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1 Populations

Our goal is to describe a population using attributes.

• A population is a finite (though possibly huge) set P of elements.

• Elements of a population are called units, denoted u ∈ P.

• Variates are functions x(u), y(u), etc., on the individual units u ∈ P. We often use the notation
xu, yu, etc., when referring to the realized values of these variates for unit u ∈ {1, ..., N}.

In the next section, we will define and explore population attributes, denoted generally as a(P) (some
text uses α instead of a). In particular, we will define them, consider how to calculate them, and evaluate
some of their (non-sampling) properties, e.g., interpreting the characteristic being captured, sensitivity to
outlying points, etc.
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2 Explicit Attributes

2.1 Population Attributes

We formally define the following terms seen in the previous section:

• A population is a set or collection of units, with one or more variates that we can measure.

• Variates are characteristics (can be numerical or categorical) of each unit in the population.

• Population attributes are summaries that describe the characteristics of the population. More
formally, an attribute is a function that is applied to the whole population and determined by the
variate values observed for each of the population’s units.

Suppose we are interested in the variate ys of a population P = {u1, . . . , uN}. Then the actual variate
values realized by the units are {y1, . . . , yN}, and we can denote a population attribute derived from a
function f as

a(P ) = f(y1, . . . , yN ).

For example, we can compute the population total as:

a(P ) =
∑
u∈P

yu.

We can also calculate the number of units that satisfy a given predicate IA as:

a(P ) =
∑
u∈P

IA(yu).

In general, attributes can be numerical or graphical, as long as they summarize the whole population.
Below are all attributes of a population:

• A histogram of yu values.

• A Scatter-plot of the (xu, yu) pairs.

• The least square estimate of the line-of-best-fit.

• The residual variation around the line-of-best-fit.

B Location Attributes

These attributes measure or describe the center of the distribution of variate values in a given dataset.

• the population average:

a(P) = ŷ =
1

N

∑
u∈P

yu.

• the population proportion (with respect to some predicate IA):

a(P) =
1

N

∑
u∈P

IA(yu).

Other examples include the population mode, the population median, etc.
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B Spread Attributes

These attributes measure variability or spread of variate values in a given dataset.

• the population variance:

a(P) =
1

N

∑
u∈P

(yu − y)2.

• the population standard deviation:

a(P) = SDP(u) =

√∑
u∈P(yu − y)2

N
.

• coefficient of variation:

a(P) =
SDP(y)

y
.

Remark. The variance and standard deviation can also be defined using N − 1 as denominator. We would
further discuss about the comparison between N and N − 1.

B Order Statistics

Population attributes can also be based on an indexed collection of values,

y(1) ≤ y(2) ≤ ... ≤ y(N)

which are the variate values in population that are ordered from the smallest to largest (including ties.)
The set {y(i)}Ni=1 can be viewed as a permutation of {yi}Ni=1, sorted based on some criteria.

B Location Attributes based on Order Statistics

• the population minimum:

a(P) = min
u∈P

yu = y(1).

• the population maximum:

a(P) = max
u∈P

yu = y(N).

• the population mid-range:

a(P) =
1

2
[y(1) + y(N)].

• the population median:

a(P) = medianu∈P yu.

• the population quartiles:

– Q1 is 25th percentile, or the first quartile;

– Q2 is 50th percentile, or the median;

– Q3 is 75th percentile, or the third quartile.
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B Variability Attributes base on Order Statistics

• the population range:

a(P) = max
u∈P

yu −min
u∈P

yu = y(N) − y(1).

• the population inter-quartile range (IQR):

a(P) = Q3 −Q1.

• the median absolute deviation (MAD):

a(P) = medianu∈P

∣∣∣∣yu −medianu∈P yu

∣∣∣∣;
that is, MAD is the median of the absolute differences between each yu and the population median.

• the average squared distance from the mean is

a(P) =
1

N

∑
u∈P

(yu − y)2.

B Skewness Attributes

These are measures of asymmetry in a population. A symmetric distribution of the population values
should result in a skewness attributes of zero.

• Pearson’s moment coefficient of skewness:

a(P) =
1
N

∑
u∈P(yu − y)3

[SDP(y)]3
.

This metric focus on the average and is dimensionless.

• Pearson’s second skewness coefficient, also known as the median skewness:

a(P) = 3× (ȳ −medianu∈P yu)

SDP(y)
.

• Bowley’s measure of skewness (based on the quartiles):

a(P) =
(Q3 +Q1) /2−Q2

(Q3 −Q1) /2
.

B NAs in R

Many programs in R accommodate missing data (represented as NAs) and do something appropriate (typ-
ically omit them).

• For your own code and analysis, you either need to decide what to do with NAs or ensure that the
data do not have any NAs.

