤ E[(Xn − µ)2]

ε2
=

Var[Xn]

ε2
=
σ2
n

ε2
n→∞−−−→ 0.

By Squeeze Theorem,

lim
n→∞

Pr(|Xn − µ| ≥ ε) = 0 =⇒ Xn →p µ.
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Section 3. Weak Law of Large Numbers

4.16. Intuition: The WLLN says that the sample mean Xn of iid random variables
approaches the population mean µ as n→∞.

4.17. Theorem: Suppose {Xi}∞i=0 are iid random variables with E[Xi] = µ and finite
variance Var[Xi] = σ2 <∞. Consider the sequence of means {X i}∞i=0 where

Xn :=
1

n

n∑
i=1

Xi.

Then Xn →p µ.

Proof. Fix ε > 0. Using Chebyshev’s inequality to the random variable Xn with mean µ
and variance σ2/n, we obtain

Pr

(
|Xn − µ| ≥

kσ√
n

)
≤ 1

k2

for all k > 0. Set

k =

√
nε

σ
.

Then

0 ≤ Pr(|Xn − µ| ≥ ε) ≤ σ2

nσ

n→∞−−−→ 0.

By Squeeze Theorem,

lim
n→∞

Pr(|Xn − µ| ≥ ε) = 0

as required.

4.18. Remark: The proof of the WLLN does not actually require that the random
variables are iid, only that they all have the same mean and variance. It also does not
require knowing the distribution of these random variables.

4.19. Remark: A stronger result exists, but we won’t talk about it in this class.
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Section 4. Central Limit Theorem

4.20. Lemma: Suppose {Xi}∞i=0 are iid rvs with mgfs Mi(t). Let X be a rv with mgf
M(t). If there exists an h > 0 such that

∀t ∈ (−h, h) : lim
n→∞

Mn(t) = M(t),

then Xn →D X.

Proof. Recall that the mgf uniquely determines the distribution of a random variable.

4.21. Lemma: Suppose {Xi}∞i=0 and X are non-negative integer-valued random vari-
ables. If Xn →D X, then

lim
n→∞

Pr(Xn ≤ x) = Pr(X ≤ x)

holds for all x and in particular

lim
n→∞

Pr(Xn = x) = Pr(X = x) x = 0, 1, . . .

Proof. This is like the definition of convergence in distribution but applied on non-negative
integer-valued random variables.

4.22. Theorem: Suppose {Xi}∞i=0 are iid rvs with E[Xi] = µ and Var[Xi] = σ2 < ∞.
Consider the sequence of normalized random variables {Zi}∞i=0 with

Zn =

√
n(Xn − µ)

σ
, Xn =

1

n

n∑
i=1

Xi.

Then Zn →D Z ∼ N(0, 1).

Proof. Omitted.

4.23. Example: We show an application of CLT. Let X1, . . . , Xn
iid∼ Poisson(λ). Then

√
n(Xn − λ)√

λ
→D N(0, 1).

4.24. Example: Suppose we have a sequence of random variables where Xi ∼ χ2
i . Since

χ2
n =

∑n
i=1 χ

2
1, we can apply CLT. We know that E[X2

n] = 1 and Var[X2
1 ] = 2. Therefore,

√
n
(∑n

i=1 χ
2
i

n
− 1
)

√
2

→D N(0, 1).

It follows that

Xn − n√
2n

→D N(0, 1).
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Section 5. More Limit Theorems

4.25. The following two results tell us that convergence in distribution/probability be-
have quite nicely. In particular, we can substitute the limiting distribution when applying a
continuous function and add/subtract/multiply/divide limiting distributions, as long as one
sequence converges to a constant random variable. See Warning 4.28.

4.26. Theorem (Continuous Mapping): Let g(·) be a continuous function.

• If Xn →p c, then g (Xn)→p g(c).

• If Xn →d X, then g (Xn)→d g(X).

Proof. Omitted.

4.27. Theorem (Slutsky): If Xn →d X and Yn →p c, then:

• Xn + Yn →d X + c.

• XnYn →d cX.

•
Xn

Yn
→d

X

c
(when c 6= 0).

Note that we can replace →d with →p and these results still hold.

Proof. Omitted.

