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Chapter 1. Samples

1.1. Motivation: Until now, we have been assuming that when calculating attributes,
we have access to the entire population. This is often not possible in practice. Thus, we
need to consider using samples from the population, which can be viewed intuitively as an
estimate of the population.

1.2. (Cont’d): Given a sample S ⊆ P of n � N = |P| units, the attribute a(S)
calculated based on this sample is an estimate of its population counterpart a(P), i.e.,

a(S) = â(P) = a(P̂).

There are two interpretations to this equality:

• a(S) = â(P): The sample attribute a(S) is an estimate of the population attribute â(P).

• a(S) = a(P̂): The sample S is an estimate of the population P .

1.3. When using a sample instead of the entire population, we should consider sample
error and Fisher consistency.

1.4. Note: The sample error is the difference between the estimate value a(S) and
the quantity being estimated a(P), i.e.,

sample error = a(S)− a(P).

The nature of this error will depend on the sample and the attribute. For obvious reasons,
an attribute with lower sampling error is preferable.

1.5. Note: An estimator a is said to be Fisher consistent if â(P) = a(P), i.e., if the
sample S is set to be the entire population P , then the sample error should be zero.
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1. All Possible Samples

Section 1. All Possible Samples

1.6. Note: In a population P of size N , there are M :=
(
N
n

)
different possible samples

S of size n. The sample error for a sample S of size n is

sample error = a(S)− a(P) =
1

n

∑
u∈S

yu −
1

N

∑
u∈P

yu.

The average sample error over all possible samples of size n is

average sample error =

(
1

M

M∑
i=1

a (Si)

)
− a(P).

Consistency and the Effect of Sample Size

1.7. Note: The nature of sample error depends largely on the sample size. As the
sample size increases, the sample approaches the population, so the sample attribute values
will concentrate more around the population attribute value. To quantify the concentration,
we look at the absolute sample error, defined as the absolute difference of the sample
attribute value and the population attribute value

|a(S)− a(P)| =

∣∣∣∣∣ 1n∑
u∈S

yu −
1

N

∑
u∈P

yu

∣∣∣∣∣ < c

for some c > 0, which in turn helps us calculate the proportion of samples that satisfy this.

1.8. Definition: For n ≤ N , define the set of all possible samples of size n:

PS(n) = {S : S ⊂ P and |S| = n}.

Given c > 0, define the set of samples of size n with absolute sample error bounded by c as

Pa(c, n) = {S : S ∈ PS(n) and |a(S)− a(P)| < c}

and define the proportion of samples with absolute sample error bounded above by c:

pa(c, n) =
|Pa(c, n)|
|PS(n)|

.

For a fixed c, pa(c, n) increases with n.

1.9. Remark: Be familiar with how sample size affects the concentration of various
attributes. For example, as n increases, sample means/trimmed means will concentrate
more around the population mean/trimmed mean; the same holds for sample medians; the
sample ranges will approach the population range as more samples will include y(1) and y(N);
the sample IQRs will become more symmetric and concentrate about the population IQR.
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Chapter 1. Samples

Comparisons Across Attributes

1.10. Motivation: Previously, we defined consistency in terms of absolute sample error,
which allowed us to evaluate the impact of sample size on concentration. However, if we
want to compare different attributes, we need to use the relative absolute sample error,
which is obtained by normalizing the absolute sample error by a(P).

1.11. Definition: Let c > 0. Given a sample S of population P , the relative absolute
sample error is given by

|a(S)− a(P)|
|a(P)|

.

For a fixed c > 0, n ≤ N , define the set of samples of size n with relative absolute sample
error bounded above by c as

P?a(c, n) =

{
S : S ⊂ PS(n) and

|a(S)− a(P)|
|a(P)|

< c

}
and the proportion of samples of size n with relative absolute sample error bounded above by
c is given by

p?a(c, n) =
|P?a(c, n)|
|PS(n)|

.

1.12. Intuition: Compare P∗a(c, n) and p∗a(c, n) with Pa(c, n) and pa(c, n) we defined
previously. Intuitively, p∗a(c, n) measures the consistency of the sample attribute with respect
to the same population attribute. When comparing between attributes, we are evaluating
each attribute on how well its sample values track its population value on the same scale.
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2. Selecting Samples

Section 2. Selecting Samples

1.13. Motivation: When we approximate the population attribute with the sample

attribute, i.e., a(S) = â(P), we must acknowledge the possibility that a(S) 6= â(P) and the
existence of sample error

a(S)− a(P).

Thus, we must be careful about how to select the sample and — if possible — do so in such
a way to mitigate sample error.

1.14. Note: Given the reality that sample error is inevitable, it would be nice to un-
derstand the magnitude of error that can be expected. The sampling distribution of the
attribute a(S) gives insight into this. Properties of this distribution can be determined

• exactly, when all possible samples are available.

• approximately, when a subset of all possible samples is considered.

• in expectation, when a probabilistic sampling mechanism is used to draw a single
sample.

We’ve already studied the first case. We will briefly discuss the second below, then devote
the majority of our effort to the third case, which is also the most realistic of the three.

Selecting Samples: Approximation with Subset of Samples

1.15. Motivation: Let us first consider the case where we randomly select a subset of
m samples. Consider drawing samples of size n from population P .

1.16. Definition: Define the population of samples

PS = {S1, . . . ,SM}

where M =
(
N
n

)
. From this, we can derive a population of attributes,

Pa(S) = {a(S1), . . . , a(SM)}.

1.17. Note: We often don’t need all possible samples as a subset could provide a good
approximation to the sampling distribution, from which we could compute the sampling
error. Thus, we are not required to generate all possible samples to get an idea of the sample
error or variability of the sample attribute values.