• If you choose to omit NAs for example using the function na.omit(...) may be helpful. It will
remove rows which contain any NA from a data set.

• For other possibilities, please see help("na.omit") or ?na.omit in R.
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2.2 Attribute Properties

Let us examine the behaviour of an attribute when we change the units and duplicate the population.
Recall that a population attribute is a function of measured variates yu:

a(P) = f(y1, ..., yN ),

and the variates yu are typically associated with some measurement units. In general, we are interested
in how an attribute changes when we change the units of measurement and when we change the population.

There are four categories of changes:

• Change in scale of measurement, e.g., meter to millimeter.

• Change in location of the zero of measurement, e.g., 0◦K vs −273◦C.

• Change in both scale and location, e.g., 0◦K → −273◦C and 1◦C = 1.8◦F.

• Change in more than just scale and location: miles per hour vs kilometers per minutes.

B Location Invariance and Equivariance

For an attribute a(P) = a(y1, ..., yN ), we say that for any m > 0 and n ∈ R, that the attribute is

• location invariant if

a(y1 + b, ..., yN + b) = a(y1, ..., yN ).

• location equivariant if

a(y1 + b, ..., yN + b) = a(y1, ..., yN ) + b.

Example. The population average is location equivariant, i.e., increasing all variate values by a constant b
would lead to an increment of b in the population average.

B Scale Invariance and Equivariance

For an attribute a(P) = a(y1, ..., yN ), we say that for any m > 0 and b ∈ R, the attribute is

• scale invariant if

a(my1, ...,myN ) = a(y1, ..., yN ) = a(P).

• scale equivariant if

a(my1, ...,myN ) = ma(y1, ..., yN ) = ma(P).

• Location-scale invariant if it is both location invariant and scale invariant, i.e.

a(y1m+ b, ...,myN + b) = a(y1, ..., yN ) = a(P).

• location-scale equivariant if it is both location equivalent and scale equivariant, i.e.

a(y1m+ b, ...,myN + b) = ma(y1, ..., yN ) + b = ma(P) + b.

Example. The population average is location-scale equivariant:

a(my1 + b, ...,myN + b) =
1

N

∑
u∈P

(myu + b) = m

(
1

N

∑
u∈P

)
+ b = ma(P) + b.
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B Replication

Another invariance/equivariance property of interest for population attributes is replication invariance
and replication equivariance, i.e., if a population P is duplicated k−1 times (so that there are k copies
of it), how does the attribute change on this new population, denoted by Pk?

P = {y1, ..., yN} with size N

P2 = {y1, ..., yN , y1, ..., yN} with size 2N

· · ·
Pk = {y1, ..., yN , y1, ..., yN , y1, ..., yN} with size kN

We say the attribute a(P) is:

• replication invariant whenever a(Pk) = a(P).

• replication equivariant whenever a(Pk) = k · a(P).

For example, the population average is replication invariant:

Pk = {x1, ..., xkN}

a(Pk) =
1

kN

kN∑
j=1

xj

=
1

kN

∑
u∈P

k · yu

=
1

N

∑
u∈P

yu

= a(P).
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2.3 Influence, Sensitive Curves, and Breakdown Points

One way to study a population attribute a(P) = a(y1, ..., yN ), is to consider the effect of adding or removing
a single variate yu to examine its impact on P. To quantify this effect, we look at the difference in the
attribute when the variate value is added (sensitivity) or removed (influence). We also consider a special
form of sensitivity/influence measure called the breakdown point.

B Influence

The influence of a variate yu (corresponding to unit u ∈ P) on the population attribute a(P) is quantified
by the difference between the attribute value when yu is included and the attribute value when yu is
removed:

∆(a, u) = a(y1, ..., yu−1, yu, yu+1, ..., yN )− a(y1, ..., yu−1, yu+1, ..., yN ).

Ideally, no single unit’s value should be greater influence than any other. If a unit had larger influence
than the rest, it would require further investigation because it could either be an error or it’s the most
interesting unit in the population.

Example. Consider the influence of a variate yu on the population average. We start by deriving the
average without unit u:

a(y1, ..., yu−1, yu+1, ..., yN ) =
1

N − 1

∑
k∈P,k 6=u

yk =

∑
k∈P yk − yu
N − 1

=
Ny − yu
N − 1

.

The influence for a given u is thus

∆(a, u) = y − Ny − yu
N − 1

=
(N − 1)y −Ny + yu

N − 1
=
yu − y
N − 1

.

To calculate this in R, we can use a loop:

delta = rep(0, length(y))

for (i in 1:length(y)) {

delta[i] = ybar - mean(y[-i])

}

• The rep(x, k) replicates value x for k times. In this case, it builds a zero vector of size length(y).

• y[-i] removes the ith element from a vector.

