
Notes on CO-487/CO-687:

Applied Cryptography

Unversity of Waterloo

David Duan

Last Updated: January 2, 2022 (draft)

Contents

Contents

1 Introduction 1

2 Symmetric-Key Encryption 2

1 Data Encryption Standard (DES) . 3

2 Advanced Encryption Standard . 7

3 Linear Cryptanalysis . 12

4 Differential Cryptanalysis . 17

5 Stream Ciphers . 18

i

Chapter 1

Introduction

1

Chapter 2

Symmetric-Key Encryption

1 Data Encryption Standard (DES) . 3

2 Advanced Encryption Standard . 7

3 Linear Cryptanalysis . 12

4 Differential Cryptanalysis . 17

5 Stream Ciphers . 18

2

1. Data Encryption Standard (DES)

Section 1. Data Encryption Standard (DES)

1.1. Note: A block cipher is a symmetric-key encryption scheme in which a fixed-length block
of plaintext determines an equal-sized block of ciphertext. More formally, a block cipher consists
of two paired algorithms, E for encryption and D for decryption, where D = E−1. Both accept
two inputs: a block of size n bits and a key of size k bits, and both yield an n-bit output block.

1.2. Note: Feistel ciphers is a class of block ciphers with the following components:

• Parameters: n (half the block length), h (number of rounds), and ` (key size).

• Notation: plaintext spaceM = {0, 1}2n, ciphertext space C = {0, 1}2n, key spaceK = {0, 1}`.
• A key scheduling algorithm which determines subkeys k1, k2, . . . , kh from a key k.

• Each subkey ki defines a component function fi : {0, 1}n → {0, 1}n.

Encryption takes h rounds:

• Input: Plaintext m = (m0,m1) where mi ∈ {0, 1}n.

• Round 1: (m0,m1) 7→ (m1,m2) where m2 = m0 ⊕ f1(m1).

• Round 2: (m1,m2) 7→ (m2,m3) where m3 = m1 ⊕ f2(m2).

• · · ·
• Round h: (mh−1,mh) 7→ (mh,mh+1) where mh+1 = mh−1 ⊕ fh(mh).

• Output: Ciphertext c = (mh,mh+1).

Decryption applies these function in reverse order, i.e.,

• Input: Ciphertext c = (mh,mh+1) and key k.

• Round 1: Compute mh−1 = mh+1 ⊕ fh(mh).

• Round 2: Compute mh−2 = mh ⊕ fh−1(mh−1).

• · · ·
• Round h: Compute m0 = m2 ⊕ f1(m1).

• Output: Plaintext m = (m0,m1).

1.3. Remark: Note that we are taking the advantage that x ⊕ y ⊕ y = x for any x, y. In
other words, since XOR is commutative and self-inverse (y ⊕ y = 0), we can decrypt the message
by applying XOR with the same argument again. Thanks to this, there is no restrictions on the
functions fi’s in order for the encryption procedure to be invertible.

1.4. Motivation: The underlying principle of Feistel Cipher is that we want to take something
“simple” and use it several times, hoping that the result is “complicated”. This method is also
easy to implement, as just need to implement one round of encryption; all subsequent rounds can
use the same code. Also, decryption can use the same code, just with subkeys in reversed order.

3

1. Data Encryption Standard (DES)

1.5. Note (DES, 1970s): Data Encryption Standard is a block cipher with 64-bit blocks,
56-bit key, and 16 rounds of operation.

• DES uses a Feistel network design.

• Plaintext is divided into two halves.

• Key i used to generate subkeys k1, k2, . . . , kh.

• fi is a component function whose output value depends on ki and mi.

The initial permutation and its inverse can be found here: Wikipedia. Next, let us discuss the key
scheduling algorithm, i.e., how to generate k1, . . . , kh from input key k. Given an input key of
64-bit, PC1 (permuted choice 1) throws away 8 bits and returns a 56-bit key. Now in each round,
we break the key in two parts, left shift each half by a certain number of bits, and concatenate the
results to produce subkeys.

4

https://en.wikipedia.org/wiki/DES_supplementary_material

1. Data Encryption Standard (DES)

It remains to look at the component functions fi : {0, 1}32 → {0, 1}32 for i ∈ {1, . . . , h}.

The information about S-boxes can be found here: Wikipedia. Let’s dive in and see how it works.
Suppose you are given an input of 1011012. Take the middle 4 digits and convert it to decimal,
you get 6. Now take the outer 2 digits and convert it to decimal, you get 3. Then your output is
the (3, 6) position of the table. For example, if this were for S1, then your output is 1 = 00012.