Quantifying Sample Error

1.18. Definition: Define p(S) > 0 to be the probability of selecting sample S from the
population of samples PS . Note that

∑
S∈PS

p(S) = 1.

5



Chapter 1. Samples

1.19. Motivation: The average sample error is given by

1

M

∑
S∈PS

(a(S)− a(P)),

where M = |PS |. We can quantify the concentration of sample errors in expectation using
the following quantities. (Note that all expectations below are taken wrt the probabilities
p(S) of choosing a sample S from PS .)

1.20. Definition: The sampling bias is the expected sample error induced by the
repeated random sampling of S from PS :

E[a(S)]− a(P) =
∑
S∈PS

a(S)p(S)− a(P) =
∑
S∈PS

[a(S)− a(P)]p(S).

• If p(S) = 1/M , the sampling bias is identical to the average sample error of a(P).

• If sampling bias is zero, then a(S) is called an unbiased estimator of a(P).

1.21. Definition: The sampling variance quantifies the dispersion in the sample
errors:

Var[a(S)] = E[(a(S)− E[a(S)])2].

1.22. Definition: The means squared error quantifies the expected squared distance
between a(S) and a(P):

MSE[a(S)] = E[(a(S)− a(P))2] = Var[a(S)] + Sampling Bias2.

1.23. Intuition: Intuitively, we could like a(S) and a(P) to be as close as possible.
From the derivation above, we see that ideally, we could like to choose p(S) and/or PS so
that both the square of sampling bias and the sampling variance are as small as possible.

1.24. Note: Thinking of the sampling distribution of an attribute a(S) gives rise to
the notion of an attribute as an estimator (i.e., as a random variable). Let us introduce a
random variable, say A, that takes values a from the distinct values of a(S) for all S ∈ PS .
The induced probability distribution is

Pr(A = a) =
∑
S∈PS

p(S) · 1[a(S) = a].

• It follows that A is a discrete random variable.

• Probability statements about its values can be made using its distribution, including
its expectation, variance, etc.

• Each of the definitions above (sampling bias/variance/MSE) can be defined in terms
of this random variable and the corresponding probability distribution.
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2. Selecting Samples

Sampling Mechanisms

1.25. Motivation: Rather than selecting S with probability p(S) from the population
of samples PS , we can form S directly by selecting n units from the population of units P .
We select one unit at a time; a sequence of the first k units ui is selected from P is sk =
(ui1 , . . . , uik), where ij ∈ {1, . . . , N} is the index of the original unit in P = {u1, . . . , uN}.

1.26. Definition: A sampling mechanism is defined by the probabilities Pr(u) and
Pr(u | k, sk−1), the probability of selecting the first unit as well as the probability of selecting
the kth unit given the first k − 1 units. We can derive that the probability of the sequence
of the first k units selected is

Pr (sk) = Pr (ui1)× Pr (ui2 | 2, s1)× Pr (ui3 | 3, s2)× · · · × Pr (uik | k, sk−1) .

To determine p(S) from a sampling mechanism, observe that the order in which the units
appear does not matter. Thus, p(S) is the sum of Pr(sn) over all permutations sn:

p(S) =
∑

sn is a permutation of S

Pr(sn)

1.27. Note (SRSWOR): The Simple Random Sampling Without Replacement
is defined as

Pr(u) =
1

N
, Pr(u | k, sk−1) =

1

N − k + 1
.

The probability of the sequence sn is

Pr(sn) =
1

N
× 1

N − 1
× 1

N − 2
× · · · × 1

N − n+ 1
,

which is the same for all n! permutations. Thus,

p(S) =
n!

N(N − 1)(N − 2) · · · (N − n+ 1)
=

1(
N
n

) .
As expected, this probability is the same as the probability for selecting n distinct units
from a population of N distinct units. The advantage of this is that we can select a sample
without first enumerating all M =

(
N
n

)
possible samples in PS .

1.28. Note (SRSWR): The Simple Random Sampling With Replacement is de-
fined as

Pr(u) =
1

N
= Pr(u | k, sk−1)

and thus a sample S can contain one or more replicated units. The probability of the
sequence sn is

Pr(sn) =

(
1

N

)n
.
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Chapter 1. Samples

Unlike SRSWOR, we typically treat each sn as an ordered sample and so

Pr(S) = Pr(sn) =
1

Nn
.

The population of all samples PS in this case contains M = Nn ordered samples. If we treat
each sn as an unordered sample similar to SRSWOR, we obtain

Pr(S) = Pr(sn) =

(
N+n−1

n

)
Nn

.

1.29. Note (SRSWH): We also have another sampling mechanism proposed by Basu,
sometimes known as SRSWH. Suppose we perform simple random sampling with replace-
ment except that we remove any duplicate units. The samples produced will have sizes
anywhere from 1 to n according to how many distinct units were selected in a sample (sam-
pling with replacement).

1.30. Intuition: Let’s see how these mechanisms are connected to the balls in an urn
problem. Suppose that we have an urn containing N different balls that are either white
or black. We would like to estimate the proportion of balls in the urn which are black by
drawing n balls at random from the urn.

• SWSWOR: Randomly draw n balls from the urn one after another, without replacing
any at any time. The estimation is the proportion of black balls in your sample.

• SRSWR: Randomly draw n balls from the urn one after another, each time replacing
the ball after drawing it. The estimation is again the proportion of black balls in your
sample.

• SRSWH: Select one ball at a time and record its colour; mark it with an X and return
it to the urn. If a ball drawn already has an X marked on it, then it counts as a draw,
but is returned to the box without recording its colour. Continue until n draws have
been made. The estimate is the proportion of black balls observed with X’s.
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3. Inclusion Probabilities

Section 3. Inclusion Probabilities

1.31. Definition: The inclusion probability for unit u is the probability of unit u
being included in an arbitrary sample S:

πu := Pr(u ∈ S) =
∑
S∈PS

p(S) · 1[u ∈ S].