4.28. Warning: Note that Xn →D X and Yn →D Y does not imply Xn+Yn →D X+Y !

4.29. Example: Let Xn ≥ 0 and c ≥ 0. Then

Xn →p c =⇒
√
Xn →p

√
c

Xn →p c =⇒ X2
n → c2

4.30. Example: Let Xn →D X ∼ N(0, 1). Then

2Xn + 1→D 2X + 1 ∼ N(1, 4)

X2
n →D X2 ∼ χ2

1

4.31. Example: If Xn →D X ∼ N(0, 1) and Yn →p c 6= 0, then

Xn + Yn →D X + c ∼ N(c, 1)

XnYn →D cX ∼ N(0, c2)

Xn

Yn
→D

X

c
∼ N

(
0,

1

c2

)
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4.32. Example: Let {Xi}∞i=1 be iid Poisson(λ) random variables. We wish to find the

asymptotic distribution for Un =
√
n(Xn − λ) and Zn = Un/

√
Xn.

Solution. First, by CLT, we have
√
n(Xn − λ)√

λ
→D N(0, 1).

Define g(t) =
√
λt which is continuous. Then by continuous mapping theorem,

Un = g

(√
n(Xn − λ)√

λ

)
→D g(N(0, 1)) =

√
λ ·N(0, 1) = N(0, λ).

Next, by WLLN, Xn →p λ. Define h(t) =
√
t which is continuous. Then√

Xn = g(Xn)→p g(λ) =
√
λ.

Finally, by Slutsky, we have

Zn =
Un√
Xn

→D
N(0, λ)√

λ
= N(0, 1).

4.33. Example: Let {Xi}∞i=1 be iid Uniform(0, 1) random variables. Define Un =
max1≤i≤nXi and Vn = e−n(1−Un). Find the limiting distribution of Vn.

Solution. Previously, we have shown that n(1− Un)→D Exponential(1). Define g(t) = e−t,
so that Vn = g(n(1− Un)). Using continuous mapping theorem,

Vn →D g(Exponential(1)) = e−Y

where Y ∼ Exponential(1). Let T = e−Y . Using definition of cdf,

FT (t) = Pr(e−Y ≤ t) =

{
Pr(Y ≥ − log(t)) t > 0

0 t ≤ 0

For t > 0,

Pr(Y ≥ − log(t)) =

{∫∞
− log t

e−y dy − log(t) > 0

1 − log(t) ≤ 0
=

{
t t < 1

1 t ≥ 1

It follows that

FT (t) =


0 t ≤ 0

t 0 < t < 1

1 t ≥ 1

Observe this is a Uniform(0, 1) random variable. It follows that Vn →D Uniform(0, 1).
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4.34. Example: Let {Xi}∞i=1 be iid Uniform(0, 1) random variables. Define Un =
max1≤i≤nXi. Find the limiting distribution of

Wn =
n(1− Un)

X
2

n

.

Solution. We know the numerator converges in distribution to Exponential(1). For the
denominator, we use WLLN, which gives us

Xn →p E[Xi] =
1

2
.

Moreover, Var[Xi] = 1/12 <∞. Using continuous mapping, for g(t) = t2, we have

X
2

n = g(Xn)→p
1

22
=

1

4
6= 0.

Applying Slutsky, we have

Wn →D
Exponential(1)

1/4
= 4 · Exponential(1) = Exponential(4).

4.35. Theorem (Delta Method): Let {Xi}∞i=1 be a sequence of random variables such that

an(Xn − θ)→D N(0, σ2)

with limn→∞ an =∞ and g(x) is differentiable at x = θ with g′(θ) 6= 0. Then

an[g(Xn)− g(θ)]→D N(0, [g′(θ)]2σ2).

4.36. Intuition: Using 1st order Taylor expansion,

g(Xn) ≈ g(θ) + g′(θ)(Xn − θ)
an(g(Xn)− g(θ)) ≈ an(g′(θ)(Xn − θ))

For large n, an(Xn − θ) ≈D N(0, σ2), which implies that

ang
′(θ)(Xn − θ) ≈D N(0, σ2)− g′(θ) = N(0, σ2[g′(θ)]2).

4.37. Note: We usually use this result with an =
√
n. Recall CLT states that

√
n(Xn − µ)

σ
→D N(0, 1).