B Sensitivity

We can examine the effect on a population attribute when we add a variate. To examine this effect, suppose
we have a population of size N − 1, P = {y1, ..., yN−1}, and add a variate with value y. Then our new
population with N elements is P∗ = {y1, . . . , yN−1, y}. Define the sensitivity curve of an attribute as

SC(y; a(P)) =
a(P∗)− a(P)

1/N
= N(a(P∗)− a(P))

We can then plot the sensitive curve as a function of the new variate value y, which gives a scaled measure
of the effect that a single variate value y has on the value of a population attribute a(P). The sensitivity
curve for any attribute can be determined mathematically in general, but can also be determined compu-
tationally for any particular population and any particular attribute.
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The following function computes the sensitivity curve for any population and any attribute in R:

sc = function(y.pop, y, attr,...) {

N <- length(y.pop) + 1

sapply(y, function(y.new)) {

N * (attr(c(y.new, y.pop), ...) - attr(y.pop, ...))

}

}

• y.pop: A vector of length N − 1, which contain variate values of population units.

• y: The new variate value (corresponding to the new unit).

• attr: The function f that maps variate values to a population attribute value, i.e., a(P) = attr(. . .).

• sapply: Given a list, vector, or data frame as input, return output in vector or matrix. It is useful
for operations on list objects and returns a list object of same length of original set.

Example. Consider population mean.

a(P) =
1

N − 1

N−1∑
i=1

yi = ȳN−1

a (P∗) =
1

N

(
N−1∑
i=1

yi + y

)
=

(N − 1)ȳN−1 + y

N

The sensitive curve is given by

SC(y) = N [a (P∗)− a(P)]

= N

(
N − 1

N
ȳN−1 +

y

N
− ȳN−1

)
= (N − 1)ȳN−1 + y −NȳN−1
= y − ȳN−1

The sensitivity curve gets higher (or lower) without bound as y → ∞ (or as y → −∞). Thus, a single
observation can change the average by a huge (or even infinite) amount.

Example. Consider population maximum.

a(P ) = max {y, . . . , yN−1} = y(N−1)

a (P ∗) = max{y, , · · · , yN−1, y} =

{
y(N−1) if y < y(N−1)
y if y > y(N−1)

Then

SC(y) = N(a(P∗)− a(P)) =

{
0 if y < y(N−1)

N(y − y(N−1)) if y ≥ y(N−1)
Note that the curve is unbounded for large y, which means the maximum is sensitive to large values.
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Example. Consider 2nd order statistic.

a(P) = y(2)

a(P∗) =


y(1) y < y(1)

y y(1) ≤ y ≤ y(2)
y(2) y ≥ y(2)

Then

SC(y) =


N(y(1) − y(2)) y < y(1)

N(y − y(2)) y(1) ≤ y ≤ y(2)
0 y ≥ y(2)

Observe that this is a bounded function.

B Breakdown Points

Another measure of robustness is called the breakdown point, which gives an assessment of just how large
a proportion of the data must be contaminated before the statistic breaks down.

The breakdown point of a statistic is the smallest possible fraction of the observations that can be
changed to something very extreme (plus or minus infinity) to make the error large (infinite). For example,

• the break-point for the average is 1/N (or asymptotically zero), because even one element being
infinity will break the average.

• the break-point for the median is 1/2 (i.e., half of the data has to go to infinity before the median
breaks down).

An attribute with high breakdown points are called resistant or robust.
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2.4 Graphical Attributes

Population attributes can also be entirely graphical as in

• histograms of yu values

• bar plots of yu values

• box plots of yu values

• scatter-plots of pairs (xu, yu)

• scatter-plots of quantiles and ranks of yu (quantile-plots)

Each of them summaries the population, so they are all attributes.

B Histograms

Histograms help determine how the values are concentrated.

Consider the population P = {y1, . . . , yN}. To plot a histogram, partition the range of the population into
k non-overlapping intervals, called bins, Ij = [aj−1, aj), j = 1, . . . , k and then calculate the number or
proportion of observations in the jth bin for j = 1, . . . , k.

We can define bins two ways:

• bins of equal size, or (this is common)

• bins with equal number of elements but varying size (less common but can be very informative).

A few remarks on the influence of bins:

• Notice also how varying the bin size changes the coarseness of the histogram.

• For the histograms that has varying size, the areas of all rectangles in each panel are the same.

• Bins with equal number of elements but varying size can help identify asymmetry in the population.

Rules for the number of bins (with equal width):

• Sturges rule: More bins are needed as the population increases.

