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Chapter 1. Simple Linear Regression

Section 1. Overview

1.1. Suppose we are given a set of data points {(x1, y1), . . . , (xn, yn)}.

• How do we characterize the relationship between x and y?

• How do we predict y given x?

• How does the mean of y change when x increases by a?

We can answer questions like these with simple linear regression (SLR):

yi = β0 + β1xi + εi.

Intuitively, we are assuming that there exists some underlying linear relationship between the
covariate xi and the outcome yi, where the regression coefficients β0 and β1 are unknown.
The error term εi captures the difference between the actual value of yi and our prediction
β0 + β1xi.

1.2. The model above is “simple” because there is only one explanatory variable x. Suppose
now each sample xi has three covariates xi1, xi2, and xi3. We generalize SLR to multiple linear
regression (MLR), where each covariate xij has a corresponding βj parameter:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

The meaning of yi and εi remain the same; we just have more covariates to work with.

1.3. This course will focus on developing regression models in the following aspects:

• theoretically/mathematically: derive estimators;

• practically: how to fit these models in R;

• how to choose and compare a model, i.e., which covariates to include;

• how to evaluate the appropriateness of the model and assumptions.
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Chapter 1. Simple Linear Regression

Section 2. Simple Linear Regression

1.4. Remark: We make the following assumptions (acronym: LINE):

• Linearity: there exists a linear relationship between x and y.

• Independence: the error terms ε1, . . . , εn are independent.

• Normality: the error terms have mean 0.

• Equal variance (aka homoskedasticity): all error terms share the same variance σ2.

1.5. Definition: The general form of simple linear regression is given by

yi = β0 + β1xi + εi, εi
iid∼ N(0, σ2).

• β0, β1, σ
2: fixed, unknown parameters.

• εi: unobserved random error term.

• yi, xi are observed data (we treat xi as fixed in this course).

Equivalently, we can write

yi
indep∼ N(β0 + β1xi, σ

2).

Note here yi’s are independent but no longer have the same distribution because they have different
means (depending on xi).

1.6. Example: How to interpret β0 and β1? We make the following observations:

1. E[yi | xi] = β0 + β1xi.

2. E[yi | xi = 0] = β0.

3. E[yi | xi = x∗] = β0 + β1x
∗.

4. E[yi | xi = x∗ + 1] = β0 + β1(x∗ + 1) = β0 + β1x
∗ + β1.

5. E[yi | xi = x∗ + 1]− E[yi | xi = x∗] = β1.

Therefore,

• By observation 2, β0 is the average outcome when x0 = 0.

• By observation 5, β1 is the expected/average change in y when x moves by 1 unit.
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3. SLR: Estimation

Section 3. SLR: Estimation

1.7. Theorem: The LS estimators for β0 and β1 are given by

β̂LS0 = ȳ − β̂LS1 x̄

β̂LS1 =
(
∑

i xiyi)− nx̄ȳ
(
∑

i x
2
i )− nx̄2

=
Sxy
Sxx

Proof. The goal is to choose β0 and β1 that minimizes the sum of squared errors given by

S(β0, β1) :=

n∑
i=1

εi =

n∑
i=1

(yi − (β0 + β1xi))
2

Differentiate, set the partial derivatives to 0, and solve for β0 and β1:

∂S(δ0, δ1)

∂β0
=

n∑
i=1

2(yi − β0 − β1xi)(−1)

∂S(δ0, δ1)

∂β1
=

n∑
i=1

2(yi − β0 − β1xi)(−xi)

(Set) 0 =
n∑
i=1

(yi − β0 − β1xi)

=

(
n∑
i=1

yi

)
− nβ0 −

(
β1

n∑
i=1

xi

)

=⇒ β0 =

(
1

n

n∑
i=1

yi

)
− β1

(
1

n

n∑
i=1

xi

)
= ȳ − β1x̄

(Set) 0 =
n∑
i=1

(yixi − β0xi − β1x
2
i )

=

(
n∑
i=1

yixi

)
−

(
β0

n∑
i=1

xi

)
−

(
β1

n∑
i=1

x2
i

)

=

(
n∑
i=1

yixi

)
− (ȳ − β1x̄)nx̄−

(
β1

n∑
i=1

x2
i

)
plug in previous result

=

(
n∑
i=1

yixi

)
− nȳx̄+ β1nx̄

2 −

(
β1

n∑
i=1

x2
i

)

=

(
n∑
i=1

yixi

)
− nȳx̄+ β1

(
nx̄2 −

n∑
i=1

x2
i

)

=⇒ β1 =
(
∑n

i=1 yixi)− nȳx̄
(
∑n

i=1 x
2
i )− nx̄2

=
Sxy
Sxx

See Proposition 1.24
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Chapter 1. Simple Linear Regression

1.8. Theorem: The ML estimators for β0 and β1 coincide with the LS estimators.

Proof. The joint likelihood function of Y1, . . . , Yn with Yi
indep∼ N(β0 + β1xi, σ

2) is

L(β0, β1, σ) =
n∏
i=1

f(yi;β0 + β1xi, σ
2)

=
n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − β0 − β1xi)

2

)
.

The log-likelihood function is given by

`(β0, β1, σ
2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2.

Maximizing the log-likelihood is equivalent to solving the following system of equations:

∂`

∂β0
=

1

σ2

(
n∑
i=1

(yi − β0 − β1xi)

)
= 0

∂`

∂β1
=

1

σ2

(
n∑
i=1

(yi − β0 − β1xi)

)
xi = 0

∂`

∂σ2
= − n

2σ2
+

1

2(σ2)2

(
n∑
i=1

(yi − β0 − β1xi)

)2

= 0

Observe solving the first two equations is equivalent to minimizing the sum of squares! In other
words, the ML estimators β̂ML

0 , β̂ML
1 coincide with the LS estimators β̂LS

0 , β̂LS
1 . Therefore, we will

remove the superscripts and simply call them β̂0 and β̂1.

1.9. Definition: The fitted values ŷi and the residuals ei are given by

• ŷi = β̂0 + β̂1xi.

• ei = yi − ŷi = yi − (β̂0 + β̂1xi).

Note the residuals ei and the errors εi = yi − (β0 + β1xi) are not the same thing.

1.10. Remark: Solving the third equation, we obtain the ML estimator for σ2:

σ̂2
ML =

∑n
i=1 e

2
i

n
.

This is slightly different from the unbiased estimator for σ2 (notice the n− 2 in the denominator):

σ̂2 =

∑n
i=1 e

2
i

n− 2
.

This difference often doesn’t matter when n ≥ 50.
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4. SLR: Inference

Section 4. SLR: Inference

1.11. Theorem: The estimator β̂1 follows the Normal distribution with parameters

β̂1 ∼ N
(
β1,

σ2

Sxx

)
.

Proof. Recall yi
indep∼ N(β0 + β1xi, σ

2). Let us rewrite β̂1 as

β̂1 =
Sxy
Sxx

=

∑
i(yi − ȳ)(xi − x̄)∑

i(xi − x̄)2

=

∑
i yi(xi − x̄)∑
i(xi − x̄)2

=:

n∑
i=1

wiyi, wi :=
(xi − x̄)∑
i(xi − x̄)

.

Since we assumed that xi’s are fixed, the variables wi’s are fixed wrt the yi’s. Thus, β̂1 is a linear
combination independent Normal random variables y1, . . . , yn. Moreover, all yi’s share the same
variance (homoskedasticity). By the Fact above, βi follows the normal distribution with parameters

β̂1 ∼ N

(
n∑
i=1

wi(β0 + β1xi), σ
2

n∑
i=1

w2
i

)
.

It remains to simplify the parameters.

E[β̂1] =

n∑
i=1

wi (β0 + β1xi)

=

n∑
i=1

(xi − x̄)∑
(xi − x̄)2 (β0 + β1xi)

= β0

∑n
i=1 (xi − x̄)∑

(xi − x̄)2 + β1

∑n
i=1 xi (xi − x̄)∑

(xi − x̄)2

= 0 + β1

∑n
i=1 (xi − x̄) (xi − x̄)∑

(xi − x̄)2 = β1

n∑
i=1

(xi − x̄) = 0

Var[β̂1] = σ2
n∑
i=1

w2
i

= σ2
n∑
i=1

[
(xi − x̄)∑n
i=1 (xj − x̄)2

]2

= σ2
n∑
i=1

(xi − x̄)2[∑n
j=1 (xj − x̄)2

]2

= σ2

∑n
i=1 (xi − x̄)2[∑n
j=1 (xj − x̄)2

]2 = σ2 1∑n
i=1 (xi − x̄)2 =

σ2

Sxx

5



Chapter 1. Simple Linear Regression

1.12. Theorem: The estimator β̂0 follows the Normal distribution with parameters

β̂0 ∼ N
(
β0, σ

2

[
1

n
+

x̄2

Sxx

])
.

Proof.

E
[
β̂0

]
= E

[
ȳ − β̂1x̄

]
= E[ȳ]− E[β̂1x̄]

= E

[
1

n

n∑
i

yi

]
− x̄E

[
β̂1

]
=

1

n

(
n∑
i=1

E[yi]

)
− x̄β1 E[β̂1] = β1

=
1

n

(
n∑
i=1

(β0 + β1xi)

)
− x̄β1 E[y1] = β0 + β1xi

= β0 + β1x̄− x̄β1 = β0

Varβ̂0 = Var
(
ȳ − β̂1x̄

)
= Var(ȳ)− 2Cov

(
ȳ, β̂1x̄

)
+ Var

(
β̂1x̄
)

=
σ2

n
− 2x̄Cov

(
ȳ, β̂1

)
+ x̄2Varβ̂1 See (1.25)

=
σ2

n
− 2x̄Cov

(
ȳ, β̂1

)
+ x̄2 σ

2

Sxx

= σ2

[
1

n
+

x̄2

Sxx

]
− 2x̄Cov

(
ȳ, β̂1

)
.

It remains to show that Cov(ȳ, β̂1) = 0.

Cov
(
ȳ, β̂1

)
= Cov

(
1

n

n∑
i=1

yi,

∑
i (xi − x̄) yi∑
i (xi − x̄)2

)

=
1

n
∑

i (xi − x̄)2 Cov

(∑
i

Yi,
∑
i

(xi − x̄)Yi

)

=
1

n
∑

i (xi − x̄)2

∑
i,j

Cov (yi, (xi − x̄) yj) Cov (yi, (xi − x̄) yj) ∝ δi,j

=
1

n
∑

i (xi − x̄)2

∑
i

(xi − x̄) Var(yi) Cov(yi, yi) = Var(yi)

=
σ2

n
∑

i (xi − x̄)2

∑
i

(xi − x̄) Var(yi) = σ2

= 0
∑
i

(xi − x̄) = 0

6



5. SLR: Confidence Interval

Section 5. SLR: Confidence Interval

1.13. Let us derive a 95% confidence interval for β1. Recall that

β̂1 ∼ N
(
β1,

σ2

Sxx

)
=⇒ Z :=

β̂1 − β1

σ/
√
Sxx
∼ N(0, 1). (1.1)

Suppose σ is known. Then

0.95 = P (−1.96 ≤ Z ≤ 1.96)

= P

(
−1.96 ≤ β̂1 − β1

σ/
√
Sxx
≤ 1.96

)

= P

(
−1.96

σ√
Sxx
≤ β̂1 − β1 ≤ 1.96

σ√
Sxx

)
= P

(
−1.96

σ√
Sxx
≤ β1 − β̂1 ≤ 1.96

σ√
Sxx

)
= P

(
β̂1 − 1.96

σ√
Sxx
≤ β1 ≤ β̂1 + 1.96

σ√
Sxx

)
Thus, a 95% CI for β1 is

β̂1 ± 1.96
σ√
Sxx

.