Now by continuous mapping theorem,
√
n(Xn − µ)→D N(0, 1) · σ = N(0, σ2).
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4.38. Example: Let {Xi}∞i=1 be iid Poisson(λ) random variables. Find the limiting
distribution of

Zn =
√
n(

√
Xn −

√
λ).

Solution. Previously, we have
√
n(Xn − λ) →D N(0, λ). Define g(t) =

√
t, so that Zn =√

n(g(Xn)− g(λ)). Since λ > 0 (required for Poisson), g′(λ) exists and

g′(λ) =
1

2
√
λ
6= 0.

By the Delta method,

Zn →D N(0, [g′(λ)]2 · λ) =⇒ Zn →D N(0, 1/4).

4.39. Example: Let {Xi}∞i=1 be iid Exponential(θ) random variables. Find the limiting
distribution of

Zn =
√
n(log(Xn)− log(θ)).

Proof. By CLT and continuous mapping,
√
n(Xn − θ)

θ
→D N(0, 1) =⇒

√
n(Xn − θ)→ N(0, θ2).

Define g(t) = log(t) so that

Zn =
√
n(g(Xn)− g(θ)).

We have g′(θ) = 1/θ 6= 0, so by delta method,

Zn →D N(0, [g′(θ)]2 · θ2) = N(0, 1).

4.40. Example: Let {Xi}∞i=1 be iid with mean 0, variance σ2 < ∞. Approximate the

distribution of X
2

n.

Solution. By CLT and continuous mapping,
√
n(Xn − 0)

σ
→D N(0, 1) =⇒

√
nXn →D N(0, σ2).

Define g(t) = t2, which exists at t = 0. However, g′(0) = 0, so we can’t use the delta method.
Another idea: apply the squared functionto

√
n(Xn − 0)

σ
→D N(0, 1) =⇒ nX

2

n

σ2
→D [N(0, 1)]2 = χ2

1.
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Section 6. Summary

4.41. Let us now summarize this chapter. We first list the building blocks for determin-
ing convergence in distribution/probability, then discuss the helper results.

4.42. Note: We have two ways of showing convergence in distribution:

(1). By definition, i.e., show that Fn(x)→ F (x). Most likely simple limit or e limit.

(2). By CLT, when we are working with sums of iid random variables.

We have two ways of showing convergence in probability:

• By definition, i.e., ∀ε > 0 : Pr(|Xn−X| ≥ ε)→ 0. Simple limit, or Markov inequality.

• By WLLN, when there are sum of iid random variables.

4.43. Note: The helper results:

• Continuous mapping theorem.

• Slutsky’s theorem.

• Delta method.
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Chapter 5. Point Estimation

Chapter 5. Point Estimation

5.1. Motivation: Suppose the random variable X has pdf f(x; θ), where θ is unknown
and θ ∈ Ω is the parameter space. A statistic, T = T (X), is a function of the data X which
does not depend on any unknown parameters. A statistic T = T (X) that is used to estimate
τ(θ), a function of θ, is called an estimator of τ(θ) and an observed value of the statistic
t = t(x) is called an estimate of τ(θ). We often denote an estimator of θ as θ̂.
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1. Method of Moments

Section 1. Method of Moments

5.2. Note: Let X1, . . . , Xn be iid with pdf f(x,θ), where θ ∈ Rp. Define

µ1 = E[Xi] = g1(θ)

µ2 = E[X2
i ] = g2(θ)

...

µp = E[Xp
i ] = gp(θ)

Since we don’t have true population moments in practice, we can substitute µi by µ̂i, where

µ̂j =

∑n
i=1X

j
i

n
.

We define the method of moments estimates (MME) of θ to be the solution to this
system of p equations and p unknowns.

5.3. Example: Let X1, . . . , Xn
iid∼ Poisson(λ). We know the true population mean is

µ1 = E[Xi] = λ. Using MME, we derive one equation of one known:

µ̂1 =
1

n

n∑
i=1

Xi = λ.

Since λ̂ = µ̂1 solves this equation, it is the MME of λ. We look at the quality of this estimate:

• λ̂ is unbiased:

E[λ̂] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n
· nλ = λ.

• λ̂ is consistent: By WLLN, λ̂ = Xn →p λ.