Bin size = dlog2(N) + 1e

• Freedman-Diaconis rule:

Bin size = 2
IQR(x)

N1/3

• Scott’s rule:

Bin size = 3.5
σ

N1/3

Plotting histograms using raw data gives more interpretable results, whereas plotting histograms using
transformed data gives more symmetric result.
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B Scatter-plots

A scatter-plot is a plot of the points (xu, yu) for all units in the population. It is used to see whether
two variates x and y are related in some way. Sometimes, the scatter-plot of a transformed version of the
data provides more insights. We will discuss this later.

A common problem with scatter-plots is that for integer-valued variates, duplicated values are difficult to
identify. One solution is to change the shading and vary the size of bullets, so that (for example) a location
with multiple points will be darker than other spots. Alternatively, we could add jitter to the population
values, which separates duplicate points slightly (provided it makes sense to do so):

y∗u = yu + noise.

The amount of jitter (noise) can vary depending on the data set.
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2.5 Power Transformations

Given a variate y, it is sometimes helpful to re-express the values in a non-linear way via a transformation
T (y) so that on the transformed scale attributes are easier to define, understand, and determine.

A commonly used transformation when y > 0 is the family of power transformations, indexed by a
power α:

Tα(y) =
yα − 1

α
=


yα α > 0

log(y) α = 0

−(yα) α < 0

These transformations are monotonic, in the sense that

yu < yv ⇐⇒ Tα(yu) < Tα(yv).

In other words, these transformations preserve the order of variate values associated with units u and v.

To perform the power transformation in R:

powerfun <- function(x, alpha) {

if (sum(x <= 0) > 0) stop("x must be positive")

if (alpha == 0) log(x)

else if (alpha > 0) x^alpha

else -x^alpha

}

The α values can take any real value in principle, but we restrict it to a small set to make the results more
interpretable:1

{. . . ,−2,−1,−1/2,−1/3, 0, 1/3, 1/2, 1, 2, . . .}.

How do we pick α? Two different but related effects of transformations are often of interest:

1. Produce a more symmetric-looking histogram.

2. Produce a roughly linear scattler-plot.

Each effect provides us a rule that indicates whether we should move left/right in the above set.

1. The “center” of the histogram tells you which way to move:

• If the center is on the left, then move the power “left” in the set.

• If the center is on the right, then move the power “right” in the set.

2. The “center” corresponds to the curvature appearing in the scatter-plot. Since we have two variables
x and y, we will have two ladders.

• If the center is in quadrant 1, then move up on X and up on Y .

• If the center is in quadrant 2, then move down on X and up on Y .

• If the center is in quadrant 3, then move down on X and down on Y .

• If the center is in quadrant 4, then move up on X and down on Y .

1The instructor referred to this set as Tukey’s ladder, as he suggested that we could imagine that the set of powers were
arranged in a ladder with the smallest powers on the bottom and the largest on the top. Thus, moving “up” or “down” on
the ladder of powers corresponding to moving “right” or “left” in the set below, respectively.
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2.6 Order Rank Quantiles

Recall the order statistic:

y(1) ≤ y(2) ≤ . . . ≤ y(N)

Define the rank statistic r1, . . . , rN to be the ranks of the variate values y1, . . . , yN . In particular, if
yi = y(k), then yi is the kth smallest value, so yi has rank ri = k. Equivalently,

∀u ∈ P : y(ru) = yu.

B Variate Value vs Rank

It is often helpful to draw a scatter-plot for yu (y-axis) vs rank (x-axis), i.e., (ru, yu) or (u, y(u)).

• The height at any point tells the location of the value of y.

• The horizontal location identifies where in the order of the variate values that unit appears.

• The plot is monotonically non-decreasing from left to right.

• Flat spots indicate tied values of y; nearly flat spots are values close to each other; rapid rising spots
are values that are far away from each other.

B Quantiles

Rather than using ranks, it can be more convenient to use the proportion of units in the population having
a value less-than-or-equal-to y. Thus, instead of plotting the pairs (x, y) = (ru, yu), we could equivalently
plot the pairs (x, y) = (pu, yu) where

pu =
ru
N

denotes the proportion of the units in P whose values are less than yu.

B Quantile Function

Strictly speaking, the plotted points are (p,Qy(p)) where p ∈ {1/N, 2/N, . . . , 1} and Qy(p) is the pth
quantile of y. The function

Qy(p) = y(N×p)

is sometimes called the quantile function of y for all p ∈ [1/N, 1]. Note that the quantile Qy(p) for any p
locates the variate values in the population and is thus a measure of location. Most (but not all) location
measures try to capture central tendency.

B Deriving Population Attributes from the Quantile Function

The quantile function is a population attribute which can be used to generate a number of other interesting
population attributes. Let’s start with location attributes, i.e., quantiles that measure center:

• Median: Qy(1/2).

• Mid-hinge (average of Q1 and Q3):

1

2
(Qy(1/4) +Qy(3/4)).
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• Mid-range (average of min and max):

1

2
(Qy(1/N) +Qy(1)).