In practice, σ2 is often unknown. We can estimate it using the unbiased estimator σ̂2.

1.14. Definition: The standard error SE(β̂1) is an estimator of β̂1’s standard deviation:

SE(β̂1) :=

√
σ̂2

Sxx
=

σ̂√
Sxx

.

1.15. Theorem: The confidence interval of β̂1 is given by

β̂1 ± t1−α/2,n−2SE(β̂1).

Proof. Replacing σ2 by σ̂2 in (1.1) gives the t-distributed pivotal quantity

β̂1 − β1

σ̂/
√
Sxx

=
β̂1 − β1

SE(β̂1)
∼ t(n−2).

A 100(1− α)% confidence interval is given by

1− α = Pr

(
−q ≤ β̂1 − β1

SE(β̂1)
≤ q

)
= Pr

(
β̂1 − q

σ̂

SE(β̂1)
≤ β1 ≤ β̂1 + q

σ̂

SE(β̂1)

)
Thus, a 95% CI for β1 is

β̂1 ± t1−α/2,n−2
σ̂√
Sxx

where t1−α/2,n−2 is can be found with qt(p = alpha/2, df = n-2) in R.
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Chapter 1. Simple Linear Regression

Section 6. SLR: Hypotheses Testing

1.16. Suppose we want to test a null hypothesis H0 : β1 = θ0 against some alternative hypoth-
esis H1 : β1 6= θ0. For SLR, we often set

• H0 : β1 = 0: no linear relationship;

• H1 : β1 6= 0: two-sided alternative.

The goal is to characterize how much evidence we have against H0, or how “extreme” our data are
relative to H0. We can test the null hypothesis with the t-statistic

T :=
β̂1 − θ0

σ̂/
√
Sxx
∼ t(n−2).

Assuming H0 is true, what’s the probability to have some as extreme or more than what we observe?

Pr(|T | ≥ |tobs|) = 2 Pr(T ≥ |tobs|) = 2[1− Pr(T ≤ −|tobs|)].

We typically reject the null hypothesis at the 5% level, i.e., reject H0 if p < 0.05. Would we accept
H0 if p > 0.05? No, we simply would not have enough evidence to reject.

1.17. Remark: Does this mean Pr(β1 = 0) = p? No. Instead, it means under the null
hypothesis, i.e., assuming β1 = 0, the probability of a test statistic as extreme as the one observed
is equal to p. That’s why a small p-value is evidence against the null, since it would be particularly
“rare” under the null.

1.18. Remark: Note that a 100(1 − α)% CI (e.g., 0.95) corresponds with a hypothesis test
with a 100α% significance level (e.g., 0.05), i.e., we will derive a similar conclusion. In particular,
if we reject H0 at the 0.05-level (i.e., when the p-value is less than 0.05), then the 95% CI will not
contain the value of 0.
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7. SLR: Estimation of Mean Response

Section 7. SLR: Estimation of Mean Response

1.19. Theorem: Given new x0, the estimated mean response is given by

µ̂0 = β0 + β1x0 ∼ N
(
µ0, σ

2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

))
.

Proof. The mean response for an arbitrary x0 is given by

µ̂0 = E[y | x0] = β̂0 + β̂1x0 = (ȳ − β̂1x̄) + β̂1x0 = ȳ + β̂1(x0 − x̄).

The estimate of mean response is unbiased:

E[µ̂0] = E[β̂0 + β̂1x0] = E[β̂0] + E[β̂1]x0 = β0 + β1x0 =: µ0.

The variance is given by

Var [µ̂0] = Var
[
β̂0 + β̂1x0

]
= Var

[(
ȳ − β̂1x̄

)
+ β̂1x0

]
= Var

[
ȳ + β̂1 (x0 − x̄)

]
= Var

[(
n∑
i=1

1

n
yi

)
+

(
n∑
i=1

(xi − x̄)

Sxx
yi

)
(x0 − x̄)

]

= Var

[
n∑
i=1

(
1

n
+

(xi − x̄) (x0 − x̄)

Sxx

)
yi

]
?

=
n∑
i=1

(
1

n
+

(xi − x̄) (x0 − x̄)

Sxx

)2

σ2

= σ2
n∑
i=1

(
1

n2
+

(xi − x̄)2 (x0 − x̄)2

S2
xx

+ 2
1

n

(xi − x̄) (x0 − x̄)

Sxx

)

= σ2

(
n∑
i=1

1

n2
+

n∑
i=1

(xi − x̄)2 (x0 − x̄)2

S2
xx

+ 2

n∑
i=1

1

n

(xi − x̄) (x0 − x̄)

Sxx

)

= σ2

(
1

n
+

(x0 − x̄)2

S2
xx

Sxx + 2
1

n

(x0 − x̄)

Sxx

n∑
i=1

(xi − x̄)

)

= σ2

(
1

n
+

(x0 − x̄)2∑n
i=1 (xi − x̄)2

)
Note in the 5th line of the derivation of variance (labeled ?), we see that µ̂0 is a linear combination
of Normal random variables yi, so µ0 is also Normal:

µ̂0 ∼ N
(
µ0, σ

2

(
1

n
+

(x0 − x̄)2∑n
i=1(xi − x̄)2

))
.

9



Chapter 1. Simple Linear Regression

1.20. Note: From above, we know that

µ̂0 − µ0

σ

√(
1
n + (x0−x̄)2∑n

i=1(xi−x̄)2

) ∼ N(0, 1) and
µ̂0 − µ0

σ̂

√(
1
n + (x0−x̄)2∑n

i=1(xi−x̄)2

) ∼ tn−2.

Thus, a 95% CI is given by

0.95 = P

−tn−2,1−α
2
≤ µ̂0 − µ0

σ̂
(

1
n + (x0−x̄)2∑n

i=1(xi−x̄)2

)1/2
≤ tn−2,1−α

2


In general, a 100(1− α)% CI is given by

µ̂0 ± tn−2,1−α
2
σ̂

√√√√( 1

n
+

(x0 − x̄)2∑n
i=1 (xi − x̄)2

)
.

Note that the CIs get bigger as x→∞ and x→ −∞ as we have fewer data points there.

Note that many points fall outside of the CI. What if we don’t just care about the mean, but
also the predictions? That is, even if we got the mean absolutely perfect, the new points wouldn’t
fall directly on the line!

10



8. SLR: Prediction of a Single Response

Section 8. SLR: Prediction of a Single Response

1.21. Note: Suppose we want to predict the response for a new covariate value:

ynew = β0 + β1xnew + εnew.

Define the predicted value ŷnew = β̂0 + β̂1xnew and prediction error ŷnew − ynew. Let’s quantify the
prediction error.

E [ŷnew − ynew ] = E
[(
β̂0 + β̂1xnew

)
− (β0 + β1xnew + εnew )

]
= β0 + β1xnew − (β0 + β1xnew ) = 0

Note that ŷnew and ynew are independent, because the former is a linear combination of the known
yi’s while the latter has nothing to do with those. Moreover, ŷnew is Normal as yi’s are Normal.

Var [ŷnew − ynew ] = Var
[(
β̂0 + β̂1xnew

)
− ynew

]
= Var

[(
β̂0 + β̂1xnew

)]
+ Var [ynew ]

=

[
σ2

(
1

n
+

(xnew − x̄)2∑n
i=1 (xi − x̄)2

)]
+
[
σ2
]

= σ2

(
1 +

1

n
+

(xnew − x̄)2∑n
i=1 (xi − x̄)2

)
Using the same approach as above, we have

ŷnew − ynew

σ

√(
1 + 1

n + (xnew −x̄)2∑n
i=1(xi−x̄)2

) ∼ N(0, 1) and
ŷnew − ynew

σ̂

√(
1 + 1

n + (xnew −x̄)2∑n
i=1(xi−x̄)2

) ∼ tn−2.

Thus, a 100(1− α)% prediction interval is given by

ŷnew ± tn−2,(1−α
2 )σ̂

√√√√(1 +
1

n
+

(xnew − x̄)2∑n
i=1 (xi − x̄)2

)
.

Note the margin of error of PI is much wider compared to the previous CI.
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Chapter 1. Simple Linear Regression

Section 9. Appendix

1.22. Definition: Let x̄, ȳ denote the mean of x’s and y’s. Define

Sxx =
n∑
i=1

(xi − x̄)2

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ)

Syy =
n∑
i=1

(yi − ȳ)2

1.23. Lemma: Let x̄ be the mean of {x1, . . . , xn}. Then

n∑
i=1

(xi − x̄) = 0.

Proof. Observe that

n∑
i=1

(xi − x̄) =

[
n∑
i=1

xi

]
− nx̄

=

[
n∑
i=1

xi

]
− n

(
1

n

n∑
i=1

xi

)
=

[
n∑
i=1

xi

]
−

[
n∑
i=1

xi

]
= 0.

1.24. Proposition: We have the following equalities for Sxx and Sxy:

Sxx =

(
n∑
i=1

x2
i

)
− nx̄2

Sxy =

(
n∑
i=1

xiyi

)
− nx̄ȳ.

Proof. Observe that

Sxx =

n∑
i=1

(xi − x̄)(xi − x̄)

=

[
n∑
i=1

xi(xi − x̄)

]
−

[
x̄

n∑
i=1

(xi − x̄)

]
x̄ does not depend on i

=

n∑
i=1

xi(xi − x̄)

n∑
i=1

(xi − x̄) = 0

12



9. Appendix

=

[
n∑
i=1

x2
i

]
−

[
x̄

n∑
i=1

xi

]
x̄ does not depend on i

=

[
n∑
i=1

x2
i

]
− x̄(nx̄) x̄ =

1

n

n∑
i=1

xi =⇒
n∑
i=1

xi = nx̄

=

[
n∑
i=1

x2
i

]
− nx̄2

The second property can be derived using a similar approach (Exercise).

1.25. Lemma:

Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var (Xi) =
1

n2
nσ2 =

σ2

n

13



Chapter 2. Multiple Linear Regression

Chapter 2. Multiple Linear Regression

Chapter Highlight

Let y = (y1, . . . , yn) be a random vector. Then

E[y] = [E[yi]]1≤i≤n ∈ Rn×1,

Var[y] = [Cov(yi, yj)]1≤i,j≤n ∈ Rn×n.

In particular, V is symmetric and positive semidefinite.

Properties of E, Var, and Cov:

E[aTy + c] = aTµ+ c ∈ R
Cov(aTy + c,bTy + d) = aTVb ∈ R

E[Ay + b] = AE[y] + b = Aµ ∈ Rk

Var(Ay + b) = AVar(y)AT = AVAT ∈ Rk×k.

14



1. Review: Linear Algebra and Calculus

Section 1. Review: Linear Algebra and Calculus

2.1. Remark: It’s often a lot easier to understand formulas intuitively in higher-dimensional
spaces once you know their sizes/dimensions (sanity check!). I will try to label the dimensions of
vectors and spaces as much as possible. Warning: There will be abuse of notations for random
variables, e.g., I will label a random vector x with three elements as x ∈ R3.

2.2. Note: We briefly review some facts about matrices. Let A,B,C be matrices.

• [CT ]ij = [C]ij .

• C is symmetric if CT = C.

• (AB)T = BTAT .

• If a square matrix B is non-singular, then BB−1 = B−1B = I.

• (AB)−1 = B−1A−1 is both are non-singular square matrices.

• (AT )−1 = (A−1)T .

• tr(A) =
∑n

j ajj for square matrix A.

• tr(cA + B) = c · tr(A) + tr(B).

• tr(AT ) = tr(A).

• tr(AB) = tr(BA).

2.3. Note: We briefly review some matrix calculus.

• Let y = (y1, . . . , yk) ∈ Rk and f : Rk → R be a function of y. Then

∂f

∂y
=



∂f

∂y1

...