1.32. Note: Define the indicator variable Du where

Du =

{
1 u ∈ S
0 u 6∈ S.

The expectation and variance of Du is given by

E [Du] = 1× Pr(Du = 1) + 0× Pr(Du = 0) = Pr(u ∈ S) = πu

Var [Du] = E[D2
u]− E[Du]

2

= 12 × Pr(Du = 1) + 02 × Pr(Du = 0)− π2
u = πu − π2

u = πu(1− πu)

1.33. Definition: The joint inclusion probability of units u and v is the probability
that both u and v are included in a sample S:

πuv := Pr(u ∈ S ∧ v ∈ S).

1.34. Note: The covariance of Du and Dv are given by

Cov(Du, Dv) = E[Du ·Dv]− E[Du] · E [Dv]

= E[Du ·Dv]− πu · πv
= πuv − πu · πv

1.35. Note: We now derive the inclusion and joint inclusion probabilities for the three
sampling mechanisms discussed in the previous section.

• SRSWOR:

πu = Pr (u ∈ S) =
1×

(
N−1
n−1

)(
N
n

) =
1×

(
N−1
n−1

)
N
n
×
(
N−1
n−1

) =
n

N

πuv = Pr (u ∈ S ∧ v ∈ S) =
1× 1×

(
N−2
n−2

)(
N
n

) =
n(n− 1)

N(N − 1)

• SRSWR and SRSWH:

πu = 1−
(
N − 1

N

)n
πuv = 1− 2

(
N − 1

N

)n
+

(
N − 2

N

)n
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Chapter 1. Samples

Section 4. Estimating Totals

1.36. Motivation: Many attributes are either a total of some variate yu observed on
every unit u ∈ P , i.e.,

a(P) =
∑
u∈P

yu,

or a function of such a total, i.e.,

a(P) = f

(∑
u∈P

yu

)
.

1.37. Example: • The population average:

a(P) =
1

N

∑
u∈P

yu.

• The population variance (and standard deviation):

a(P) =
∑
u∈P

(yu − ȳ)2

N
, a(P) =

√√√√∑
u∈P

(yu − ȳ)2

N
,

• The proportion of units satisfying a predicate (represented by an indicator function I):

a(P) =
∑
u∈P

I(yu)

N
.

• The CDF at a specific value y:

FP(y) =
1

N

∑
u∈P

I(yu ≤ y).

1.38. Definition: The Horvitz-Thompson estimate of a population total is

â(P) = aHT (S) =
∑
u∈S

yu
πu
,

where πu denotes the probability of inclusion of u in S.

1.39. Intuition: Observe that the contribution for each unit u in the sample S is
weighted inversely by πu, i.e.,

• if the probability of inclusion is small, then the weight will be high;

• if the probability of inclusion is large, then the weight will be low.

Intuitively, we want to counteract the inclusion probability to compensate for the unobserved
elements of the population.
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4. Estimating Totals

1.40. Next, we consider properties of the HT estimator, ãHT (S). These properties
inform what can be expected under repeated sampling. In particular, the HT estimator is
unbiased. 9

1.41. Note: Start by writing the HT estimator in terms of the indicator variable

ãHT (S) =
∑
u∈S

yu
πu

=
∑
u∈P

Du
yu
πu
, where Du =

{
1 u ∈ S
0 u 6∈ S.

Using what we derived about Du from the previous section, we have

E

[∑
u∈P

Du

]
=
∑
u∈P

E[Du] =
∑
u∈P

πu = E[n] = n.

When the sample size is fixed,∑
u∈P

πuv =
∑
u∈P

E[DuDv] = E

[∑
u∈P

DuDv

]
= E

[
Dv

∑
u∈P

Du

]
= E[Dv · n] = nE[Dv] = nπv.

In that in both derivations above, we assume that the sample size n is fixed.

1.42. (Cont’d): We now show that the HT estimator is unbiased

E[ãHT (S)− a(P )] = E

[∑
u∈P

Du
yu
πu

]
− a(P)

=
∑
u∈P

yu
πu

E[Du]− a(P)

=
∑
u∈P

yu
πu
πu − a(P)

=
∑
u∈P

yu − a(P) = a(P)− a(P) = 0.

Recall that MSE = Var + Bias2. Since Bias is 0, the MSE is simply equal to the variance.

1.43. (Cont’d): It can be shown that the variance of the HT estimator is

Var [ãHT (S)] =
∑
u∈P

∑
v∈P

(πuv − πuπv)
yu
πu

yv
πv
≡
∑
u∈P

∑
v∈P

∆uv
yu
πu

yv
πv
.

which can be equivalently written in the Yates-Grundy or the Sen-Yates-Grundy for-
mulation:

Var [ãHT (S)] = −1

2

∑
u∈P

∑
v∈P

∆uv

(
yu
πu
− yv
πv

)2

The second version provides an intuition for choosing sampling mechanisms that minimize
the variance (see next section).
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Chapter 1. Samples

1.44. Note: For the HT estimate, we define the following quantity. Let Puv denote the
population of all pairs (u, v) where u, v ∈ P . For (u, v) ∈ Puv, define

quv = ∆uv
yu
πu

yv
πv
.

Then the variance of the HT estimator can be written as

Var [ãHT (S)] =
∑
u∈P

∑
v∈P

∆uv
yu
πu

yv
πv

=
∑

(u,v)∈Puv

qu,v.

Written in this way, we can see that this variance is also a total, so we can estimate the
variance of the HT estimator using a HT estimate, which gives us:

V̂ar [ãHT (S)] =
∑

(u,v)∈Suv

qu,v
πuv

=
∑
u∈S

∑
v∈S

∆uv

πuv

yu
πu

yv
πv

=
∑
u∈S

∑
v∈S

(
πuv − πuπv

πuv

)
yu
πu

yv
πv
.