• Trimean:

1

4
(Qy(1/4) + 2 ·Qy(1/2) +Qy(3/4))

These values can be readily obtained from the quantile plot. For example, you can find Q1 by reading the
y-value corresponding to x = 0.25.

Next, we have derive attributes that measure spread :

• Range: Qy(1)−Qy(1/N).

• IQR: Qy(3/4)−Qy(1/4).

Alternatively, the difference between any two quantiles might be divided by the difference in the corre-
sponding p values, i.e., the slope of the line segment joining any two points (p1, Qy(p1)) and (p2, Qy(p2))
for p1 < p2 provides a measure of spread.
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3 Implicit Attributes

So far, we have defined population attributes a(P) to be a summary of the population P. These attributes
are said to be explicit because they are defined explicitly by the population variates. In this section, we will
discuss implicit attributes, which also summarize the population P but are defined only implicitly by the
population variates. In particular, such attributes are solutions to an optimization problem. In addition,
we will look at an regression example which incorporates influence.

3.1 The Minimum of a Function

In most practical situations, we are interested in a (possibly vector-valued) attribute θ which minimizes
some function ρ(θ;P) of the variates in the population. In other words, we want the value θ̂ which satisfies

θ̂ = arg min
θ∈Θ

ρ(θ;P)

The most common form for ρ(θ,P) is a sum of functions ρ(θ, u) evaluated at each unit u ∈ P:

ρ(θ,P) =
∑
u∈P

ρ(θ, u).

Remark. We only need to consider minimization here because

arg max
θ∈Θ

ρ(θ;P) = arg min
θ∈Θ

− ρ(θ;P).

B Scalar-Valued Attributes

Common examples for a scalar-valued attribute θ ∈ R and u ∈ P:

• Least-squares: For ρ(θ;u) = (yu − θ)2, we have:

θ̂ = arg min
θ∈R

ρ(θ,P) = arg min
θ∈R

∑
u∈P

ρ(θ, u) = arg min
θ∈R

∑
u∈P

(yu − θ)2 = ȳ.

• Weighted least-squares: For ρ(θ, u) = wu(yu − θ)2, we have

θ̂ = arg min
θ∈R

ρ(θ,P) = arg min
θ∈R

∑
u∈P

ρ(θ, u) = arg min
θ∈R

∑
u∈P

wu (yu − θ)2 =

∑
u∈P wuyu∑
u∈P wu

.

• Least absolute deviations: For ρ(θ, u) = |yu − θ|, we have

θ̂ = arg min
θ∈R

ρ(θ,P) = arg min
θ∈R

∑
u∈P

ρ(θ, u) = arg min
θ∈R

∑
u∈P
|yu − θ| = Qy(1/2).

• Least generalized absolute deviations: Using the vee function for some q ∈ (0, 1),

ρq(θ;u) =

{
q (yu − θ) if yu ≥ θ

(q − 1) (yu − θ) if yu < θ

we have

θ̂ = arg min
θ∈R

ρ(θ,P) = arg min
θ∈R

∑
u∈P

ρ(θ, u) = arg min
θ∈R

∑
u∈P

ρq(θ;u) = Qy(q).
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B Vector-Valued Attribute: Simple Linear Regression

Consider simple linear regression: 2

yu = α+ β(xu − c) + ru u ∈ P = {(x1, y1), . . . , (xN , yN )}.

The attribute of interest is θ = (α, β) and are determined implicitly by

θ̂ = (α̂, β̂) = arg min
(α,β)∈R2

∑
u∈P

(yu − α− β (xu − c))2

In STAT-331, we show that

α̂ = ȳ − β̂(x̄− c) and β̂ =

∑
u∈P (xu − x̄) (yu − ȳ)∑

u∈P (xu − x̄)2

which help us determine the least-squares fitted line:

y = α̂+ β̂(x− c).

The equation of fitted values, defined for all u ∈ P, is ŷu = α̂+ β̂ (xu − c) , and the residuals are given by
the signed difference of actual value and the prediction:

r̂u = yu − α̂− β̂ (xu − c) .

B Vector-Valued Attribute: Weighted Least Squares

In weighted least squares, the fitted line minimizes the following objective function:

(α̂, β̂) = arg min
(α,β)∈R2

∑
u∈P

wu [yu − α− β (xu − c)]2

It is assumed the weights are known but, as we will see, the residuals from an ordinary LS regression model
can help us determine sensible values.

As in ordinary LS regression, we need to determine a value for c. In this setting, it is common to either
set c = 0 or define it to be the weighted average of xu:

c = x̄w =

∑
u∈P wuxu∑
u∈P wu

.