∂f

∂yk


∈ Rk×1

• If z = aTy ∈ R where a = (a1, . . . , ak) ∈ Rk is a column vector, then

∂z

∂y
= a ∈ Rk×1.

• If z = yTAy ∈ R where A ∈ Rk×k, then

∂z

∂y
= (A+AT )y ∈ Rk×1.

In particular, if A is symmetric, then

∂z

∂y
= 2Ay ∈ Rk×1.

15



Chapter 2. Multiple Linear Regression

Section 2. Random Vectors

2.4. Definition: A random vector is a vector of random variables.
Let y = (y1, . . . , yn) be a random vector. The mean of y is

E[y] =

E[y1]
...

E[yn]

 ∈ Rn×1.

The variance of y is given by the covariance matrix:

Var(y) = V = E[(y − µ)(y − µ)T ]

=


Var(y1) Cov(y1, y2) · · · Cov(y1, yn)

Cov(y2, y1) Var(y2) · · · Cov(y1, yn)
...

...
...

Cov(yn, y1) Cov(yn, y2) · · · Var(yn)

 ∈ Rn×n

In particular,

Vij = Cov(yi, yj).

2.5. Proposition: Let V = Var(y) be the covariance matrix of y.

• V is symmetric, i.e., Vij = Vji.

• V is positive semidefinite, i.e., ∀a ∈ Rn, aTVa ≥ 0.

Proof. The first claim follows from the fact that the Cov operator is symmetric. For the second
claim, observe that

aTVa = aTE[(y − µ)(y − µ)T ]a = E[aT (y − µ)(y − µ)Ta]
?
= E[((y − µ)Ta)2] ≥ 0

where ? follows from the fact that aT (y − µ) and (y − µ)Ta are scalars.

2.6. Note: Recall the following facts. Let ai, bi, c, d ∈ R be constants, yi be random variables,
and z =

∑n
i=1 aiyi + c, u =

∑n
i=1 biyi + d be linear combinations of yi’s; z, u ∈ R. Then

E[z] =
n∑
i=1

aiE[yi] + c ∈ R

Cov(z, u) =

n∑
i=1

n∑
j=1

aibjCov(yi, yj) ∈ R.

Equivalently in matrix notation, z = aTy + c ∈ R, u = bTy + d ∈ R, then

E[aTy + c] = aTµ+ c ∈ R
Cov(aTy + c,bTy + d) = aTVb ∈ R

where µ = E[y] and V = Var(y). We now consider their multivariate counterparts.
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2. Random Vectors

2.7. Note: Consider a random vector z = (z1, . . . , zk)
T of k linear combinations of random y:

z1 = a11y1 + a12y2 + · · ·+ a1nyn

z2 = a21y1 + a22y2 + · · ·+ a2nyn
...

zk = ak1y1 + ak2y2 + · · ·+ aknyn

We can equivalently write z = Ay ∈ Rk for A ∈ Rk×n, [A]ij = aij . Then

E[Ay] = AE[y] = Aµ ∈ Rk

Var(Ay) = E[(Ay − E[Ay])(Ay − E[Ay])T ]

= E[A(y − E[y])(A(y − E[y]))T ]

= E[A(y − E[y])(y − E[y])TAT ]

= AE[(y − E[y])(y − E[y])T ]AT

= AVar(y)AT

= AVAT ∈ Rk×k

where µ = E[y] and V = Var(y). In other words, you can pull out a matrix of constants from the
expectation and the variance operator much like what you do with vectors. We summarize this
result into the following proposition (with an extra bias term b).

2.8. Theorem: Let y ∈ Rn and A ∈ Rk×n. Then

E[Ay + b] = AE[y] + b = Aµ ∈ Rk

Var(Ay + b) = AVar(y)AT = AVAT ∈ Rk×k.

17



Chapter 2. Multiple Linear Regression

Section 3. Multivariate Normal Distribution

2.9. Definition: A vector y has a multivariate normal distribution MVN(µ,Σ) if its
density function has the form

f(y) =
1

(2π)
n
2 |Σ|

1
2

exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
where E[y] = µ and Var(y) = Σ.

2.10. Example: Let z = (z1, . . . , zn) ∈ Rn be a random vector of iid standard normal random

variables, i.e., zi
iid∼ N(0, 1) for all i’s. Then for any A ∈ Rk×n,

y = Az + µ ∈ Rk ∼ MVN(µ,Σ),

where E[y] = µ and Var(y) = Σ = AAT .

2.11. Proposition: Some nice properties of MVN:

• Linearity: If u = Cy + d, then

u ∼ MVN(Cµ+ d,CΣCT ).

• Marginal distribution: If ỹ = (y1, . . . , ym)T ⊆ y is a vector subset of y, then ỹ is MVN-
distributed. In particular, every yj ∈ y ∼ N(µj ,Σjj) is normally distributed.

• Conditional distribution: If u = (yT1 ,y
T
2 )T ∼ MVN (i.e., breaking a column vector u into two

pieces), then yT1 | yT2 is MVN-distributed.

• Independence: If Σij = 0, then yi and yj are independent.

– Note this only holds for Normal variables: independence =⇒ Cov = 0 always holds,
but the other direction is generally false (but true for MVN).
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Section 4. Multiple Linear Regression

2.12. Definition: The multiple linear regression (MLR) model is given by

yi = β0 + β1xi1 + · · ·+ βPxiP + εi, εi
iid∼ N

(
0, σ2

)
⇐⇒

yi | xi
indep∼ N

(
β0 + β1xi1 + · · ·+ βpxip, σ

2
)

• (xi, yi): the ith observation, but now we have P covariates instead of just 1.

• The meaning of other symbols remain the same.

• Assume p < n, or we have more variates than observations.

2.13. (Cont’d): Equivalently, we can write
y1

y2
...
yn

 =


1 x11 x12 . . . x1P

1 x21 x22 . . . x2P
...

...
...

...
1 xn1 xn2 . . . xnP



β0

β1
...
βP

+


ε1
ε2
...
εn

,
or more compactly,

y = Xβ + ε, ε ∼ MVN(0, σ2I) ⇐⇒ y ∼ MVN(Xβ, σ2I),

where

• X is the design matrix,

• β is the parameter vector,

• ε is the error vector, and

• y is the response vector.

Note X ∈ Rn×(p+1), where each row represents a sample and each column correspond to a covariate.

2.14. Note: How to interpret the regression coefficients:

• β0 is the mean outcome when all variates are set to 0.

• βj represents the difference in mean outcome for a 1-unit change in the jth variate xj , holding
other covariates fixed.
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Chapter 2. Multiple Linear Regression

Section 5. MLR: Least Squares Estimation

2.15. Theorem: The LS estimators for β is given by

β̂ =
(
XTX

)−1
XTy.

Proof. We wish to minimize the sum of squares:

S(β) = (y −Xβ)T (y −Xβ)

= yTy − yTXβ − βTXTy + βTXTXβ

= yTy − 2βTXTy + βTXTXβ βTXTy,yTXβ ∈ R

Taking its derivative with respect to the vector β, we get

∂S(β)

∂β
= −2XTy + (XTX + XTX)β

Note the last term comes from the derivative of the quadratic form

∂

∂y
(yTAy) = (A + AT )y.

Now set the derivative to 0,

−2XTy + 2XTXβ = 0(
XTX

)
β = XTy

=⇒ β̂ =
(
XTX

)−1
XTy.

Note the inverse exists iff
(
XTX

)−1
X has full column rank (i.e., the columns of X are linearly

independent). Thus, we require n ≥ p+ 1.

2.16. Remark: Maximum likelihood gives the same estimators. We omit the derivation.

2.17. Theorem: The LS estimator β̂ has the following properties:

β̂ ∼ MVN(β, σ2(XTX)−1)

β̂j ∼ N(βj , σ
2[(XTX)−1]jj)

In particular, V = (XTX)−1.

Proof.

E[β̂] = E
[(

XTX
)−1

XTy
]

=
(
XTX

)−1
XTE[y] Linearity of E

=
(
XTX

)−1
XT (Xβ)

=
(
XTX

)−1 (
XTX

)
β

= β
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5. MLR: Least Squares Estimation

Var[β̂] = Var
[(

XTX
)−1

XTy
]

=
(
XTX

)−1
XT Var[y]

((
XTX

)−1
XT
)T

=
(
XTX

)−1
XT Var[y]X

(
XTX

)−1

=
(
XTX

)−1
XT

(
σ2I
)
X
(
XTX

)−1

= σ2
(
XTX

)−1
XTX

(
XTX

)−1

= σ2
(
XTX

)−1

Finally, since β̂ = (XTX)−1XTy is a linear combination of y ∼ MVN, β̂ is also MVN. The second
statement follows from the marginal distribution property of MVN.

2.18. Theorem: The unbiased estimator of σ2 is given by

σ̂2 =
1

n− (p+ 1)
eTe.

Proof. Omitted.

2.19. Lemma: (XX)−1 is symmetric.

Proof. [(XTX)−1]T = [(XTX)T ]−1 = (XTX)−1.
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Chapter 2. Multiple Linear Regression

Section 6. MLR: Fitted Values and Residuals

2.20. Definition: Let β̂ be the LS estimator of β. The fitted values is defined as

ŷ = Xβ̂ = X
[(

XTX
)−1

XTy
]

=
[
X
(
XTX

)−1
XT
]
y =: Hy.

The matrix H := X
(
XTX

)−1
XT is called the Hat matrix, as applying H to y yields ŷ (“adding

a hat to y”). You should be familiar with the property ŷ = Xβ̂ = Hy.

2.21. Proposition: The Hat matrix H is symmetric and idempotent (i.e., a projection matrix).

Proof. HH = X
(
XTX

)−1
XTX

(
XTX

)−1
XT = X

(
XTX

)−1
XT = H.

2.22. Corollary: I−H is symmetric and idempotent (i.e., a projection matrix).

Proof. (I−H) = IT −HT = (I−H). Also, (I−H)(I−H) = II− 2H + HH = I−H.

2.23. Proposition: E[ŷ] = Xβ,Var[ŷ] = σ2H.

Proof.

E[ŷ] = E[Hy]

= HE[y]

= X
(
XTX

)−1
XT (Xβ)

= Xβ

Var[ŷ] = Var[Hy]

= H Var[y]HT

= Hσ2IH

= σ2H

2.24. Definition: Define residuals as e = y − ŷ = y −Xβ̂ = y −Hy = (I−H)y .

2.25. Remark: Note that the sum of residuals is zero:
∑n

i=1 ei · 1∑n
i=1 xi1ei

...∑n
i=1 xipei

 = XTe = XT (y −Hy) = XTy −XTX
(
XTX

)−1
XTy = XTy −XTy = 0.

2.26. Proposition: E[e] = 0,Var[e] = σ2(I−H).

Proof.

E[e] = E[(I−H)y]

= (I−H)E[y]

= (I−X
(
XTX)−1XT

)
(Xβ)

= Xβ −Xβ = 0

Var[e] = Var[(I−H)y]

= (I−H) Var[y](I−H)T

= σ2(I−H)
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6. MLR: Fitted Values and Residuals

2.27. Note: Recall β̂ = (XTX)−1XTy and e = (I −H)y are both linear combinations of y.
Since y is MVN-distributed, the vector obtained by stacking rows of β̂ on top of the rows of e,(

β̂
e

)
=

(
(XTX)−1XTy

(I−H)y

)
=

(
(XTX)−1XT

I−H

)
y

is also MVN-distributed. We now explore the relationship between β̂ and e.

2.28. Theorem: [
β̂
e

]
∼ MVN

([
β
0

]
, σ2

[ (
XTX

)−1
0

0 (I−H)

])
.

Moreover,

1. β̂ ∼ MVN
(
β, σ2

(
XTX

)−1
)

2. e ∼ MVN
(
0, σ2(I−H)

)
, and

3. β̂ and e are independent.