• Note that the sample Suv is obtained by sampling from the population Puv of all possible
pairs (u, v). The probability that any particular (u, v) is included in the sample is given
by the joint inclusion probability πuv > 0.

• The square root of this variance estimate, or equivalently the HT estimate of the
standard deviation, is commonly referred to as the standard error of the estimate:

SE (ãHT (S)) =

√
V̂ar [ãHT (S)].

1.45. Note: Thus, using HT estimation, we are able to construct

• an estimate of the population total, and

• an estimate of the variance of this estimator.

Both estimators are unbiased. Why is this useful?

(1). Many attributes can be written as a total, so the HT framework gives us an effective
method of estimation.

(2). Understanding the sampling error requires just one sample.

1.46. Note: The 95% confidence interval estimates of the HT estimate is of the form

aHT (S)± 2ŜD (ãHT (S)) .
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5. Sampling Design

Section 5. Sampling Design

1.47. Definition: A sampling design refers to a pair (PS , p(S)), i.e., a set of samples
along with the probability that each sample is getting chosen.

1.48. Example: The SRSWOR, SRSWR, SRSWH frameworks provide examples of
different sampling designs.

1.49. Motivation: The sampling design is ours to choose. For example, we may choose
PS so that the values of a(S) for S ∈ PS are constrained to be near a(P). Alternatively,
we may choose p(S) so that samples S ∈ PS that have a(S) close to a(P) have higher
probability of being selected.

1.50. (Cont’d): Within the HT framework, we know that

MSE[ãHT (S)] = Var[ãHT (S)] = −1

2

∑
u∈P

∑
v∈P

∆uv

(
yu
πu
− yv
πv

)2

.

This provides insight into how we might best choose a sampling design.

• For example, if we could choose πu ∝ yu, then the variance and MSE will be zero!

• If there is a variate xu that is highly positively correlated with yu for all u ∈ P , then
choosing πu ∝ xu could reduce MSE.

• If we knew when yu ≈ yv, we could choose πu ≈ yv which might reduce MSE.

Much of the survey sampling is concerned with how best to choose the sampling design
(PS , p(S)) to reduce the MSE of an estimator (attribute) of interest.

1.51. Note (Stratified Sampling): Split the population P intoH non-overlapping groups
called strata and we sample without replacement from each stratum.

• Each stratum has Nh units, where N1 + · · ·+NH = N = |P|.
• We sample nh from each stratum, where n1 + · · ·+ nh = n = |S|.

13



Chapter 2. Inductive Inference

Chapter 2. Inductive Inference
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2.1. Motivation: Probabilistic reasoning can be used to quantify the potential magni-
tude of sample error and bias, provided that a probabilistic sampling mechanism is used.

The sampling behaviour of any population attribute is examined by repeatedly drawing sam-
ples according to the sampling mechanism and calculating the attribute on the samples. The
sampling behaviour of a particular attribute can be summarized by its sampling bias and
sampling variability.

Probabilistic sampling allows us to quantify the relative frequency in which any sample
attribute value might be realized. This provides an insurance policy in what is learned
about the attributes based on the sample and how it compares the attributes based on the
population.
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Chapter 2. Inductive Inference

Section 1. Sources of Error

2.2. Motivation: Consider the Path of Inductive Inference shown below.

Figure 2.1: Path of Inductive Inference.

Carefully planned sampling designs can provide considerable assurance that the conclusions
drawn from a sample will not likely be that different from those which would have been
drawn were we able to access the entire population. However, there is almost always another
source of error in our inferences that is not resolved by probabilistic sampling. To be more
precise, the population which we are able to draw samples from is often not the population
about which we would like to draw inferences.

2.3. Definition:

• The target population is the population about which we want to draw inferences.

• The study population is the population from which samples are taken.

• The difference between the attribute evaluated on them is the study error:

Study Error = a(Pstudy)− a(Ptarget).

2.4. Note: If we obtain a sample S to draw inferences about the target population
Ptarget, the error for a given attribute a(·) is

a(S)− a(Ptarget) = [a(S)− a(Pstudy)] + [a(Pstudy)− a(Ptarget)]

= Sample Error + Study Error

Probabilistic sampling can be used to control the sample error but not the study error. It
is challenging to keep study error small, and sometimes, it is not even within the domain of
statistics.

16



1. Sources of Error

2.5. Example: In medical studies, interest often lies in the progression of a disease or the
efficacy of its treatment in humans. The target population is the set of all humans. However,
for ethical and other reasons, the study cannot be conducted on humans but must instead
be constructed on some other animals, such as mice, which serve as a model for humans.
Thus, the population of mice available from which we can select is the study population.
Sampling from this population provides some assurance about the quality and uncertainty
of our inferences about study population’s attributes, but this assurance does not carry over
to inferences about the target population. Mice, after all, might be fundamentally different
from humans for these particular attributes, so the quality of the inference depends on how
close are the target and study populations.

2.6. Example: In forecasting problems, our target population often includes future re-
alization of units which are not available at the time of study, e.g., a natural phenomenon
such as the monthly tidal patterns and the daily closing price of a stock. In either case,
arguing the study error must be small requires that the future should be much like past.

2.7. Note: Measurement errors refer to the errors made in measurement, which can
also affect conclusions draw about attributes. Every measuring system has at least three
sources of potential errors:

(1). the measuring device, sometimes called the gauge;

(2). the person reading or recording the measurement, sometimes called the operator;

(3). the method followed to take the measurement (i.e., anything independent of the gauges
and operators).

The discipline known as measurement system analysis is devoted to the practical and
academic study of measurement systems and methods by which their adequacy and compa-
rability is determined.