Given the values of the wu’s and c, we determine θ̂ = (α̂, β̂) by taking derivatives of ρ(θ, ρ) with respect to
each parameter and then setting the resulting gradient equal to zero and solving the system of equations:

α̂ = ȳw − β (x̄w − c) and β̂ =

∑
u∈P wu (xu − x̄w) (yu − ȳw)∑

u∈P wu (xu − x̄w)2

where ȳw and x̄w are the weighted averages of the y and x values, respectively.

Remark. We could set weights based on the relative variation (the ratio between residual standard devia-
tions) of groups. In particular, if group1.sd / group2.sd = x, then we could consider setting

wu =

{
1 u ∈ group 1

x u ∈ group 2

2The variable c here is chosen to re-center the values of xu in linear regression. It is commonly chosen to be a meaningful
value in the data set, e.g., the average xu value c := x̄. Different choices of c give rise to different interpretations for α; not all
such interpretations have practical relevance.
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B Vector-Valued Attributes: Robust Regression

In WLS, the objective function is modified manually to give influential units (the ones far from the least
square line) less weight in the objective function. Robust regression has the same goal. The objective
function is given by

(α̂, β̂) = arg min
(α,β)∈R2

∑
u∈P

ρ (yu − α− β (xu − c))

where different forms of ρ(·) give rise to different fitted lines.

• OLS: Equal weight on each unit.

ρ (yu − α− β (xu − c)) = [yu − α− β (xu − c)]2 .

• WLS: Less weights to units with LS residuals that are large (in magnitude).

ρ (yu − α− β (xu − c)) = wu [yu − α− β (xu − c)]2 .

Here, our goal is to have a function that

• gives lower weight than OLS to units with large residuals;

• quadratic near 0 and hence behaves similarly to OLS for units with small residuals.

The Huber Loss Function achieves these goals by combining the quadratic and absolute value functions:

ρk(r) =

{
1
2r

2 for |r| ≤ k
k|r| − 1

2k
2 for |r| > k

Below is how to implement this function in R:

huber.fn <- function(r, k) {

val = r^2 / 2

subr = abs(r) > k

val[subr] = k * (abs(r[subr]) - k/2)

return(val)

}

An attribute based on this function will be affected by the scale of r, so we might let k = cS where S is a
measure of scale. In practice, it is common to use k ∈ {1.345S, 1.5, 2}. Note that as k increases, the robust
regression with Huber function imposes a larger penalty on larger residuals, hence approaches the OLS fit.

Another form of robust regression involves defining the loss function in terms of least absolute deviations:

(α̂, β̂) = arg min
(α,β)∈R2

∑
u∈P
|yu − α− β (xu − c)|

However, in both Huber and LAD-based regression, the attribute θ̂ = (α̂, β̂) cannot be solved for a closed
form. We need other optimization methods, e.g.,

• gradient descent,

• Newton-Raphson,

• iteratively reweighted least-squares.

These algorithms are employed generally to handle attributes defined implicitly as

θ̂ = arg min
θ∈Θ

ρ(θ;P)



2022-Winter David Duan

3.2 Gradient Descent

Given an implicitly defined attribute of interest θ, our goal is to construct an iterative procedure which
produces a sequence of iterates θ̂0, θ̂1, . . . , θ̂i, θ̂i+1, . . . such that this sequence converges to the solution

θ̂ = arg min
θ∈Θ

ρ(θ;P).

Ideally, each iterate is closer to the optimal solution θ̂ than the one before it. More specifically, if we are
at some point θ̂i on the surface of ρ(θ;P), we want to move away from θ̂i in the direction that takes us to
somewhere on the surface of ρ(θ;P) that is lower than our current position, i.e.,

ρ(θ̂i+1;P) < ρ(θ̂i;P).

From elementary calculus, the direction of this movement is defined by the gradient of the surface.

B Direction and Step Size

Let ρ(θ;P) be a differentiable function (wrt θ ∈ Rk).

The gradient of the function wrt θ is given by

g = g(θ) = ∇ρ(θ;P) =



∂ρ(θ;P)

∂θ1

∂ρ(θ;P)

∂θ2
...

∂ρ(θ;P)

∂θk


To distinguish among the gradient calculations at each iteration, when θ̂i is our best guess at iteration i,
we denote the gradient by gi = g(θ̂i). The normalized gradient

di =
gi
‖gi‖

provides the direction in which the funtion increases or decreases the fastest. In particular, di indicates
the direction of steepest ascent and −di indicates the direction of steepest descent.

We iterate and obtain a new estimate of θ by moving in the direction of −di and taking a step of size
λi > 0, i.e., the next point is calculated by

θ̂i+1 = θ̂i − λidi.

The step size λ at each iteration can been chosen in a variety of ways:

• Fixed value, e.g., ∀i : λi = 0.1.