Proof. We already proved Claim 1. For Claim 2 and 3, it suffices to prove that the vector has the
claim distribution, as Σ22 = Var[e] and Σ12 = Σ21 = 0 indicates variables β̂ and e are independent.

E[e] = E[(I−H)y]

= (I−H)E[y]

= (I−H)Xβ̂

= Xβ̂ −HXβ̂

= Xβ̂ −X
(
XTX

)−1
XTXβ̂

= Xβ̂ −Xβ̂

= 0

Var

[
β̂
e

]
= Var

[( (
XTX

)−1
XT

(I−H)

)
y

]
=

( (
XTX

)−1
XT

(I−H)

)
Var[y]

( (
XTX

)−1
XT

(I−H)

)T
= σ2

( (
XTX

)−1
XT

(I−H)

)( ((
XTX

)−1
XT
)T

(I−H)T
)

Var[y] = σ2I

= σ2

( (
XTX

)−1
XT

(I−H)

)(
X
(
XTX

)−1
(I−H)

)
= σ2

( (
XTX

)−1
XTX

(
XTX

)−1 (
XTX

)−1
XT (I−H)

(I−H)X
(
XTX

)−1
(I−H)(I−H)

)

= σ2

(
A B
C D

)
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Now

A =
(
XTX

)−1
XTX

(
XTX

)−1
=
(
XTX

)−1

B =
(
XTX

)−1
XT (I−H)

=
(
XTX

)−1
XT −

(
XTX

)−1
XT

(
X
(
XTX

)−1
XT
)

=
(
XTX

)−1
XT −

(
XTX

)−1
XT = 0 = CT

D = (I−H)(I−H)T

=
(
IIT − IHT −HIT + HHT

)
= (I− 2H−H) = (I−H)
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Section 7. MLR: Deriving t-Statistic*

2.29. Remark (Review on eigen-decomposition): Let A ∈ Rn×n with n linearly independent
eigenvectors qi, 1 ≤ i ≤ n. Then A can be factorized as A = QΛQ−1 where Q ∈ Rn×n, whose ith
column is the eigenvector qi of A, and Λ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues, Λii = λi. Only diagonalizable matrices can be factorized in this way.

2.30. Note: So far, we have proved that

β̂ ∼ N
(
β, σ2

(
XTX

)−1
)

=⇒ β̂j ∼ N
(
βj , σ

2Vjj
)
.

If we can show that

1. 1
σ2 eTe ∼ χ2

n−(p+1), and

2. it is independent of β̂,

then we obtain the following t-statistic, which can be used for constructing confidence intervals
and hypothesis testing. Note we did something similar for SLR but we didn’t give a mathematical
proof back then.

β̂j−βj√
σ2Vjj√(

1
σ2 eTe

)
/(n− (p+ 1))

=
β̂j − βj√
σ̂2Vjj

∼ tn−(p+1).

Intuitively, we have n− (p+ 1) degrees of freedom because we have n data points and we are trying
to estimate p+ 1 regression parameters. We now show the math behind this.

2.31. (Cont’d): The second condition is easy. Since e is independent of β̂, 1
σ2 eTe as a function

of e is also independent of β̂. Now for the first condition, recall that e = (I −H)y. Consider the
eigen-decomposition I−H = ΓTDΓ where Γ−1 = ΓT and

D =

λ1 0 0

0
. . . 0

0 0 λn


is the diagonal matrix whose diagonal contains the eigenvalues of (I−H). Define ẽ = Γe. Then

E[ẽ] = E[Γe] = ΓE[e] = 0

Var[ẽ] = Var[Γe]

= Γ Var[e]ΓT Var[Ae] = AVar[e]AT

= σ2Γ(I−H)ΓT Var[e] = I−H

= σ2Γ
(
ΓTDΓ

)
ΓT

= σ2D

Thus, ẽ ∼ MVN(0, σ2D) as e ∼ MVN, which implies

ẽi
indep∼ N(0, σ2[D]ii) = N(0, σ2λ2

i ).
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2.32. Remark (Review on χ2 Distributions): For standard normal rvs Zi
iid∼ N(0, 1),

X =

n∑
i=1

Z2
i ∼ χ2

n.

2.33. (Cont’d): Next,

ẽT ẽ = (Γe)T (Γe) = eTΓTΓe = eTe,

so we can write

1

σ2
eTe =

1

σ2
ẽT ẽ =

n∑
i=1

(
ẽi
σ

)2

=

n∑
i=1

Z2
i , Zi

indep∼ N(0, λ2
i ).

Thus, 1
σ2 eTe is a sum of squared independent normally distributed rvs. To show

1

σ2
eTe ∼ χ2

(n−(p+1)),

we need to show that n− (p+1) of the eigenvalues λj ’s are equal to 1, and all others are equal to 0.
(Indeed, if λj = 0, then Zj ∼ N(0, 0) becomes a constant.) We know that (I−H)(I−H) = I−H.
This gives

(I−H)(I−H) = I−H

(ΓTDΓ)(ΓTDΓ) = (ΓTDΓ)

ΓTDDΓ = ΓTDΓ,

i.e., DD = D and thus λ2
j = λj . Thus all λj are either 0 or 1. Next,∑

j

λj = tr(D) = tr
(
DΓΓT

)
trace is similarity-invariant

= tr
(
ΓTDΓ

)
invariant under cyclic permutation

= tr(I−H)

= tr(I)− tr(H) trace is linear

= n− tr(X(XTX)−1XT )

= n− tr(XTX(XTX)−1) invariant under cyclic permutation

= n− tr(Ip+1) X ∈ Rn×(p+1) =⇒ XTX ∈ R(p+1)(p+1)

= n− (p+ 1)

This concludes our proof.

2.34. Note: This entire section is optional. The only thing you need to remember is that

β̂j − βj√
σ̂2Vjj

∼ tn−(p+1).

Moreover, the standard error of β̂j is given by

SE(β̂j) = σ̂
√
Vjj .
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Section 8. MLR: Hypothesis Testing

2.35. Note: Suppose we want to test a null hypothesis H0 : βj = θ0 against some alternative
hypothesis H1 : βj 6= θ0. Our goal is to characterize how much evidence we have against H0, or
more intuitively, how extreme are our data relative to H0. Under H0 (i.e., if H0 holds), then

T :=
β̂j − θ0

σ̂
√
Vjj
∼ tn−p−1.

Below we discuss two approaches for hypothesis testing.

2.36. (Cont’d): First, we can compute the p-value and compare it against α.

1. Given observed value

Tobs :=
β̂j − θ0

σ̂
√
Vjj
∼ tn−p−1,

2. Compute the p-value p = Pr(|T | ≥ |Tobs|) = 2 Pr(T ≥ Tobs) given by

p <- 2 * pt(T obs, df = n-p-1, lower.tail=FALSE).

Note the pt call gives you the p-value against a one-sided alternative.

3. If p < α, reject H0 (at α).

2.37. (Cont’d): Alternatively, we can compute the quantile, known as the critical value, of
the test statistic T that gives a p-value of α, then compare our observed value with this threshold.

1. Given observed value

Tobs :=
β̂j − θ0

σ̂
√
Vjj
∼ tn−p−1,

2. Compute the threshold by

q <- qt(p = alpha/2, df=n-p-1).

3. If |Tobs| < tn−p−1,1−α/2 = q, reject H0 (at α).

2.38. Theorem: A (100− α)% CI for βj is

β̂j ± tn−p−1,1−α/2σ̂
√
Vjj .

Proof. Omitted.

2.39. Note: We can never guarantee that any single CI contains the true value. However, as
we repeatedly construct CIs, about (100− α)% of them will contain the true value.
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Section 9. MLR: Estimating Mean Response

2.40. For an arbitrary vector of covariates x0 = [1, x01, x02, . . . , x0p], the mean response is

µ0 = E[y0 | x0] = x0β.

We can estimate this as µ̂0 = x0β̂. We now look at the properties of this estimator.

2.41. Proposition:

E[µ̂0] = x0β

Var [µ̂0] = σ2x0

(
XTX

)−1
xT0

Proof.

E[µ̂0] = E[x0β̂]

= x0E[β̂]

= x0β

Var [µ̂0] = Var
(
x0β̂

)
= x0 Var(β̂)xT0

= x0σ
2
(
XTX

)−1
xT0

= σ2x0

(
XTX

)−1
xT0

2.42. Note: By the same logic as before,

µ̂0 − µ0

σ
√

x0 (XTX)−1 xT0

∼ N(0, 1),

µ̂0 − µ0

σ̂
√

x0 (XTX)−1 xT0

∼ tn−p−1,

and a 100(1− α)% CI is given by

µ̂0 ± tn−p−1,1−α
2
σ̂

√
x0 (XTX)−1 xT0 .
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Section 10. MLR: Prediction

2.43. Note: For a new response

ynew = xnew β + εnew ,

our prediction is

ŷnew = xnew β̂.

2.44. Proposition:

E[ŷnew] = xnewβ + εnew

Var[ŷnew ] = σ2xnew

(
XTX

)−1
xTnew

Proof.

E [ŷnew ] = E
[
xnew β̂

]
= xnew E[β̂]

= xnew β

Var [ŷnew ] = Var
(
xnew β̂

)
= xnew Var(β̂)xTnew

= xnew σ
2
(
XTX

)−1
xTnew

= σ2xnew

(
XTX

)−1
xTnew

2.45. Note: Since ynew and ŷnew are independent and normally-distributed, we have

ynew − ŷnew

σ

√
1 + xnew (XTX)−1 xTnew

∼ N(0, 1),

ynew − ŷnew

σ̂

√
1 + xnew (XTX)−1 xTnew

∼ tn−p−1

Thus, a 100(1− α)% prediction interval for ynew is

ŷnew ± tn−p−1,1−α/2σ̂

√
1 + xnew (XTX)−1 xTnew .
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Section 11. MLR: Categorical Covariates

2.46. Let weight be continuous and fishpart be categorical with four possible values:

• none (N)

• muscle tissue only (M)

• muscle tissue and sometimes whole fish (MW)

• whole fish (W)

Let MeHg(the concentration of methyl mercury extracted from hair sample) be the (continuous)
response variable. For simplicity, let us ignore weight for now and only model the relationship
between fishpart and MeHg. How should we encode fishpart? We will see that the way we
encode the categorical covariates imposes assumptions on our model. In particular, it affects how
we interpret the model parameters.

2.47. Naively, we could use numbers 0, 1, 2, 3 to encode N, M, MW, W (so that fishparti ∈ {0, 1, 2, 3}
for each i) and use

MeHgi = β0 + β1fishparti + ε, εi
iid∼ N(0, σ2).

This model implicitly assumes that the difference between each consecutive factor of fishpart is
the same. Some assumptions we made include:

• the mean difference of MeHg between people of group i and people of group i+ 1 is always β1;

• the mean difference of MeHg between people of group i and people of group i+ 2 is 2β1;

• the mean difference of MeHg between people of group 3 and people of group 0 is 3β1, etc.

It is easy to see that if we had used other numbers (instead of 0 to 3) to encode the groups, then
the model assumptions will be different.

2.48. We often don’t want to make assumption about the relative differences between cate-
gories. A more flexible alternative is to use indicator functions and write

MeHgi ∼ γN · 1 [fishparti = N] + γM · 1 [fishparti = M]

+ γMW · 1 [fishparti = MW]

+ γW · 1 [fishparti = W] + εi, ε
iid∼ N(0, σ2).