17



Chapter 2. Inductive Inference

Section 2. Comparing Sub-Populations

2.8. Motivation: Suppose we have two sub-populations, P1 and P2 and interest lies in
comparing some attribute across the two sub-populations: a(P1) and a(P2).

• When the attribute is a measure of location, sub-population comparisons are typically
based on the difference a(P1)− a(P2).

• When the attribute is a measure of spread, sub-population comparisons are typically
based on the ratio a(P1)/a(P2).

2.9. If the two sub-populations are essentially the same, then the sub-populations ob-
served should not look too different if we were to mix them up with one another. In other
words, swapping units would not dramatically change the features of the resulting sub-
populations. On the other hand, if the two sub-populations were very different, then shuf-
fling the units could dramatically change the features of the resulting sub-populations.

More precisely, we combine the two sub-populations together into one, P = P1 ∪ P2, and
then randomly draw two new sub-populations P∗1 and P∗2 while ensuring that their sizes
are kept the same. We then compare the attributes of {P1,P2} with {P∗1 ,P∗2}. If the sub-
populations were similar to begin with, there shouldn’t be a very large difference between
attributes calculated on {P1,P2} versus those calculated on {P∗1 ,P∗2}.

2.10. Next, we would like to quantify, numerically, how unusual the difference between
a(P1) and a(P2) is relative to randomly mixed sub-populations.

• If the two sub-populations are actually similar, we want to provide numerical evidence
in favour of the notion that the two sub-populations are similar to a randomly mixed
sub-population.

• If the two sub-populations are actually different, we want to provide numerical evidence
against the notation that the two sub-populations are similar to a randomly mixed sub-
population.

We use the following steps to gather such evidence:

(1). We suppose the sub-populations were randomly drawn from the same population. This
is known as the null hypothesis.

(2). We construct a discrepancy measure that quantifies how inconsistent our data is
with the null hypothesis. A large value indicates evidence against the null hypothesis.

(3). We obtain the observed discrepancy by calculating the discrepancy measure on the
two observed (i.e., unshuffled) sub-populations.

(4). Finally, we obtain the observed p-value by calculating the probability that a ran-
domly shuffled sub-population has a discrepancy measure at least as large as the ob-
served discrepancy. A small value indicates evidence against the null hypothesis.

Let’s elaborate on each of these steps.
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2.11. Note (Step 1: Null Hypothesis): In our case, each of the following (equivalent)
statements constitutes the null hypothesis we are testing:

• H0: The sub-populations P1 and P2 were randomly drawn from the same population.

• H0 P1 and P2 were created by randomly assigning units in the same population to one
of the two sub-populations.

• H0: P1 and P2 were generated by random mixing.

The alternative hypothesis HA is the complement of H0. Note that we do not state the
null hypothesis in terms of the equivalence of attribute values, i.e., a(P1) = a(P2). Although
such a statement is true if H0 holds (i.e., implied by H0), it is weaker than H0, and thus we
avoid using it.

2.12. Note (Step 2: Discrepancy Measure): A discrepancy measure (or test statis-
tics) D(P1,P2) quantifies how inconsistent our data is with the null hypothesis, and is
defined so that large values indicate evidence against the null hypothesis. As a point of
interest, the discrepancy measure is technically an attribute for the population, so we could
consider properties such as equivariance and invariance.

The form of D(P1,P2) depends on how we want to compare P1 and P2.

• For measures of location, the discrepancy measure is based on differences a(P1)−a(P2).

• For measures of spread, the discrepancy measure is based on ratio a(P1)/a(P2).

2.13. Example: Consider the following hypotheses and discrepancy measures.

• H0: The averages from the two sub-populations were the same.

D(P1,P2) = |ȳ1 − ȳ2|.

• H0: The standard deviation from the two sub-populations were the same.

D(P1,P2) =

∣∣∣∣SD(P1)

SD(P2)
− 1

∣∣∣∣ .
• H0: The average from the first population was smaller than the average of the second.

D(P1,P2) = y1 − y2
Here, D(P1,P2) is large if y1 > y2 by a lot, which is inconsistent with our hypothesis.

• H0: The average from the first population was larger than the average of the second.

D(P1,P2) = y2 − y1
Here, D(P1,P2) is large if y1 < y2 by a lot, which is inconsistent with our hypothesis.

The last two examples should explain why D(P1,P2) quantifies how inconsistent our data is
with the null hypothesis, and how it is defined so that large values indicate evidence against
the null hypothesis.
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2.14. Note (Step 3: Observed Discrepancy): The observed discrepancy, dobs, is the
value of the discrepancy measure D calculated on the two observed (i.e., unshuffled) sub-
populations:

dobs = D(P1,P2).

It is important to recognize that the discrepancy measure quantifies only one type of dis-
crepancy between the population; all other differences are completely ignored.

2.15. Note (Step 4: Observed p-Value): The observed p-value is the probability
that a randomly shuffled sub-population has a discrepancy measure at least as large as the
observed discrepancy.

p-value = Pr
(
D ≥ dobs

∣∣H0 is true
)
.

If the p-value is very small, then either the null hypothesis is true and we have observed
a very unusual value of dobs, or the null hypothesis is false. The smaller the p-value, the
greater the evidence against the null hypothesis.

2.16. Example: In our case, to calculate the exact p-value, one must consider all(
N1 +N2

N1

)
=

(
N1 +N2

N2

)
possible permutations of the observed data; the exact p-value is the fraction of D(P∗1 ,P∗2 ) val-
ues greater than or equal to dobs. Since this is too expensive, we typically just use M (a large
number) of them, i.e., generate M shuffled pairs (P?1,1,P?2,1), (P?1,2,P?2,2), . . . , (P?1,M ,P?2,M) and
calculate the approximated p-value as

1

M

M∑
i=1

I
(
D(P?1,i,P?2,i) ≥ dobs

)
where dobs = D(P1,P2)

2.17. Example: Putting everything together, we have:

• H0: P1 and P2 are drawn from the same population.