5.4. Example: Let X1, . . . , Xn
iid∼ Uniform(0, θ). We know that µ1 = E[Xi] = θ/2. The

MME estimate θ̂ is given by

µ̂1 =
θ

2
=⇒ θ̂ = 2µ̂1 = 2

1

n

n∑
i=1

n∑
i=1

Xi =
2

n

n∑
i=1

Xi = 2Xn.

Again, this estimate is unbiased (easy) and consistent (continuous mapping and WLLN).

5.5. Example: As one last example, consider X1, . . . , Xn
iid∼ N(µ, σ2). We know that

µ1 = E[Xi] = µ and µ2 = E[X2
i ] = Var[Xi] + E[Xi]

2 = σ2 + µ2. The MMEs are obtained by
solving µ̂1 = µ and µ̂2 = σ2 + µ2. Both are consistent; µ̂ is unbiased while σ̂2 is biased.

µ̂ = Xn, σ̂2 =
1

n

n∑
i=1

X2
i −X

2

n.
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Chapter 5. Point Estimation

Section 2. Maximum Likelihood

5.6. Motivation: Let X1, . . . , Xn be iid random variables with pdf f(x;θ) with θ ∈ Ω.
Let (x1, . . . , xn) be observe from (X1, . . . , Xn).

5.7. Note: The likelihood function L : Ω→ [0,∞) is defined by

L(θ; x) =
n∏
i=1

f(xi;θ).

It is important to recognize that

• The joint pdf is a function of data x, indexed by parameter θ.

• The likelihood function is a function parameter θ, indexed by data x.

The maximum likelihood method picks θ that maximizes the likelihood function. We call
this θ̂ the maximum likelihood estimate (MLE) of θ. In practice, it is often easier to
maximize the log likelihood function:

`(θ; x) = logL(θ; x) = log

(
n∏
i=1

f(xi;θ)

)
=

n∑
i=1

log(f(xi;θ)).

5.8. Example: Suppose X1, . . . , Xn
iid∼ Uniform(0, θ). Then

f(x; θ) =

{
1/θ 0 < x < θ

0 otherwise

The likelihood function is given by

L(θ;x) =
n∏
i=1

f(xi; θ) =
n∏
i=1

{
1/θ θ > xi

0 otherwise
=

{
θ−n θ > maxi xi

0 otherwise

Observe the maximum happens at θ̂ = maxi xi. This is thus the MLE.

5.9. Theorem (Invariance of MLE): If θ̂ is the MLE of θ, then for any function g, g(θ̂)
is the MLE of g(θ).

5.10. Example: Let X1, . . . , Xn
iid∼ Poisson(λ). Previously, we derived that λ̂MLE = Xn.

How about the MLE of E[X2
i ]? Recall that E[X2

i ] = Var[Xi] + E[Xi]
2 = λ + λ2 = λ(λ + 1).

By the invariant property, the MLE is simply Xn(Xn + 1). How about the MLE of

Pr(Xi = 0) =
λ0e−λ

0!
= e−λ?

Again, it’s just e−Xn .
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2. Maximum Likelihood

5.11. Note: From now on, let θ be a scalar. Define the score function by

S(θ; x) =
d

dθ
`(θ; x).

Define the information function by

I(θ; x) = − d2

dθ2
`(θ; x).

Define the expected information function by

J(θ) = E[I(θ; x)].

5.12. Theorem (Asymptotic Normality and Consistency of MLE): Under some regu-
larity conditions, (θ̂ − θ)[J(θ)]1/2 →D N(0, 1) and θ̂ →p θ.

5.13. Example: Let X1, . . . , Xn
iid∼ Poisson(λ). Then

`(λ; x) = logL(λ; x) =

(
n∑
i=1

xi

)
log λ− nλ−

n∑
i=1

log(xi!).

S(λ; x) =
d

dλ
`(λ; x) =

∑n
i=1 xi
λ

− n.

I(λ; x) = − d2

dλ2
`(λ; x) = −−

∑n
i=1 xi
λ2

=

∑n
i=1 xi
λ2

J(λ) = E[I(λ; x)] = E
[∑n

i=1 xi
λ2

]
=
nλ

λ2
=
n

λ
.

By this theorem, we have

(λ̂− λ)[J(λ)]1/2 →D N(0, 1), λ̂Xn →p λ.
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