We essentially fitted four models based on fishpart with same variance but different mean; no
assumption about relative differences between categories are made here:

MeHg | {fishpart=N} ∼ N
(
γN, σ

2
)

MeHg | {fishpart=M} ∼ N
(
γM, σ

2
)

MeHg | {fishpart=MW} ∼ N
(
γMW, σ

2
)

MeHg | {fishpart=W} ∼ N
(
γW, σ

2
)

Another way to interpret this is that we are fitting four models with different intercepts and 0
slope (as fishpart is the only covariate here), i.e., they are horizontal lines at y = γX with
X ∈ {N, M, MW, W}.
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2.49. We can replace the first term γN · 1 [fishparti = N] with a β0 and replace all γ’s with
β’s. The resulting model will look more familiar to us:

MeHgi ∼ β0 + βM · 1 [fishparti = M]

+ βMW · 1 [fishparti = MW]

+ βW · 1 [fishparti = W] + εi, ε
iid∼ N(0, σ2)

The relationship between γ’s and β’s are given below:

• γN = β0;

• γM = β0 + βM;

• γMW = β0 + βMW;

• γW = β0 + γW.

and

• β0 = γN;

• βN = γM − γN;
• βMW = γMW − γN;
• βW = γW − γN;

Interpretation of γ’s and β’s:

• γX represents the mean MeHg for people of group X;

• β0 represents the mean MeHg for people of group N , known as the reference group;

• βX represents the difference of the mean MeHg between group X and the reference group.

2.50. Let us add the continuous covariate weightback. We can encode a regression model
where expected MeHg is linear in weight for each level of fishpart, with common slope but
different intercepts as follows:

MeHgi ∼ γ1weight + γN · 1 [fishparti = N]

+ γM · 1 [fishparti = M]

+ γMW · 1 [fishparti = MW]

+ γW · 1 [fishparti = W] + εi, ε
iid∼ N(0, σ2)

Interpretation of the parameters:

• γ1 is the mean difference of MeHg for one unit of change in weight, holding fishpart constant.

γ1 = E[y | weight = w∗, fishpart = X]− E[y | weight = w∗ − 1, fishpart = X]

• γX is the mean MeHg of people of group X (fishparti = X), holding weight at 0.

γX = E[y | weight = 0, fishpart = X].

This model consists of four submodels with different intercepts (γX ’s) but a common slope (γ1).
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2.51. The corresponding β model is given below:

MeHgi ∼ β0 + β1weight

+ βM · 1 [fishparti = M]

+ βMW · 1 [fishparti = MW]

+ βW · 1 [fishparti = W] + εi, ε
iid∼ N(0, σ2)

Interpretation of the parameters:

• β0 is the mean outcome of the reference group, holding weight at 0:

β0 = E[y | weight = 0, fishpart = N].

• β1 is the mean difference of MeHg for one unit change in weight, holding fishpart constant:

β1 = E[y | weight = w∗, fishpart = X]− E[y | weight = w∗ − 1, fishpart = X].

• βX is the mean difference of MeHg between group X and the reference group, holding weight

constant:

βX = E[y | weight = w∗, fishpart = X]− E[y | weight = w∗, fishpart = N ].

This model consists of four submodels with different intercepts (β0 or β0 +βX) and a common slope
(β1). The actual graph will be the same as the γ-model.
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Section 12. MLR: Hypotheses Testing (Categorical Covariates)

2.52. Suppose we want to test whether the average MeHg varies by fishpart adjusted for
weight. There are two equivalent null hypotheses:

1. γN = γM = γMW = γW .

2. βM = βMW = βW = 0.

The second is simpler for testing, so we’ll proceed with the β-model from here on out.

2.53. To compare one group to the reference group:

β̂M − 0

SE(β̂M )
∼ N(0, 1)

To compare two non-reference groups:

β̂M − β̂NW
SE(β̂M − β̂MW )

∼ N(0, 1)

where

Var(β̂M − β̂MW) = Var(β̂M) + Var(β̂MW)− 2 Cov(β̂M, β̂MW)

= σ2 (V3,3 + V4,4 − 2V3,4)

Don’t forget to estimate σ2 by σ̂2 and plug in V = (XTX)−1 as the covariance matrix

2.54. Suppose now we want to compare more than two groups. For example, does mean MeHg

vary by fishpart, adjusted for weight? The null is given by

H0 : β∗ = (βM , βMW , βW )T = 0.

Recall that

β̂ ∼ N(β, σ2(XTX)−1) =⇒ β̂∗ ∼ N(β, σ∗V∗)

where V∗ is the corresponding sub-matrix.

2.55. Theorem (Cholesky Decomposition): Any covariance matrix V can be uniquely decom-
posed as V = LLT where L is a lower triangular matrix with non-negative entries Lii ≥ 0 on the
diagonal. When V is positive-definite, then Lii > 0.

2.56. Let L be a lower-triangular matrix such that σ2V∗ = LLT and define Z = L−1(β̂∗ − β∗).
Note that Z ∼ N(0, I):

E[Z] = L−1E[β̂∗]− L−1E[β∗] = L−1β∗ = L−1β∗ = 0

Var[Z] = Var[L−1(β̂∗ − β∗)]
= Var[L−1β̂∗]

= L−1Var(β̂∗)(L
−1)T = L−1σ2V∗(L

−1)T = L−1LLT (L−1)T = I
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Let q be the dimension of β∗. Consider the sum of q squared standard normals:

q∑
j=1

Z2
j = ZTZ

= (β̂∗ − β∗)T (L−1)TL−1(β̂∗ − β∗)
= (β̂∗ − β∗)T (LLT )−1(β̂∗ − β∗)

=
1

σ2
(β̂∗ − β∗)T (V∗)

−1(β̂∗ − β∗). (LLT )−1 = (σ2V∗)
−1

Thus, under H0, we have that

1

σ2
(β̂∗)

T (V∗)
−1(β̂∗) =

q∑
j

Z2
j ∼ χ2

q

and this is independent of (shown previously)

n− (p+ 1)

σ2
σ̂2 ∼ χ2

n−(p+1),

Define an F-statistic:

F =
1
σ2 (β̂∗)

T (V∗)
−1(β̂∗)/q

n−(p+1)
σ2 σ̂2/(n− (p+ 1))

=
(β̂∗)

T (V∗)
−1(β̂∗)

qσ̂2

obtained by dividing each random variable by its degree of freedom. Under H0,

F =
(β̂∗)

T (V∗)
−1(β̂∗)

qσ̂2
∼ F (q, n− (p+ 1))

2.57. Definition (F-distribution): Let X1 ∼ χ2
ν1 and X2 ∼ χ2

ν2 be independent. Then

W =
x1/ν1

x2/ν2

has an F-distribution:

W ∼ F (ν1, ν2)

f(w) =
Γ ((ν1 + ν2) /2)

Γ (ν1/2) Γ (ν2/2)

(
νν11 νν22

wν1−2

(ν2 + ν1w)(ν1+ν2)

)1/2

2.58. We can test H0 by comparing F to the corresponding F distribution.

pf(F obs, df1=3, df2=n-p-1, lower.tail=FALSE)
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Section 13. MLR: Intersections and Non-Linearities

2.59. Consider the model from last section:

MeHgi ∼ β0 + β1weighti + βMMi + βMWMWi + βWWi + εi, ε
iid∼ N

(
0, σ2

)
where Xi = 1[fishparti = X] denotes the corresponding indicator function. Recall this implies
common slope for weight for any value of fishpart (i.e., parallel lines with different intercepts).
What if we want different intercepts and different slopes?

2.60. Consider the following model.

MeHgi ∼ β0 + β1weighti + βMMi + βMWMWi + βWWi

+ β1MweightiMi + β1MWweightiMWi + β1WweightiWi + εi, ε
iid∼ N

(
0, σ2

)
We added three columns to our design matrix. More specifically, the design matrix looks as follows:

• The first column consists of just 1s.
• The second column contains weights, real numbers.
• The next three columns correspond to Mi, MWi, Wi, so either 0 or 1.
• The last three columns are the products of Xi · weighti. If Xi = 0 then the entry is 0;

otherwise the entry is weighti.

2.61. To see that this model gives different mean and different intercepts, observe that if
fishparti = N, the mean outcome is given by

E[MeHgi | weighti, Ni = 1] = β0 + β1weighti,

so the mean is linear in weighti with intercept β0. For fishparti = MW, the mean outcome is

E[MeHgi | weighti, MWi = 1] = β0 + β1weighti + β1MWweighti + βMW

= (β0 + βMW) + (β1 + β1MW)weighti.

The mean is still linear in weighti, but with a different slope and a different intercept. Terms
like weightiMWi, where different covariates are multiplied together, are called interaction terms.
They are preferable here as they allow different slopes.

2.62. Note: Time for the interpretation of the parameters. The parameter β1 is the mean
difference in MeHg for one unit change of weight, provided that fishparti = N

β1 = E[MeHgi | weighti = x∗ + 1, Ni = 1]− E[MeHgi | weighti = x∗, Ni = 1]

= (β0 + β1(x∗ + 1))− (β0 + β1x
∗).

β1MW +β1 is the mean difference in MeHg for one unit change of weight, given that fishparti = MW.

β1 = E[MeHgi | weighti = x∗ + 1, MWi = 1]− E[MeHgi | weighti = x∗, MWi = 1]

= (β0 + βMW + β1(x∗ + 1) + β1MW(x
∗ + 1))− (β0 + β1x

∗ + β1x
∗ + β1MWx

∗).

Thus, β1MW is the difference between “mean difference in MeHg for one unit change of weight,
provided that fishparti = MW” and “mean difference in MeHg for one unit change of weight,
provided that fishparti = N”. It is the increase of the slope compared to the slope of the reference
group.

35



Chapter 2. Multiple Linear Regression

2.63. Note (Interactions of continuous covariates): Let xi1 and xi2 be continuous covariates
and consider the following model:

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi

We can bruteforce this by observing that

β1 = E[yi | xi2 = 0, xi1 = x∗ + 1]− E[yi | xi2 = 0, xi1 = x∗],

i.e., it is the average change of outcome for one unit change of xi1, holding xi2 = 0. This is not
very intuitive. A better way to interpret this is to observe that

• at every level of x2, the conditional mean outcome is linear in x1;
• at every level of x2, the intercept and slope of x1 are different.

Since the change in mean outcome due to one unit change in x1 varies with x2, it’s better to fix
a set of xi2’s and then report the corresponding β3 as the average change of outcome for one unit
change of xi1.

2.64. Note (More Flexible Models): Sometimes a simple linear model does not fit the data
well. One way to make the model more flexible is to include a quadratic term for x:

yi = β0 + β1xi + β2x
2
i + εi.

Note here the change in mean outcome for a one unit change in xi varies with xi. To test whether the
quadratic model is more appropriate than the simple linear one, the null hypothesis is H0 : β2 = 0.
Beyond polynomial terms, linear regression can be specified flexibly:

yi =

p∑
j=1

βjfj(xi) + εi

where fj(·) are arbitrary functions of xi. However, there is a tradeoff between fit and interpretability.

2.65. Note (Hierarchical Principle):

• If there is a higher order interaction term, include main effects (and lower order interaction
terms), i.e.:

– If including x1 · x2, include also x1 and x2 (main effects).

– If including x1 · x2 · x3, include also x1 · x2 and x2 · x3, x1 · x3, and main effects.
• If there is a higher order polynomial term, include main effects and lower order terms

– If including x3, include also x2 and x.

Otherwise can have unexpected interpretations/implications.

2.66. Example: Consider the model yi = β0 + β2x
2
i + εi. Now suppose we shift the exposure

by some fixed amount b, e.g., center the xi to have mean 0 (so b = x̄):

yi = β0 + β2 (xi − b)2 + εi

= β0 + β2

(
x2
i − 2xib+ b2

)
+ εi

=
(
β0 + b2β2

)
+ (−2bβ2)xi + β2x

2
i + εi

Suddenly, there is now a linear term, simply because of a shift!
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Section 14. Analysis of Variance and R2

2.67. Motivation: Recall the sample variance is given by

s2 =
1

n− 1

∑
(yi − ȳ)2.