1.6. Note: Is DES secure? Recall that a symmetric key encryption scheme is said to be secure if
it is semantically secure against a chosen-plaintext attack by a computationally bounded adversary.
DES is not secure with modern computational power:

• Brute-force: 256 decryptions because the key is 56 bits, so O(256) time and O(1) space.

• Differential cryptanalysis: 249 chosen plaintexts.

• Linear cryptanalysis: 243 known plaintexts.

To mitigate the problems, we could encrypt multiple times, i.e., re-encrypt the ciphertext one or
more time using independent keys, and hope that this operation increases the effective key length.
However, this doe snot always increase security. For example, if Eπ denotes the simple substitution
cipher with key π, then is Eπ1 ◦ Eπ2 any more secure than Eπ?

1.7. Note: In Double-DES, we have two keys k = (k1, k2) where k1, k2 ∈R {0, 1}56. Encryption
is c = Ek2(Ek1(m)) and decryption is m = E−1k1 (E−1k2 (c)). The key size is now ` = 112, so exhaustive

key search takes 2112 steps, which is infeasible. However, this is still not enough. We discuss the
meet-in-the-middle attack.

• Suppose we have known plaintext pairs (mi, ci) for i = 1, 2, 3, . . .

• For each h2 ∈ {0, 1}56, compute E−1h2 (c1) and store [E−1h2 (c1), h2] in a table.

• For each h1 ∈ {0, 1}56, compute Eh1(m1) and search for this in the table. If Eh1(m1) =
E−1h2 (c1), then check if Eh2(m2) = E−1h2 (c2). If so, continue checking the rest. If all checks
pass, then output (h1, h2) and stop.

The complexity for this attack is ≈ 257 time and O(256) space.

5

https://en.wikipedia.org/wiki/DES_supplementary_material#Substitution_boxes_(S-boxes)

1. Data Encryption Standard (DES)

1.8. Note: To avoid this attack, we could use Triple-DES, where the key is k = (k1, k2, k3),
ki ∈R {0, 1}56, and the ciphertext is c = Ek3(Ek2(Ek1(m))). The key length of 3-DES is ` = 168,
so exhaustive search takes 2168 steps (infeasible). Now that any meet-in-the-middle attack takes
2112, which is still infeasible. Thus, the effective key length of 3-DES against exhaustive key search
is ≤ 112 bits. However, the block length is now the weak link. Adversary could store a large table
(of size ≤ 264) of (m, c) pairs and do a dictionary attack. To prevent this attack, we should change
secret keys frequently.

1.9. Note: Some variants:

• Encrypt-Decrypt-Encrypt Triple-DES (for backward compatibility with DES)

• Two-Key Triple-DES (for storing some storage)

6

2. Advanced Encryption Standard

Section 2. Advanced Encryption Standard

2.1. Note: Requirements for AES:

• Key sizes: 128, 192, 256 bits.

• Block size: 128 bits.

• Efficient on both software and hardware platforms.

• Availability on a worldwide, non-exclusive, royalty-free basis.

2.2. Note: A substitution-permutation network (SPN) is a multiple-round iterated block
cipher where each round consists of a substitution operation followed by a permutation opera-
tion.

• ⊕: Bitwise XOR.

• S: Substitution box (lookup table).

• Lines below S: Permutation.

Note that anything happens after the last time you use the key can be undone. Thus, it is common
to introduce one more key-involved operation after the final round.

7

2. Advanced Encryption Standard

2.3. Note: AES is an SPN where the permutation operation consists of two linear transforma-
tions, one of which is a permutation.

• All operations are byte-oriented (process 8 bites at a time).

• The block size of AES is 128-bits and each round key is 128 bits.

• A key-schedule is used to generate the round keys.

• AES accepts three different key lengths. The number of rounds depends on the key length.

– Key length = 128, h = 10.

– Key length = 192, h = 12.

– Key length = 256, h = 14.

As with the previous ciphers we have studied,

• the substitution operation (S-box) is the only non-linear component of the cipher;

• the permutation operations (permutation and linear transformation) spread out the non-
linearities in each round.

2.4. Note: Each round of AES updates a variable called State which consists of a 4× 4 array
of bytes (4 · 4 · 8 = 128, the block size). This state is initialized with the 128-bit plaintext. After h
rounds are completed, one final additional round key is XOR-ed with State to produce the cipher-
text (key whitening, see the previous page).

The AES round function uses four operations:

• AddRoundKey (key mixing): Bitwise XOR each byte of State with the corresponding byte
of the round Key.