• Construct D = D(P1,P2) where large values indicate evidence against H0.

• Calculate dobs = D(P1,P2).

• Shuffle the sub-populations M times and calculate the observed p-value:

p-value = Pr
(
D ≥ dobs

∣∣H0 is true
)
≈ 1

M

M∑
i=1

I
(
D(P?1,i,P?2,i) ≥ dobs

)
2.18. Remark: A test of significance neither accepts nor rejects a null hypothesis; it

simply provides a measure of the evidence against it. The decision taken in light of this
evidence is the choice of the researcher. Also, the fact that the evidence against the null
hypothesis is statistically significant based on some discrepancy measure does not imply that
the discrepancy is practically significant.
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2.19. Next, we investigate a special discrepancy measure that looks like a t-test. When
comparing two sub-populations on the basis of a measure of location, one particularly useful
discrepancy measure is

D(P1,P2) =
a(P1)− a(P2)

SD
[
a(P1)− a(P2)

] =
difference in attribute values

standard deviation of difference
.

This discrepancy measure is “physically dimensionless”, i.e., whatever scale the numera-
tor is measured in, the scale of the denominator will match, leaving the ratio free of any
measurement scale. This naturally makes this discrepancy measure scale-invariant.

2.20. (Cont’d): The numerator is merely the difference in attribute values; the real
challenge is determining the denominator of the discrepancy measure. In rare cases, the
denominator might be known and then this discrepancy measure is a rescaling of denominator
a(P1)− a(P2) and would not yield different results. However, more commonly, we will need
to estimate the denominator using information from P1 and P2.

2.21. (Cont’d): Suppose that the population P1 and P2 are drawn randomly and in-
dependently from the same larger population. Then the denominator should be

SD [ã(P1)− ã(P2)] =
√

Var[ã(P1) + ã(P2)] =
√

Var[ã(P1)] + Var[ã(P2)]

However, determining the form of SD[ã(P1) − ã(P2)] can also be difficult, except in the
common special case when a(P) is an average. Let us explore this now.

2.22. Note: Suppose we are interested in differences in averages, i.e., the attribute of
interest is a(Pi) = Y i, with |Pi| = Ni for i = 1, 2. The discrepancy measure becomes

D (P1,P2) =
Y1 − Y2√
σ̃2

N1
+ σ2

N2

,

where σ̃ is an estimator of the standard deviation of the Y values in the population P =
{P1,P2}. If σ̃1 and σ̃2 denote the estimators of the standard deviations from each of P1 and
P2 respectively, then the pooled estimator of σ would be

σ̃ =

(
(N1 − 1)σ̃2

1 + (N2 − 1)σ̃2
2

(N1 − 1) + (N2 − 1)

) 1
2

.

If it were inappropriate to assume the variability in the two sub-populations was equivalent,
we could instead use the denominator √

σ̃2
1

N1

+
σ̃2
2

N2

.

This is the “two-sample” Student-t statistic used to test the equality of the means of two
normal distributions with common but unknown standard deviation σ. If the Y values were
in fact normally distributed, the discrepancy measure would follow a Student-t distribution
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with N1 +N2 − 2 degrees of freedom under H0 : the means were identical.

2.23. Remark: Note, however, in our procedure of randomly mixing the populations,
we make no such normality assumption. We simply proceed with this discrepancy measure
just as we did with the earlier measures. The only difference is that now we need to first
calculate the denominator (the standard error).
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3. Interval Estimation

Section 3. Interval Estimation

2.24. Motivation: Let us revisit sampling distributions first. Recall that when we look
at a(S) for all possible samples S of some size n from a population P that the values of
a(S) have a distribution, we call this the sampling distribution of ã(S). Quantifying
the spread of this distribution is useful, but to do so exactly we require having observed
all possible samples. Alternatively, we could approximate the sampling distribution in the
following ways:

• consider a large number of possible samples;

• assume it takes a normal distribution;

• use resampling techniques such as bootstrap.

The normal distribution that best approximate the sampling distribution is the one with
mean and standard deviation equal to the mean. To summarize, the normal approximation
provides a model for the sampling distribution and can be used as a basis to construct
confidence intervals for population averages.

2.25. In the rest of this section, we see how to construct a confidence interval.

2.26. Note: Suppose the attribute of interest is the population average a(P) = ȳ. Recall
that the estimator ã(P) = µ̃ = Y (which is a random variable) has the following properties:

E[Y ] = µ, Var[Y ] =
σ2

n
,

where σ2 = 1
N
·
∑

µ∈P(yu−µ)2 is the population variance. If the normality assumption holds

(may be appropriate due to CLT), then the estimator ã(P) = Y satisfies

Y ∼ N

(
µ,
σ2

n

)
.

Standardizing this random variable yields

Z =
Y − µ
σ/
√
n
∼ N(0, 1).

Using Z and a specified p ∈ (0, 1), we can find a constant c > 0 such that

1− p = Pr(−c ≤ Z ≤ c).

Plugging in and rearranging, we obtain a random interval which contains µ with proba-
bility 1− p: [

Ȳ − c× σ√
n

√
N − n
N − 1

, Ȳ + c× σ√
n

√
N − n
N − 1

]
This interval is random because it is defined in terms of random variables and is never
actually observed.
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2.27. (Cont’d): However, observed intervals calculated by substituting Y with y are
guaranteed to contain µ for 100(1− p)% of the time.

• 1− p is therefore called the coverage probability.

• µ is contained in (or covered by) such an interval 100(1− p)% of the time.