Suppose we wish to quantify how much of the variability in the outcome y is explained by our
model. That is, we want to decompose the sum of squares

∑
(yi − ȳ)2 into two parts, one for the

variance we can explain with our model and one for the variance we cannot explain.

2.68. Definition (ANOVA Decomposition): Define the following terms:

• Total sum of squares, SSTotal, quantifies how much the data points yi vary around their
mean ȳ.

SSTotal =
n∑
i=1

(yi − ȳ)2 = (y − ȳ1)T (y − ȳ1) = yTy − nȳ2.

• Regression sum of squares, SSReg, quantifies how far the estimated regression model ŷi
is from the horizontal “no relationship line”, the sample mean ȳ.

SSReg =
n∑
i=1

(ŷi − ȳ)2 = (Hy − ȳ1)T (Hy − ȳ1) = yTHy − nȳ2.

• Residual sum of squares, SSRes, quantifies how much the data points yi vary around the
regression estimates ŷi.

SSRes =
n∑
i=1

(yi − ŷi)2 = (y −Hy)T (y −Hy) = yT (I−H)y.

2.69. Theorem (ANOVA Decomposition): SSTotal = SSReg + SSRes.

Proof. Observe that

SSTotal =

n∑
i=1

(yi − ȳ)2

=

n∑
i=1

([yi − ŷi] + [ŷi − ȳ])2

=

n∑
i=1

[yi − ŷi]2 +

n∑
i=1

[ŷi − ȳ]2 + 2

n∑
i=1

[yi − ŷi] [ŷi − ȳ]

= SSRes + SSReg +0

where we used the fact that
n∑
i=1

[yi − ŷi] [ŷi − ȳ] =

n∑
i=1

ei [ŷi − ȳ] = eT [ŷ − ȳ1] = eTXβ̂ − ȳeT1 = 0− 0 = 0.

as eTX = eT1 = 0.
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2.70. Definition: The coefficient of decomposition defined as

R2 =
SSReg

SSTotal
= 1− SSRes

SSTotal
∈ [0, 1]

is the proportion of the variance in the outcome that is explained by our regression model.

2.71. Note:

• Since R2 is a proportion, it is always a scalar between 0 and 1.

• If R2 = 1, then
∑

(yi − ȳ)2 =
∑

(ŷi − ȳ)2, so all data points fall on our regression line and
the model perfectly captures all variability of the data.

• If R2 = 0, then
∑

(ŷi − ȳ)2 = 0, so ŷi = ȳ for every i, i.e., our regression model is just the
line of mean ȳ and no variance is explained by our model.

• Thus, a higher R2 indicates that more variability in the outcome is explained by our model.

2.72. Remark: In SLR, R2 = r2 where r is the coefficient of correlation.

2.73. Note (F-Test for Model Significance): Suppose we want to test the significance of the
regression model, i.e., is there any relationship between the outcome and at least one covariate?
Consider the following hypotheses:1

H0 : β1 = · · · = βp = 0

H1 : ∃i ∈ {1, . . . , p} : βj 6= 0.

We can conduct an F-test with the SS decomposition. Under the null,

SSReg

σ2
∼ χ2

p

SSRes

σ2
∼ χ2

n−(p+1)

and they’re independent, so we can define the F -statistic

F =
SSReg/p

SSRes/n− (p+ 1)
∼ Fp,n−(p+1).

Reject null if p-value < α. If we reject H0, we conclude that at least one of the regression coefficients
is non-zero. Otherwise, we don’t have enough evidence to conclude that none of βj is important.

2.74. Note (ANOVA Table): We can summarize everything into a table:

Source SS df MS F

Regression SSReg =
∑n

i=1 (ŷi − ȳ)2 p MSReg = SSReg
p

MSReg
MSRes = SSReg

p / SSRes
n−(p+1)

Residuals SSRes =
∑n

i=1 (yi − ŷ)2 n− (p+ 1) MSRes = SSRes
n−(p+1)

Total SSTotal =
∑n

i=1 (yi − ȳ)2 n− 1

1Note that we are not imposing any condition on the intercept β0.
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2.75. Note (F-Test for a Subset of Covariates): Suppose we want to test βj = 0 for q of the p
covariates. Intuitively, we are testing whether these q covariates are not very useful in our model:

H0 : βk1 = · · · = βkq = 0

H1 : ∃i ∈ {k1, . . . , kq} : βki 6= 0.

Suppose we fit the full model as before and additionally fit a reduced model under the null. The
additional variation explained by the identified q covariates

SSReg(Full)− SSReg(Reduced)

has q degrees of freedom. Under H0, we thus have

(SSReg(Full)− SSReg(Reduced))/q

SSRes /n− (p+ 1)
∼ Fq,n−(p+1)

Note that F-Test for Model Significance can be viewed as a special case of this where we are testing
the significance of all p covariates.

2.76. Note (F-Test for General Linear Hypothesis): We can use the same infrastructure to
test a broader class of null hypothesis, called general linear hypotheses, all of the form

H0 : Cβ = 0

H1 : Cβ 6= 0

Here C ∈ R`×(p+1) is a matrix of rank r representing the hypotheses. In particular, ` denotes the
number of linear constraints. For example, given a model

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + εi,

the matrices corresponding to the null hypotheses are given by

H0 : β1 = β2 = 0 ⇐⇒ C =

[
0 1 0 0 0
0 0 1 0 0

]
H0 : β1 = β2 ⇐⇒ C =

[
0 1 −1 0 0

]
Fit the full model and the reduced model (the model under Cβ = 0) and then construct F statistic:

(SSReg(Full)− SSReg(Reduced))/r

SSRes /n− (p+ 1)
∼ Fr,n−(p+1)

where r = rank(C).
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Section 15. Multicollinearity and Variance Inflation Factor

2.77. Motivation: Multicollinearity is a phenomenon in which one covariate in a MLR
model can be linearly predicted from the others with a substantial degree of accuracy. In this
situation, the coefficient estimates of the MLR model may change erratically in response to small
changes in the model or the data. Multicollinearity does not reduce the predictive power or re-
liability of the model as a whole, at least within the sample data set; it only affects calculations
regarding individual predictors. That is, a multivariate regression model with collinear predictors
can indicate how well the entire bundle of predictors predicts the outcome variable, but it may not
give valid results about any individual predictor, or about which predictors are redundant with
respect to others.

2.78. Definition: Collinearity is a linear association between two covariates. Two variables
are perfectly collinear if there is an exact linear relationship between them. Multicollinearity
refers to a situation in which more than two covariates in a MLR model are highly linearly related.

2.79. Note (Perfect Multicollinearity in OLS): Recall OLS requires no multicollinearity, i.e.,
there cannot exist an exact (non-stochastic) linear relation among the covariates, because in that
case the design matrix X has less than full rank, and therefore the moment matrix XTX cannot be
inverted. Under these circumstances, for a general linear model y = Xβ + ε, the OLS estimators
(XTX)−1XTy does not exist.

2.80. Note (VIF): To detect pairwise collinearity, we may plot the correlation matrix and
look for correlation values which are close to one. It’s much hard to detect multicollinearity. One
intuitive thing to do is to try to predict one covariate xj using the rest with a MLR model, i.e., let
xj be the true outcome and consider the model

xj = X−jα+ ε∗

where X−j denotes the matrix obtained by removing the column corresponding to xj from X and
α, ε∗ play the role of β, ε, respectively. The fitted values are

x̂j = X−jα̂

where α̂ is estimator of α. Recall in SLR, r2
yx = R2. It turns out that in MLR, r2

y,ŷ = R2. Therefore,

the coefficient of correlation between the true y and the fitted ŷ is exactly R2. In particular, this
is true in the regression of xj on X−j . Thus, we could examine r2

xj ,x̂j
which is equal to the R2

j for
the regression of xj on X−j . This motivates the following definition.

2.81. Definition: Let Rj the coefficient of correlation for the regression on xj using other
covariates. The variance inflation factor (VIF) defined by

VIFj :=
1

1−R2
j

quantifies the severity of multicollinearity in a regression analysis. It provides an index that mea-
sures how much the variance of an estimated regression coefficient is increased due to collinearity,
i.e., how much it is increased relative to the ideal case in which all covariates are uncorrelated (i.e.,
the columns of X are orthogonal).
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2.82. Note: Consider the MLR y = β0 +β1X1 + · · ·+βkXk + ε. It turns out that the variance
of the estimator of βj can be expressed as

Var(β̂j) =
σ̂2∑

(xij − x̄j)2
× 1

1−R2
j

.

We make the following observations:

• σ2: greater scatter in the data around the regression surface leads to proportionately more
variance in the coefficient estimates.

•
∑

(xij−x̄j)2: greater variability in a particular covariate leads to proportionately less variance
in the corresponding coefficient estimate.

The remaining term, 1/(1−R2
j ), is the VIF. It reflects all other factors that influence the uncertainty

in the coefficient estimates. The VIF equals 1 when the vector Xj is orthogonal to every other
column of the design matrix. By contrast, the VIF is greater than 1 when the vector Xj is not
orthogonal to all columns of the design matrix for the regression of Xj on the other covariates.
Finally, note that the VIF is invariant to the scaling of the variables.
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Chapter 3. Model Building

Section 16. Model Fit

In this section, we discuss four model building principles:

• Interpretability.

• Parsimony.

• Goodness of fit.

• Predictive accuracy.

3.1. Note (Interpretability): When the goal of regression analysis is to make inferences about
the relationship between y and one or more covariates, our model is useful to the extent that it
can be interpreted. There is often a tradeoff between complexity and interpretability. We may
have to do more work to make a complex model more interpretable, e.g., plotting fitted values and
reporting mean differences for specific contrasts.

3.2. Note (Parsimony): We prefer models with fewer parameters for the following reasons:

• Interpretability: adjusting for more covariates makes interpreting β1 more difficult.

• Precision: as we include irrelevant predictors, p increases, so the variance increases:

p ↑ =⇒ σ̂2 =
σi(yi − ŷi)
n− (p+ 1)

↑ .

• Prediction: as we include more predictors, the SE could also increase:

p ↑ =⇒ SE(ŷnew) = σ̂
√

1 + xTnew(XTX)−1xnew ↑ .

3.3. Note (Goodness of Fit): We cover some criteria for measuring goodness of fit:

1. R2

2. Adjusted R2

3. Mean squared error

4. AIC and related criteria

3.4. (Cont’d) (R2): Recall that

R2 =
SSReg

SSTotal
= 1− SSRes

SSTotal

can be viewed as the proportion of variability explained by the model. It has a small problem: R2

will never decrease when more variables are added. The intuition is as follows. Recall the OLS
estimators β̂ minimizes SSRes =

∑
i(yi− ŷi)2 where ŷi is in the column space of X. Now increasing

the column space of X (resulted from adding more covariates) increases the space over which we
are minimizing. Thus, in the larger space we could never do worse than in the reduced space. This
makes comparing models of different size difficult, as it would always favor the larger model.
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3.5. (Cont’d) (Adjusted R2): Instead, we can use the adjusted R2 given by

R2
adj = 1− SSRes/(n− (p+ 1))

SSTotal/n− 1

where p denotes the number of covariates. Intuitively, SSRes is non-decreasing, but p increases
with the number of variables. Thus, if SSRes decreases only slightly or not at all, it could be
outweighed by increasing the degrees of freedom used and decrease R2

adj. If SSRes decreases a lot,

it can outweigh the increase in degrees of freedom and increase R2
adj. Thus, this measure is more

useful for comparing models of different size: we prefer model with higher R2
adj. We pay the cost

of interpretability: this no longer presents the proportion of variance explained.