• SubBytes (S-box): Take each byte in State and replace it with the output of the S-box.
Note that S : {0, 1}8 → {0, 1}i is a fixed and publish function.

• ShiftRows (permutation): Permute the bytes of State by applying a cyclic shift to each row.
Shift the ith row by i steps, i = 0, 1, 2, 3.

• MixColumns (matrix multiplication / linear transformation): Most mathematically com-
plicated step. Left multiply each column by a fixed matrix. See next page.

8

2. Advanced Encryption Standard

9

2. Advanced Encryption Standard

We now look at the MixColumn operation. Viewing it as a bit operation:
b0
b1
b2
b3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

a0
a1
a2
a3

 =

2a0 + 3a1 + 1a2 + 1a3
1a0 + 2a1 + 3a2 + 1a3
1a0 + 1a1 + 2a2 + 3a3
3a0 + 1a1 + 1a2 + 2a3

• Each ai and bi is a byte. Regard bytes as 8-bit arrays.

• Each addition operation is a bitwise XOR.

• Multiplication by 1 is the identity.

• Multiplication by 2 is the following operation:

– If the left-most-bit is 0, then perform a cyclic left shift.

– If the left-most-bit is 1, discard the 1, insert a 0 on the right, and XOR with 0x1b =

00011011.

• Multiplication by 3 is the operation 3x = 2x+ 1x.

Alternatively, we can regard this as a matrix transformation in the finite field GF(28):

• Regard all bytes as polynomials in the finite field GF(28) = F2[x]/(x8 + x4 + x3 + x+ 1).

• Regard all integers in the matrix 1, 2, 3 as bytes via their binary representations, e.g., 3 =
000000112 = x+ 1, and 2 = 000000102 = x, and 1 = 000000012 = 1.

• Perform all additions and multiplications in the finite field GF(28).

A third alternative is to regard it as a polynomial multiplication.

• The MixColumns matrix is a cyclic matrix, i.e., each row is a rotation of the previous row.

• Multiplication by a cyclic N × N matrix corresponds to polynomial multiplication modulo
XN − 1.

• Regard the column of ai’s as a polynomial in GF(28)[X] : a0 + a1X + a2X
2 + a3X

3.

• Modulo X4 − 1, we compute

(02 + 01 ·X + 01 ·X2 + 03 ·X3) · (a0 + a1X + a2X
2 + a3X

3)

to obtain b0 + b1X + b2X
2 + b3X

3.

2.5. Note: We are ready to describe the AES Encryption scheme.

• From the key k, derive h+ 1 round keys k0, k1, . . . , kh via the key scheduler.

10

2. Advanced Encryption Standard

• The encryption function:

State ← plaintext
State ← State ⊕ k0
for i = 1 . . . h− 1 do

State ← SubBytes (State)
State ← ShiftRows (State)
State ← MixColumns (State)
State ← State ⊕ ki

State ← SubBytes(State)
State ← ShiftRows(State)
State ← State ⊕ kh
ciphertext ← State

Note that MixColumns is not applied in the final round, because it can be easily undone.

2.6. Note (AES Key Schedule):

• For 128-bit keys, AES has ten rounds, so we need eleven subkeys.

• Each ki is a 32-bit word (viewed as a 4-byte array).

• Each group of four ki’s forms a 128-bit subkey.

• The first round subkey (k0, k1, k2, k3) equals the actual AES key.

The functions fi : {0, 1}32 → {0, 1}32 are defined as follows:

• Left-shift the input cyclically by 8-bits.

• Apply the AES S-box to each byte.

• Bitwise XOR the left-most byte with a constant which varies by rounding according to the
following table.

Round constant Round constant

1 0x01 6 0x20

2 0x02 7 0x40

3 0x04 8 0x80

4 0x08 9 0x1B

5 0x10 10 0x36

• Output the result.

11

3. Linear Cryptanalysis

Section 3. Linear Cryptanalysis

3.1. Note: Recall that a substitution-permutation network is a type of iterated block cipher
where each round consists of a substitution operation followed by a permutation operation. Exam-
ples include the component function of DES and AES.

• The key k influences the result of the substitution step.

• One technique is to XOR the S-box inputs with the key hits before the S-box is applied.

• From k, one derives round key k1, k2, . . . , kh, kh+1 using a key scheduling algorithm, where h
denotes the number of rounds.

3.2. Note: The Heys cipher is a toy cipher discussed in his paper, ”A Tutorial in Linear and
Differential Cryptanalysis”, with the following properties:

• 4-round SPN.

• 16-bit block size.