• All these intervals have the same width, just at different centers.

2.28. Remark (Determining c): Since the normal distribution is symmetric about its
mean µ, we see that

1− p = Pr(−c ≤ Z ≤ c) ⇐⇒ 1− p

2
= Pr(Z ≤ c).

Therefore, given any p ∈ (0, 1), the value of c can be determined through the quantile
function of a standard normal random variable

c = QZ

(
1− p

2

)
,

or in R: qnorm(1 - p/2).

2.29. Note: In practice, we will have only one sample, so there is only one single
numerical average y and one instance of these randomly generated intervals:[

Ȳ − c× σ√
n

√
N − n
N − 1

, Ȳ + c× σ√
n

√
N − n
N − 1

]
.

In particular, we observe the following one:[
ȳ − c× σ√

n

√
N − n
N − 1

, ȳ + c× σ√
n

√
N − n
N − 1

]
.

Such observed intervals are referred to as confidence intervals and you must take care to
distinguish them conceptually from a random interval :

• In the context of random intervals, probabilistic statements are sensible.

• As observed confidence intervals is not random, it either contains µ or it does not.

• Probability statements are in reference to the method used to generated the intervals,
NOT to the particular interval we have observed.

If the normality assumption holds up, then 100(1− p)% of such intervals will contain µ. We
thus have some confidence that our particular observed interval will contain µ as well, but
unfortunately we’ll never know if it does. The larger 1− p, the more confident we are that
the interval will contain µ.

2.30. Next, we see how to construct a confidence interval using a t-distribution as an
approximation to the sampling distribution.

2.31. Note: In the previous section, the CI was calculated assuming SD(Y ) was known.
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This is often unrealistic. However, for many sample attributes a(S) (e.g., HT estimators),
we can estimate the standard deviation SD(ã(S)) of the sampling distribution of ã(S).

2.32. (Cont’d): The standard error is an estimate of the standard deviation of the
corresponding estimator:

SE[a(S)] = ŜD[ã(S)].

Note that the standard error is based on one sample; its corresponding estimator with a
sampling distribution is denoted by

S̃E[a(S)] or S̃D[ã(S)].

We could use this estimator instead in the test statistic:

a(S)− a(P)

SE[a(S)]
.

Note that using the estimated SE in place of SD will increase the variability of the random
intervals. The corresponding estimator has much more variability, since we have to estimate
SD now as well.

2.33. Remark: Under the normality assumption, we have the following distributional
result:

Y − µ
σ̃/
√
n
∼ tn−1

This statistic is known as a pivotal quantity, because it is a function of the sample data
Yu, u ∈ S and unknown parameter µ and its sampling distribution is completely unknown.

Pivotal quantities are the basis for constructing random intervals. The term pivot comes
from the fact that with this quantity (which is a function of both S and P , we are able to
pivot and isolate for a(P). This is the general prescription for constructing random intervals.

2.34. Remark (Connection to Hypothesis Testing): Note that there is a 1:1 corre-
spondence between confidence intervals and hypothesis tests. Thus, if one wished to test
a hypothesis, e.g., H0 : a(P) = a, about a population attribute, they could do so with an
appropriately defined confidence interval.

Indeed, suppose that there exists a threshold below which a p-value would be sufficiently
small so as to disbelieve the null hypothesis. This is often referred to as the significance
level of the test. If the same pivotal quantity is used as both a discrepancy measure for
the test and the basis for a confidence interval, the 100(1 − p)% confidence interval a(P)
contains all values of a for which the test of H0 : a(P) = a would yield a p-value > p. Stated
more usefully, do not reject H0 : a(P) = a at a 100p% significance level iff a is contained in
the 100(1− p)% confidence interval for a(P).
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Section 4. Resampling

2.35. Motivation: As shown in the previous sections, understanding the sampling be-
haviour of sample attributes is essential for making inferences about any population attribute.
In particular, knowing the sampling distribution of a discrepancy measure allows us to do
hypotheses testing and knowing the sampling distribution of a pivotal quantity allows us to
construct confidence intervals.

2.36. (Cont’d): Let’s review what we’ve learned so far. To perform inference, we draw
a sample S of size n from a study population P according to some sampling mechanism,
then calculate the sample attribute a(S) to estimate its population counterpart a(P). To
understand the sampling distribution of the attribute a(S), we draw M samples S1, . . . , SM ,
and use the values a(S1), . . . , a(SM) to inform us about the sampling distribution of a(S).
Observe that this procedure requires repeated sampling from the population, but we often
only have just one sample in practice. To mimic the process, we use resampling methods.

Resampling Intuition

2.37. Note (Resampling): The goal is to mimic the repeated sampling process, i.e.,
obtain samples a set of samples as if they were from the population P . In particular, we
draw B samples S∗1 , . . . ,S∗B of size n independently from a population P∗. Ideally, P∗ would
be the study population P , but as already mentioned, this would require repeated sampling
from the population which is generally impossible.

2.38. (Cont’d): To fix this issue, recall that a sample S can be viewed as an approxi-

mation to the population P , i.e., P̂ = S, or in usual bootstrap notation, P∗ = S. Since the
sample population has only n units, using without-replacement sampling mechanisms will
immediately exhaust the population. Therefore, we sample with replacement.

The Bootstrap Method

2.39. Note (Bootstrap): More formally, an approximate sampling distribution
is obtained by drawing B samples S∗1 , . . . ,S∗B of size n from P∗ with replacement and on
each bootstrap sample we calculate the attribute value a(S∗1 ), . . . , a(S∗B). This approach
is known as the bootstrap method; the distribution for any attribute over the bootstrap
samples S∗i from P∗ is a bootstrap estimate of the distribution of the same attribute
over all possible samples Si from P . With a single sample, we are now able to construct
an estimate of the sampling distribution of an attribute that does not rely on assumptions
about the form of the attribute.