• Fixed sequence, e.g., ∀i : λi = 0.1 + 1/i.

• Perform a line search and algorithmically choose the value of λi that minimizes

ρ
(
θ̂i − λidi

)
In other words, we move away from θ̂i in the direction −di minimizing ρ(θ̂i+1;P).
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To summarize, the gradient descent algorithm is as follows. Given some initial value θ̂0,

1. Initialize i← 0.

2. While the sequence of iterates have not converged:

(a) Calculate the gradient:

gi = ∇ρ(θ;P)|
θ=θ̂i

.

(b) Calculate the gradient direction:

di ←
gi
‖gi‖

.

(c) Do a linear search on the step size:

λ̂i = arg min
λ>0

ρ
(
θ̂i − λdi

)
.

(d) Update the iterate:

θ̂i+1 ← θ̂i − λ̂idi.

(e) Update the loop variable: i← i+ 1.

3. Return θ̂ = θ̂i.

B Batch Gradient Descent

In practice, many of the objective functions minimized during statistical analyses have the following form:

ρ(θ,P) =
∑
u∈P

ρ(θ;u).

The gradient g can be expressed as the sum of the unit-specific contributions to the objective function:

g = g(θ) = ∇ρ(θ;P) =
∑
u∈P
∇ρ(θ;u) ≡

∑
u∈P

g(θ;u).

Thus, when ρ(·) is a sum over u ∈ P, the gradient g is composed of N := |P| “smaller” independent
gradient calculations and can be arbitrarily grouped/reordered and performed in a parallel fashion. In
particular, we can partition P into H non-overlapping groups (known as batches) P = B1 ∪ · · · ∪BH each
containing Mk units (k = 1, . . . ,H):

g =
∑
u∈P

g(θ;u) =

H∑
k=1

∑
u∈Bk

g(θ;u).

When computing the gradient g is too expensive, we could consider using only a subset of the available
data to approximate the actual gradient. In such situations, we typically do not optimize for the step size
λ and instead use a fixed step size λ∗ to prevent overfitting. Here, λ∗ is often referred to as the learning
rate. Two common approaches are batch-sequential and batch-stochastic gradient descent.

• Batch-Sequential. Sequentially move through H batches and update our estimate θ̂ after each batch.
This differs from ordinary batch gradient descent as the latter updates our estimate only after ob-
serving all batches.

• Batch-Stochastic. In each iteration, randomly select a batch/sample from the population. Again, the
estimate is updated after each batch/sample. When N = 1 (batch size), this is known as stochastic
gradient descent.
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3.3 Systems of Equations

Recall that an implicit attribute θ is the solution to some minimization problem

θ̂ = arg min
θ∈Θ

ρ(θ;P).

In all situations, we need to solve the equation ∇ρ(θ;P) = 0 to determine the argmin. When the dimension
of the vector-valued attribute θ is k, such an equation is actually a system of k independent equations with
k unknowns. Thus, we can also define an implicit θ ∈ Θ as the solution to a system of equations

ψ(θ;P) = 0.

In most cases, we can work directly with ψ(θ;P), which usually equals ∇ρ(θ;P). Unsurpringly, we have

ψ(θ;P) =
∑
u∈P

ψ(θ;u),

in which case, the attribute of interest θ̂ is the value that solves∑
u∈P

ψ(θ;u) = 0.

B Examples: Scalar-Valued Attributes

• The average is the value of θ that solves
∑
u∈P

ψ(θ;u) =
∑
u∈P

yu − nθ = 0.

• The weighted average is the value of θ that solves
∑
u∈P

ψ(θ;u) =
∑
u∈P

wu (yu − θ) = 0.

• The qth quantile is the smallest value of θ which solves
∑
u∈P

ψ(θ;u) =
∑
u∈P

1

N
I (yu ≤ θ)− q = 0.

B Examples: Vector-Valued Attributes

Recall the vector-valued attribute θ = (α, β) in the context of a SLR. Different forms of linear regression
arose by determining θ̂ = (α̂, β̂) which was the solution to a variety of different systems of equations:

• Least squares: ∑
u∈P

ψ(θ;u) =
∑
u∈P

(yu − α− β (xu − c))
(

1
xu − c

)
= 0.

• Weighted least squares:∑
u∈P

ψ(θ;u) =
∑
u∈P

wu (yu − α− β (xu − c))
(

1
xu − c

)
= 0.

• Robust regression: ∑
u∈P

ψ(θ;u) =
∑
u∈P

ρ′k (yu − α− β (xu − c))
(

1
xu − c

)
= 0.