3.6. (Cont’d) (R2
adj vs MSE): Observe that minimizing σ̂ is equivalent to maximizing R2

adj:

R2
adj = 1− SSRes/(n− p− 1)

SSTotal/n− 1
= 1− σ̂2

MSTotal
.

Thus, we could equivalently choose the model with lowest σ̂.

3.7. (Cont’d) (R2
adj vs R2): Observe that

R2
adj = 1− SSRes /(n− p− 1)

SSTotal /n− 1

= 1− n− 1

n− p− 1
· SSRes

SSTotal

= 1−
(

n− 1

n− p− 1

)(
1−R2

)
= 1−

(
1 +

p

n− p− 1

)(
1−R2

)
= R2 −

(
p

n− p− 1

)(
1−R2

)
Since the second term is positive, R2

adj is a penalized version of R2. In particular,

n→∞ =⇒ R2
adj → R2.

3.8. (Cont’d) (AIC): In the same sense, we could use other penalized criteria such as the
Akaike Information Criterion (AIC). Recall that β̂ is the MLE under the assumption of nor-
mality. Define

AIC = −2 logL(θ̂) + 2k

where θ̂ denotes the MLE of θ parameters and k is the number of all parameters to be estimated
(including intercept and σ2). We prefer models with lower AIC. Indeed, we want to maximize the
log-likelihood, hence minimize the first term. Note this is subject to a penalty term for the number
of parameters.

3.9. (Cont’d) (BIC): The Bayesian information criterion

BIC = −2 logL(θ̂) + k log(n)

gives a larger penalty term and takes the sample size into consideration. Other information criteria
exist and all aim to balance fit with a penalty for more variables.
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Section 17. Model Building: Automatic Selection

3.10. Motivation: Suppose we have p covariates and we want to find which subset of variables
to adjust for in our regression model. We could consider all possible subsets and choose the best.
This requires fitting 2p models and is often not doable.

3.11. Note (Forward Selection): Consider the following greedy method.

1. Start with model M0 containing no covariate:

M0 : y = β0 + ε.

2. Fit all p models including exactly one covariate and pick the one that performs best (according
to some criteria, e.g., p-value, BIC, etc.). The current model is then

M1 : y = β0 + β1x∗ + ε.

3. Fit all p− 1 models including exactly two covariates, one being the x∗ from step 1. Pick the
one that performs best. The current model is then

M2 : y = β0 + β1x∗ + β2x∗∗ + ε.

4. Continue until including the next variable stops improving significantly.

Note that once a variable enters the parameter set, it is never removed. Since we consider (p+i−1)
at step i, we at most consider p! models. However, there is no guarantee that this is the globally
optimal model.

3.12. Note (Backward Elimination): A related greedy approach is as follows.

1. Start with all covariates included.
2. Drop the least important covariate according to our criteria. Note if covariates are categorical,

this would require an F -test (to determine if the categorical covariate as a whole is relevant).
3. Continue until dropping a variable doesn’t significantly improve our measure.

Note that once a variable is removed, it cannot be added back into the model. This can sometimes
perform better than forward selection. However, if p is very large (e.g., p > n), we may not be able
to fit the model. We need a compromise between these two approaches.

3.13. Note (Stepwise Selection):

1. Start with a model M0 : y = β0 + ε containing no covariate.
2. Add one covariate according to the same criteria as in forward selection.
3. Assess whether any of the covariates should be removed as in backward selection.
4. Repeat 2 and 3 until the most recently added covariate is removed.

3.14. Remark: These methods are fairly primitive. We will soon cover some more modern
approaches, e.g., LASSO.

3.15. Remark (Problems with Variable Selection): Inference is not valid in the final model.
The intuition is that we are using the data to select the model, so the model will underestimate
the uncertainty (i.e., SE too small). Classical inference requires the model/hypothesis to be fixed.
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Section 18. Overfitting and Cross Validation

3.16. Note: Criteria like AIC, BIC attempt to approximate out-of-sample prediction error
based on in-sample error, SSRes, and explicitly penalize the number of parameters to avoid over-
fitting.

3.17. Note (Holdout): Split n observations into a training set Strain of ntrain observations and
a test set Stest of size ntest = n− ntrain.

• Fit our model to the training set and get estimates β̂train.

• Use these to predict ynew with ŷnew = (xnew)T β̂.

• Measure prediction accuracy with MSE (or its square root, RMSE)

1

ntest
=
∑
i∈Stest

(ynew
i − ŷnew

i )2.

3.18. Note (k-Fold Cross Validation): The downside of splitting data is that we aren’t using
all the data to fit the model.

1. Randomly divide the data into K parts.

2. Fir the model on (K − 1) of the K folds (leaving the kth out).

3. Predict outcomes on the kth part (as a test set Stest,k) and compute

MSEk =
1

nk

∑
i∈Stest,k

(ynew
i , ŷnew

i )2.

4. Repeat 2-3, leaving out each of the K folds once.

5. Compute

MSEcv =
1

K

K∑
k=1

MSEk.

3.19. Note: Setting K = n, this becomes leave-one-out cross validation. That is, we fit
the model to the entire data except we leave one observation out, and compute ŷi,(−i). The MSE
is given by

(yi − ŷi,(−i))2.

In linear regression, it turns out this is equal to the square of the PRESS statistic:

ei
1− hi

,

where hi is the ith diagonal of the hat matrix, H = X(XTX)−1XT . Hence, we can compute
LOO-CV MSE without refitting the model K = n times (1 time is enough). (Note this is not true
for more complicated methods.)

3.20. Note: When reporting prediction error for final model after selection, we typically think
about 3 types of data: training, validation, and test.

• Training set: Used to fit the model.
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• Validation set: Compare predictions to validation outcomes, choose model with lowest RMSE.
Refit best model to training + validation set.

• Test set: Estimate prediction error based on final model fit.

If you are doing cross validation, you can think of this as splitting the data into a training and test
set, and then repeatedly splitting the training set further into a training set and validation set.
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Section 19. Model Building: LASSO and Shrinkage Methods

3.21. Motivation: Recall AIC and BIC penalize models for having a large number of covari-
ates. The intuition behind LASSO and other shrinkage methods is that these methods incorporate
a penalty directly into the estimation procedure. Recall the objective of OLS was

min
∑
i

(yi − xTi β)2.

We now add a penalty term, so our new objective function becomes

min
∑
i

(yi − xTi β)2 + Penalty.

3.22. Note (LASSO): LASSO estimator is defined as the estimate of β that minimizes the
following:

min
∑
i

(yi − xTi β)2 + λ

p∑
j=1

|βj |.

Note we do not penalize the intercept estimate β0. In other words, we are adding an L1 penalty
term with a hyperparameter λ. This penalty term has the effect of shrinking parameter estimates
toward zero. The choice of L1 is particularly convenient since it shrinks certain values all the way
to zero. This is automatic variable selection. In fact, the minimization problem above is equivalent
to

min
∑
i

(yi − xTi β)2 s.t.

p∑
j=1

|βj | ≤ t,

so the penalty term really corresponds to a constraint.

3.23. Note (Fitting LASSO): Different values of λ will then lead to different model fits. To
tune the hyperparameter λ, we could fit various models using different λ values then do cross
validation to choose the best one. R will do this automatically.

3.24. Note (Ridge Regression):

min
∑
i

(yi − xTi β)2 + λ

√√√√ p∑
j=1

β2
j .

Ridge regression also shrinks estimates, but unlike LASSO, it doesn’t shrink them all the way to
zero.

3.25. Note (Relaxed LASSO): Here’s some more recent development:

• Fit LASSO and obtain the optimal λ via CV.

min
∑
i

(yi − xTi β)2 + λ

p∑
j=1

|βj |.
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• Fit LASSO to the subset of covariates whose coefficients were not set to zero:

min

n∑
i

(
yi − x∗Ti β∗

)2
+ φλ

∑
l

|β∗l |

The hyperparameter φ allows us to tune the ultimate level of shrinkage:

– φ = 1 gives the LASSO estimator.
– φ = 0 correspond to OLS estimate on the subset of selected variables.
– 0 < φ < 1 allow different level of shrinkage, independent of the selection.

3.26. Note: Other shrinkage estimators include elastic net, fused LASSO, group LASSO, etc.
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Section 20. Regression Diagnostics: Residuals

4.1. Motivation: Recall E[β̂] = β only relies on linearity; the other three assumptions were
not necessary for unbiased estimates. What about SEs?

Var(β̂) = Var
((

XTX
)−1

XTy
)

=
(
XTX

)−1
XT Var(y)X

(
XTX

)−1

Under independence and homoskedasticity, we have Var[y] = σ2I:

Var(β̂) =
(
XTX

)−1
XTσ2IX

(
XTX

)−1
= σ2

(
XTX

)−1
.

But if either assumption is not met, our variance estimates (and hence SEs, CIs, etc.) be incorrect.

4.2. (Cont’d): A quick note on Normality. Without this assumption, β̂ is no longer a linear
transformation of a MVN vector, hence it is no longer normally distributed and our CIs and test
are not necessarily valid. However, in large samples, β̂ is approximately normal due to CLT, so
we can get away with valid inference spite non-normal errors in “large-enough” samples. We just
replace tn−p−1,α/2 with zα/2.

4.3. (Cont’d): Prediction intervals are sensitive to all 4 assumption. In particular, it explicitly
require Normality:

ynew ∼ N(xTnewβ, σ
2).

Without normality, our predictions are still unbiased, but the prediction intervals are invalid.

4.4. (Cont’d): Each nice feature of regression relies on one of our assumption (to varying
degrees). Once we have fit a model, we need some tools to diagnose whether our assumptions are
broken.

4.5. Note (Assessing Normality): One of the best tools for diagnostics is to visualize residuals.
Recall ordinary residuals: ei = yi − ŷi. Define studentized residuals as

ri =
ei

σ̂
√

1− hi
where hi is the ith diagonal of H = X(XTX)−1XT . The intuition is as follows.

e = (I−H)y ∼ N(0, σ2(I−H)).

Thus, ei ∼ N(0, σ2(1−hi)). Since ei have different variances, it is difficult to learn anything about
their distribution. By contrast, ei/

√
1− hi has constant variance σ2, so they should look normally

distributed when plotted. (Note: in practice, we estimate σ̂, so the studentized residuals are really
t-distributed.)

4.6. Note (Assessing Heteroskedasticity): We can plot residuals against fitted values. This
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can detect some mean-variance relationships, e.g., if there is higher variance for larger fitted values.

4.7. Note (Assessing Independence): It could be difficulty to visualize independence unless
you have something like time-series data. Instead, we can consider how data were collected.

4.8. Note (Assessing Linearity in SLR): Consider SLR yi = β0 + β1xi + εi. The linearity
assumption states that E[yi] = β0 + β1xi. The residual is given by ei = yi − (β̂0 + β̂1xi). We could
do two things:

1. Plot yi against xi, which should look linear.

2. Plot ei against xi. This should look fairly random and the existence of conspicuous pattern
may indicate non-linearity. It is sometimes easier to identify linearity with this plot.

4.9. Note (Assessing Linearity in MLR): For MLR, plotting yi against xi ignores the effect of
all the other covariates. Instead, we could use partial regression plots. To assess linearity in x∗:

1. Regress y on all other covariates xj = x∗, get fitted values from this model fit, and then
compute the residuals ey.

2. Regression x∗ on all other covariates xj = x∗, get fitted values from this model fit, and then
compute the residuals ex∗ .

3. Plot ey against ex∗ .

Intuitively, we are isolating the y ∼ x∗ relationship, after adjusting for the other covariates.
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Section 21. Fixing Problems and Weighted Least Squares

4.10. Motivation: We have seen how violating assumptions can make our results invalid and
how to assess whether our assumptions are broken. How do we fix our models?