• All S-boxes are identical (which is the first line of the DES S1).

ln 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Out 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

• All permutations are identical (the butterfly or transpose permutation).

ln 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Out 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

• No key scheduling algorithm (i.e., each round’s subkey is independently chosen).

• 80-bit key.

The K5 subkey prevents an adversary from reversing the final round of substitution and permuta-
tion. This technique is called key whitening.

3.3. Note: We introduce some notations.

• P = (P1P2 . . . P16): plaintext, where Pj denotes its jth bit.

• C = (C1C2 . . . C16): ciphertext, where Cj denotes its jth bit.

• Ki = (Ki,1Ki,2 . . .Ki,16): ith subkey, where Ki,j denotes its jth bit.

• Ui, i ∈ {1, 2, 3, 4}: the 16-bit block of bits at the input of the ith round of S-boxes.

• Vi, i ∈ {1, 2, 3, 4}: the 16-bit block of bits at the output of the ith round of S-boxes.

• Ui,j and Vi,j have similar meaning to Ki,j .

12

3. Linear Cryptanalysis

Figure 2.1: Heys Cipher

3.4. Note: The basic idea of linear cryptanalysis is to look for linear (boolean) relations
among the bits which hold with probability much different from 50%. Intuitively, a perfect cipher
should not give you any hints to exploit (partial information) and everything should look random
(i.e., holds with probability 50%). Our goal is to identify cases where the probability is far from
random. For example,

U4,6 ⊕ U4,8 ⊕ U4,14 ⊕ U4,16 ⊕ P5 ⊕ P7 ⊕ P8
∼= 0

In the above equation, U4,6, U4,8, U4,14, and U4,16 depend only on the ciphertext C and the eight key
bits K5,5,K5,6,K5,7,K5,8,K5,13,K5,14,K5,15,K5,16. Given enough known-plaintext pairs (P,C), we
can guess the appropriate key bits until a guess is found for which the relation holds with probability
much different from 50%, over all the known (P,C)-pairs.

13

3. Linear Cryptanalysis

3.5. Note: Our goal is to find linear relations which hold with abnormally large or abnormally
small probability. Let us start with the S-box. Let X1, X2, X3, X4 be the four input bits (from left
to right) and Y1, Y2, Y3, Y4 be the four output bits.

X X1 X2 X3 X4 Y Y1 Y2 Y3 Y4 X2 ⊕X3 Y1 ⊕ Y3 ⊕ Y4
0 0 0 0 0 14 1 1 1 0 0 0

1 0 0 0 1 4 0 1 0 0 0 0

2 0 0 1 0 13 1 1 0 1 1 0

3 0 0 1 1 1 0 0 0 1 1 1

4 0 1 0 0 2 0 0 1 0 1 1

5 0 1 0 1 15 1 1 1 1 1 1

6 0 1 1 0 11 1 0 1 1 0 1

7 0 1 1 1 8 1 0 0 0 0 1

8 1 0 0 0 3 0 0 1 1 0 1

9 1 0 0 1 10 1 0 1 0 0 1

10 1 0 1 0 6 0 1 1 0 1 1

11 1 0 1 1 12 1 1 0 0 1 0

12 1 1 0 0 5 0 1 0 1 1 1

13 1 1 0 1 9 1 0 0 1 1 0

14 1 1 1 0 0 0 0 0 0 0 1

15 1 1 1 1 7 0 1 1 1 0 0

So how often does X2 ⊕ X3 = Y1 ⊕ Y3 ⊕ Y4? Observe there are only 4 out of 16 cases that this
equality does not hold. We say that this linear relation holds with probability 3/4 and fails with
probability 1/4. This is quite different from 1/2! We say that the bias of this linear relation is
1/4 = 3/4− 1/2. More formally, the bias of a probability p is defined to be p− 1/2.

As another example, if you compute the results of X1 ⊕ X4 = Y2, then you see that the relation
holds exactly 1/2 of the times and there is no bias.

The bias can be negative too, which means the relation is unlikely to hold. One example is
X3 ⊕X4 = Y1 ⊕ Y4, which holds with probability 2/16 an the bias is −6/16 = −3/8.