The class of methods used to find such solutions to systems of equations are generally referred to as root
finding methods; that is, it finds x such that f(x) = 0.
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B Newton’s Method

Suppose we have a differentiable function f(x) and we wish to find x∗ which solves f(x∗) = 0. Given an
initial x0, we can use a linear function to approximate f(x) in the vicinity of x0:

f(x) ≈ f (x0) + f ′ (x0) (x− x0) .

Next, we find the root of the linear approximation to iterate to the next value of x:

0 = f (x0) + f ′ (x0) (x− x0) =⇒ x1 = x0 −
f (x0)

f ′ (x0)
.

In our case, we want to find θ ∈ Θ such that ψ(θ;P) = 0. Given the current guess θ̂ = θ̂i, a first-order
approximation is

ψ(θ;P) ≈ ψ(θ̂i;P) + ψ′(θ̂i;P) · (θ − θ̂i)

we update the value for the next iteration as

θ̂i+1 = θ̂i −
ψ(θ̂i;P)

ψ′(θ̂i;P)
.

Keep going until the algorithm converges.

B Newton-Raphson Method

The multi-variate analog of Newton’s method is the Newton-Raphson method. We wish to solve

ψ(θ;P) = 0.

Viewing ψ(θ;P) as a differentiable k × 1 vector (ψ1, ψ2, . . . , ψk)
T , we care about the Jacobian matrix:

ψ′(θ;P) =
∂ψ(θ;P)

∂θ
=


∂ψ1

∂θ1
· · · ∂ψ1

∂θk
...

. . .
...

∂ψk
∂θ1

· · · ∂ψk
∂θk

 .
Given a current guess θ̂i, we can use a linear function to approximate the function ψ(θ;P). A first-order
approximation of ψ(θ;P) in the vicinity of θ̂i can be written as

ψ(θ;P) ≈ ψ(θ̂i;P) +ψ′(θ̂i;P) · (θ − θ̂i).

Rearranging, the vector at which the linear approximation is equal to zero is

θ ≈ θ̂i − [ψ′(θ̂i;P)]−1ψ(θ̂i;P) = θ̂i+1 = θ̂i −H−1gi.

Keep going until the algorithm converges.

Remark. When the objective function is ρ(θ;P), then ψ(θ;P) = ∇ρ(θ;P) = g and the system ψ(θ;P) = 0
is equivalent to ∇ρ(θ;P) = 0. Therefore, we have ψ′(θ;P) = H−1 where H denotes the Hessian of ρ (the
matrix of second-order partial derivatives of ρ wrt θ1, . . . , θk).

Remark. Recall that the updating equation associated with gradient descent is given by

θ̂i+1 = θ̂i − λ̂idi = θ̂i −
λ̂i
‖gi‖

gi.

Thus, NR does the same thing with the step sizes modulated by the Hessian of the objective function.
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B Iteratively Reweighted Least Squares

IRLS provides an iterative algorithm for finding θ̂ = (α̂, β̂)′, the solution to

arg min
θ∈Θ

∑
u∈P

ρ (yu − α− β (xu − c)) .

Differentiating wrt α and β and setting the result equal to zero yields∑
u∈P

ρ′ (yu − α− β (xu − c))
(

1
xu − c

)
= 0.

Setting ru = yu − α− β(xu − c) and zu = (1, xu − c)T , so the system above becomes∑
u∈P

ρ′ (ru) zu = 0.

In the case of weighted least squares where ρ(ru) = wur
2
u and ρ′(r) = 2wuru, the system reduces to∑

u∈P
wuruzu = 0.

Now exploit the fact that the general objective function minimization problem can be recasted as a weighted
least squares problem:

0 =
∑
u∈P

ρ′ (ru) zu

=
∑
u∈P

(
ρ′ (ru)

ru

)
ruzu

=
∑
u∈P

wuruzu

where wu = ρ′(ru)/ru is the weight for unit u provided that ru 6= 0. We want this transformation because
WLS has a closed form solution, as discussed below.

If we had some initial value for the residuals ru (and hence the weights wu), we could solve this equation in
closed form yielding a value for θ, call it θ̂1 = (α̂1, β̂1)

′. Since θ0 = (α0, β0) is likely far from θ̂ = (α̂, β̂)T ,
we should iterate and update our values of the residuals (and hence weights) with θ̂1 = (α̂1, β̂1)

′. Repeat
this process until the estimates of the parameters converge. This process is IRLS. Let’s see the algorithm.

1. Initialize i← 0.

2. While not converaged:

(a) Construct residuals and weights for all u ∈ P:

ru = yu − z′uθi, wu =
ρ′(ru)

ru
.

(b) Solve the weighted leaset squares problem, i.e., find θ̂, the value of θ such that∑
u∈P

wu
(
yu − z′uθ

)
zu = 0.

(c) Update the parameter θ̂i+1 ← θ̂.

3. Return θ̂ = θ̂i.
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