4.11. Note (Fixing Linearity): Suppose linearity isn’t met. We might consider transforming
xj , e.g., using log(xj) or quadratic x2

j . However, this can change the interpretation.

4.12. Note (Fixing Independence): Violations of independence require more advanced regres-
sion methods. If estimates are still unbiased but standard errors are broken, we can replace SEs
with more robust alternatives. Alternatively, we can explicitly model the dependence structure.

4.13. Note (Fixing Normality): Violations of normality might not be a big deal, especially if
we have a large sample size. However, normality is required for valid prediction intervals. Solutions
include could consider transforming Y , e.g., use log(Y ). This again changes interpretation (but
might not be a problem if we only care about predictions). We could consider other regression
approaches, e.g., GLMs, etc.

4.14. Note (Fixing Homoskedasticity): If our error are heteroskedastic, we have a few options:

• Transform outcome.

• Weighted least squares.

• Bootstrap.

4.15. Note (Weighted Least Squares): Suppose we have heteroskedasticity:

y = Xβ + ε, s.t. ε ∼ N(0,Σ),

where

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...
0 0 . . . σ2

n


Likelihood:

L(β,Σ) =
∏
i

1√
2πσ2

i

exp

[
−1

2σ2
i

(
yi − xTi β

)2]
.

Maximizing the likelihood is equivalent to:

minwi
(
yi − xTi β

)2
,

where wi = 1
σ2
i

This is weighted least squares, as opposed to ordinary least squares.

4.16. (Cont’d) (WLS in Matrix Notation): In matrix notation, we can write

min(y −Xβ)TW(y −Xβ), where W = diag (w1, . . . , wn)

51



Chapter 4. Regression Diagnostics

Taking W as fixed for the moment:

∂L
∂β

=
∂

∂β

[
(y −Xβ)TW(y −Xβ)

]
=

∂

∂β

[
yTWy − yTWXβ − βTXTWy + βTXTWXβ

]
0 =

[
−2XTWy + 2

(
XTWX

)
β
]

XTWy =
(
XTWX

)
β(

XTWX
)−1

XTWy = β̂W

Here β̂W is our WLS estimator. Compare it to the OLS estimator (XTX)−1XTy.

4.17. Note (Properties of WLS Estimator):

E
[
β̂W

]
= E

[(
X>WX

)−1
XTWy

]
=
(
XTWX

)−1
XTWE[y]

=
(
XTWX

)−1
XTWXβ = β

Var
[
β̂W

]
= Var

[(
X>WX

)−1
X>Wy

]
=
(
XTWX

)−1
X>W Var[y]WTX

(
XTWX

)−1

=
(
X>WX

)−1
X>WΣWTX

(
XTWX

)−1

=
(
X>WX

)−1
XTWX

(
X>WX

)−1

=
(
X>WX

)−1

4.18. Note (Alternative View of WLS): Alternatively, let W1/2 = diag(w
1/2
1 , . . . , w

1/2
n ) where

wi = 1/σ2
i . We could pre-multiply our model by W1/2:

W1/2y = W1/2Xβ + W1/2ε

yw :=: Xwβ + εw

The main benefit is to observe that εw ∼ N (0, I):

E [εw] = 0

Var [εw] = Var
(
W1/2ε

)
= W1/2 Var(ε)W1/2

= W1/2ΣW1/2 = I

In other words, we could achieve β̂W be applying OLS of yw on Xw.

4.19. Note (Fitting WLS): In practice, we often don’t know W. Instead, we estimate σ2
i via
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e2
i . We can do this in a few ways:

• Directly: set σ2
i ← e2

i (unstable).

• Binning: estimate a single σ2
i for a group of observations.

• Model σ2
i :

– E.g., |ei| = α0 + α1ŷi + ε′ and then σ̂2
i = |êi|2

– E.g., e2
i = α0 + α1ŷi + ε′ and then σ̂2

i = ê2
i

– Could also regress against covariates instead of fitted values.

But how do we get ei = yi − ŷi without first estimating ŷi? This becomes a bit circular. We now
discuss the iterative reweighted LS algorithm:

1. Fit OLS β̂ = (XTX)−1XTy and get fitted values ŷi residuals ei.

2. Using fitted values and residuals to estimate σ2
i as described above, then set wi = 1/σi62.

3. Fit WLS: β̂W = (XTWX)−1XTWy. Update fitted values and residuals.

4. Repeat until β̂W converges.
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Section 22. Outliers

4.20. Outliers are unusual or extreme observations.

4.21. Note (Detecting X-Outliers): Consider a single covariate. Intuitively, outliers are points
far from the mean, i.e., xi with large |xi − x̄|. How do we generalize this to MLR?

4.22. Note (Leverage): Recall that hat matrix H, which adds a hat to y:

ŷ = X(XTX)−1XTy = Hy.

The leverage for the ith observation, hi, is defined as the ith diagonal of H. Here’s some intuition:

ŷi = Hiy = [hi1, . . . , hin]

y1
...
yn

 =
n∑
j=1

hijyj = hiiyi +
∑
j 6=i

hijyj .

In words, ŷi is a weighted average of our outcomes and the leverage hii determines how much Yi
contributes to the ith fitted value.

4.23. (Cont’d): Now recall that Var[ei] = σ2(1 − hi). If hi is large (close to 1), then Var[ei]
is small, |ei| is small, and ŷi is close to yi.

4.24. (Cont’d) (Leverage in SLR): Some intuition from SLR:

ŷi = β̂0 + β̂1xi

= ȳ + β̂1 (xi − x̄)

=
∑
j

1

n
yj + (xi − x̄)

∑
j yj (xj − x̄)

Sxx

=

[
1

n
+

(xi − x̄)2

Sxx

]
yi +

∑
j 6=i

[
1

n
+

(xi − x̄) (xj − x̄)

Sxx

]
yj

Thus,

hii =
1

n
+

(xi − x̄)2

Sxx

which is large when (xi − x̄)2 is large, i.e., when xi is far from x̄.

4.25. (Cont’d) (Leverage in MLR): The story is analogous in MLR. Here’s a statistical rule
of thumb: label a point “high leverage” (i.e., is an outlier) if hi > 2h̄, where

h̄ =
1

n

n∑
i=1

hi =
1

n
tr(H) =

p+ 1

n
,

where in the last equality we used the fact that the trace of an idempotent matrix is equal to its
rank.

4.26. Leverage tells us whether ŷi is close to yi. It might be a problem if yi is also an outlier.
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22. Outliers

4.27. Note: Recall ordinary residuals ei = yi − ŷi. Since e = (I −H)y ∼ N(0, σ2(I −H)),
ei ∼ N(0, σ2(1 − hi)), i.e., ei have different variances, so it is difficult to work with. Instead, we
can use studentized residuals

ri =
ei

σ̂
√

1− hi
.

The intuition is that ri has constant variance, so they should look normally distributed when
plotted. In practice, we estimate σ̂, so the studentized residuals are really t-distributed. We can
look closely at observations with large |ri|.

4.28. Note: Note that studentized residuals contain σ̂. The larger the hi, the smaller the
studentized residuals. Thus, high leverage points can have lower studentized residuals. Also, the
larger the σ̂, the smaller the studentized residuals. Thus, y-outliers with large residuals would
themselves contribute to a large σ̂. We may think that large ei would cause a large ri, but large ei
would make the denominator large as well! Outliers can hide from us!

4.29. (Cont’d): To combat this, we can use leave-one-out or Jacknife residuals

ei(−i) = yi − ŷi(−i)
where ŷi(−i) is the fitted value for the ith observation based on fitting the model without yi. Likewise,
we can compute studentized Jacknife residuals

ri(−i) =
ei(−i)

si

where si is the appropriate standard deviation so that ri(−i) has constant variance. Intuitively,
this approach removes the ith observation from affecting the fitted value, so we can recognize them
more easily.

4.30. (Cont’d): To avoid fitting the model n times, we present some computational simplifi-
cation. It can be shown that

ri(−i) =
ei√

σ̂2
(−i) (1− hi)

= ri

[
(n− p− 2)

n− p− 1− r2
i

]1/2

,

which we can extract from a single model fit.

4.31. Note: Should we remove outliers? We should if we believe the observation is in some
sense incorrect, e.g., data entry error, or an observation from a different population. However, we
should not by default remove outliers; it’s more useful to examine its impact on our results.
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Chapter 4. Regression Diagnostics

Section 23. Influence

4.32. Previously, we saw that high leverage observations are those that have potential to impact
our regression. In this section, we look at influential observations, those that strongly impact our
regression. How do we quantify the impact of an observation on our regression model? One possible
approach is to compare the model fit to the full data, to a model fit to the whole data except for
the ith observation. This has the same intuition as for the Jackknife residuals last time. We now
look at some other approaches, including DFFITS, Cook’s distance, and DFBetas.

4.33. Note (DFFITS): Define

DFFITSi =
ŷi − ŷi(−i)√
σ̂2

(−i)hi

where

ŷ(−i) = Xβ̂(−i)

= X((XT
(−i)X(−i))

−1XT
(−i)y(−i))

and σ̂2
(−i) is the MSE for model fit to all observations except yi. Intuitively, we look at the scaled

difference between the fitted value for yi and what we would have gotten if we hadn’t observed yi.
A large value of DF-Fits suggests that the fitted value changes substantially.

4.34. (Cont’d): It can be shown that

DFFITSi =
ŷi − ŷi(−i)√
σ̂2

(−i)hi
= ri(−i)

√
hi

1− hi
,

which is a function of ri(−i) and hi. Thus, it incorporates information about both x-outliers (see
hi) and y-outliers (see ri(−i)) and does not require us to refit models.

4.35. (Cont’d): Statistical rule of thumb: We say an observation is influential if its DFFITS
satisfies

|DFFITSi| > 2

√
p+ 1

n
.

4.36. Note (Cook’s Distance): We define

Di =
(ŷ − ŷ(−i)))

T (ŷ − ŷ(−i)))

σ̂2 × (p+ 1)
=

∑n
j (ŷj − ŷj(−i))2

σ̂2 × (p+ 1)

where

ŷ(−i) = Xβ̂(−i)

= X((XT
(−i)X(−i))

−1XT
(−i)y(−i))

Intuitively, this is a scaled measure of averaged squared distance between fitted values with and
without yi, i.e., how the ith observation affects the fitted values.
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23. Influence

4.37. (Cont’d): It turns out that we can write

Di =
r2
i

p+ 1

hi
1 + hi

.

Thus, it also incorporates information about both x-outliers and y-outliers and we don’t need to
refit the model.

4.38. (Cont’d): Statistical rule of thumb: Compare Di with Fp+1,N−p−1. A large percentile
(e.g., 50th or above) indicates large effect on the fit.

4.39. DFFITS measures the ith observation’s impact on its fitted value; Cook’s distance mea-
sure ith observation’s impact on all fitted values. Sometimes what we really care about is estimating
β. We now present DFBETAS, which measures the impact of the ith observation on coefficient
estimates.

4.40. Note (DFBETAS): The DFBETAS measure for the ith observation’s influence on the
kth coefficient βk

DFBETASk,i =
β̂k − β̂k(−i)√
σ̂2

(−i)Vkk

where β̂k(−i) is the kth element of β̂(−i) :

β̂(−i) = (XT
(−i)X(−i))

−1XT
(−i)y(−i)

Note that the denominator is computed under full data fit.

4.41. (Cont’d): Statistical rule of thumb: Large values indicate large impact on estimation
of βk. In particular, we say an observation is influential if

|DFBETASk,i| >
2√
n
.

4.42. What to do about highly influential points? If we have reason to suspect that they are
in some sense incorrect, we could exclude them. More broadly, it is good practice to report them,
e.g., how do the results look with and without these points, and are our conclusions substantially
different?
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