To summarize,

• We have:

– X2 ⊕X3
∼= Y1 ⊕ Y3 ⊕ Y4 with probability 12/16 = 3/4

– X1 ⊕X4
∼= Y2 with probability 8/16 = 1/2

– X3 ⊕X4
∼= Y1 ⊕ Y4 with probability 2/16 = 1/8

• For the S-box from the Heys cipher,

– X2 ⊕X3 ⊕ Y1 ⊕ Y3 ⊕ Y4 ∼= 0 with probability 3/4 (bias 1/4)

– X1 ⊕X4 ⊕ Y2 ∼= 0 with probability 1/2 (bias 0)

– X3 ⊕X4 ⊕ Y1 ⊕ Y4 ∼= 0 with probability 1/8 (bias −3/8)

14

3. Linear Cryptanalysis

3.6. Note: We can build a linear approximation table from this.

For a linear relation

a1X1 ⊕ a2X2 ⊕ a3X3 ⊕ a4X4 = b1Y1 ⊕ b2Y2 ⊕ b3Y3 ⊕ b4Y4

where ai, bi ∈ {0, 1} for i = 1, 2, 3, 4, the input sum is the value of a1a2a3a4 in binary and the
output sum is the value b1b2b3b4 in binary. The bias of this linear relation is x/16 where x is the
value of the table cell.

For example, consider X3 ⊕ X4
∼= Y1 ⊕ Y4, or equivalently, X3 ⊕ X4 ⊕ Y1 ⊕ Y4 ∼= 0. We have

a1a2a3a4 = 00112 = 310 and b1b2b3b4 = 10012 = 910, and the corresponding value in table cell is
−6; the bias is −6/16 = −3/18.

3.7. Note: How do probabilities stack? Suppose

Prob (X1 = i) =

{
p1 i = 0
1− p1 i = 1

Prob (X2 = i) =

{
p2 i = 0
1− p2 i = 1

If X1 and X2 are independent, then

Prob (X1 = i,X2 = j) =

p1p2 i = 0, j = 0
p1 (1− p2) i = 0, j = 1
(1− p1) p2 i = 1, j = 0
(1− p1) (1− p2) i = 1, j = 1

15

3. Linear Cryptanalysis

Then the probability that X1 ⊕X2 = 0 is

Prob (X1 ⊕X2 = 0) = Prob (X1 = 0, X2 = 0) + Prob (X1 = 1, X2 = 1)

= p1p2 + (1− p1) (1− p2)

Now suppose p1 = 1/2 + ε1 has bias ε1 and p2 = 1/2 + ε2 has bias ε2. Then

Prob (X1 ⊕X2 = 0) = p1p2 + (1− p1) (1− p2) =
1

2
+ 2ε1ε2.

Hence, Prob(X1 ⊕X2 = 0) has bias 2ε1ε2. Generalizing this, we obtain the following Theorem.

3.8. Theorem (Piling-Up Lemma, Matsui, 1993): Let X1, X2, . . . , Xn be independent
binary random variables with bias ε1, ε2, . . . , εn, respectively. Then

Prob (X1 ⊕X2 ⊕ · · · ⊕Xn = 0) =
1

2
+ 2n−1

n∏
i=1

εi.

16

4. Differential Cryptanalysis

Section 4. Differential Cryptanalysis

4.1. Note: Differential cryptanalysis is a chosen-plaintext attack. The attacker must choose
certain plaintexts strategically and obtain the corresponding ciphertexts.

• Let P , P ′ be two plaintexts.

• Let C, C ′ be their encryptions.

• Set ∆P := P ⊕ P ′ and ∆C := C ⊕ C ′.
• Look for values of ∆C which occur with abnormally high probability for a given ∆P .

As with linear cryptanalysis, we first perform these steps on the S-box, then gradually scale up to
the entire cipher.

• Let X and X ′ be two plaintexts.

• Let Y and Y ′ be their encryptions.

• Set ∆X := X ⊕X ′ and ∆Y := Y ⊕ Y ′.
• Tabulate, for each ∆X, the possible values for ∆Y .

• Look for values of ∆Y which occurs with abnormally high probability for a given ∆X.

4.2. Remark: Fill the rest.

17

5. Stream Ciphers

Section 5. Stream Ciphers

5.1. Note: A block cipher is a SKES which breaks up the plaintext into blocks of a fixed
length, and encrypts the block one at a time. In contrast, a stream cipher encrypts a plaintext
one character (usually a bit) at a time.

5.2. Note: Stream ciphers are a practical version of one-time pads. Instead of using a random
key, use a pseudorandom keystream derived from a short key.

• Advantages vs block ciphers: speed, simplicity, ease of hardware implementation.

• Disadvantages vs block ciphers: linearity (each bit of plaintext influences exactly one bit of
cipher text) and potential disaster if keystream is re-used.

The keystream should be “indistinguishable” from a random sequence. In particular, don’t use
UNIX random number generator for cryptography!

18

	Introduction
	Symmetric-Key Encryption
	Data Encryption Standard (DES)
	Advanced Encryption Standard
	Linear Cryptanalysis
	Differential Cryptanalysis
	Stream Ciphers