2.40. Note (Bootstrap Sample Error): The bootstrap sample error is given by

a(S∗)− a(S).
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2.41. Note (Bootstrap Standard Deviation): For any attribute a(P), the standard devi-
ation of the corresponding sample attribute’s estimator can be estimated from the bootstrap
distribution with

ŜD? [ã (S?)] =

√∑B
b=1 (a (S?b )− ā?)2

B − 1
,

where

ā? =
1

B

B∑
b=1

a (S?b )

is the average of the attribute over the bootstrap samples S∗1 , . . . ,S∗B. Since B is usually large,
it does not make any practical difference whether we use B or B − 1 in the denominator
of the standard deviation. This is an estimate of the standard deviation of the sampling
distribution for the attribute a(S) which is called the standard error.

2.42. Note: In the special case of the arithmetic average

a(S) =
1

n

∑
u∈S

yu,

the bootstrap estimate of its standard deviation is

ŜD?[Ȳ ] =

√∑B
b=1 (ȳ?b − ȳ?)

2

B − 1
where ȳ? =

1

B

B∑
b=1

~y?b .

But we also know that the standard deviation can be estimated with

ŜD[Ȳ ] =
σ̂√
n

√
N − n
N − 1

where σ̂ =

√∑
u∈S (yu − ȳ)2

n
.

With some experiments, we see that the bootstrap estimator of standard deviation has
produced, on average, slightly larger values that the standard approach.

2.43. Remark: For bootstrap interval calculations, a divisor of n is preferred (since we
are treating the sample as a population) as this version is replication invariant. Replication
invariant estimates are preferred and often called plug in estimates in the bootstrap liter-
ature. Anyway, when n is reasonably large, there will be little practical difference between
the two.

2.44. Note: Recall that the sampling bias is given by E[a(S)] − a(P). We can use
bootstrap to estimate sampling bias via:

̂Sampling Bias = average bootstrap sample error = ā? − a(S),

where ā? = 1
B

∑B
b=1 a (S?b ) is the average of the attribute over the bootstrap samples S?1 , . . . ,S?B.
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2.45. (Cont’d): Whenever an estimator is biased, we could like to “correct” it, i.e.,
make it unbiased. If, in theory, a(S) was biased and we knew the bias, then we could
subtract the correction from our attribute to make a new attribute a∗(S) that is unbiased:

a?(S) = a(S)− Sampling Bias .

Indeed,

E [a?(S)] = E[a(S)− Sampling Bias] = E[a(S)− E[a(S)] + a(P)] = a(P).

We don’t typically know the sampling bias, but we can use the bootstrap estimate of it:

a(S)− Sampling Bias[a(S)] = a(S)− [ā? − a(S)] = 2a(S)− ā?.

2.46. Approximate confidence intervals and hypothesis tests can now also be based
on the bootstrap estimate of a sampling distribution. We will explore bootstrap-based
confidence interval next; bootstrap-based hypothesis testing is not covered in this course.

Bootstrap Confidence Intervals

2.47. The bootstrap distribution provides a proxy for the sampling distribution for any
sample attribute a(S). Thus, we can use it to construct (or at least approximate) confidence
intervals for the unknown population attribute a(P).

2.48. Note (Normal Bootstrap Interval): Recall that confidence intervals for sample
averages tend to have the following structure:

[y − c · ŜD(Y ), y + c · ŜD(Y )].

Under the normality assumption, we might pick c such that Pr(Z ≤ c) = 1−p/2 to generate
a 100(1− p)% confidence interval.

2.49. (Cont’d): If the bootstrap distribution is approximately normal, rather than

estimating ŜD(Y ) by σ̂√
n

√
N−n
N−1 , we might estimate ŜD(Y ) using the standard deviation of

the bootstrap distribution of Y . The attraction of this approach, if it works, is that the
same approach could be used for any attribute a(S).

2.50. (Cont’d): To summarize, we can construct a 95% normal bootstrap interval
for a population attribute a(P) as

a(S)± 1.96 · ŜD∗[a(S)]

where ŜD∗ is the bootstrap estimate of the standard deviation.

2.51. Next, we use bootstrap to approximate the sampling distribution of a pivotal
quantity and use this approximation to construct a CI, which turns out to be similar to
using the t-distribution to approximate the sampling distribution of a pivotal quantity.
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2.52. Note (Bootstrap-t Confidence Intervals): When a(S) = y, we have seen that the
quantity

Z =
ã(S)− a(P)

S̃D[ã(S)]

is approximately pivotal and its sampling distribution (over all possible samples) is well
approximated by a t-density.

2.53. (Cont’d): To confirm this approximation, consider the simulation below. Start
by generating S1, . . . ,SM , then for each sample calculate

Zi =
a (Si)− a(P)

ŜE [a (Si)]
=
a (Si)− a(P)

ŜD [ã (Si)]
.

An estimate of tn−1 can be constructed with {Z1, . . . , ZM}. This means that we require an
estimate of the standard deviation of the estimator of a standard error.

Because this follows a tn−1 density, for p ∈ (0, 1), we can find tlower and tupper such that

1− p = Pr

(
tlower ≤

ã(S)− a(P)

S̃D[ã(S)]
≤ tupper

)
= Pr

(
ã(S)− tupper × S̃D[ã(S)] ≤ a(P) ≤ ã(S)− tlower × S̃D[ã(S)]

)
This suggests a confidence interval can be constructed with[

a(S)− tupper × ŜD[ã(S)], a(S)− tlower × ŜD[ã(S)]
]
.

Since the t-distribution is symmetric, we have that

tupper = −1× tlower = c

which gives us the following confidence interval:

a(S)± c× ŜD[ã(S)].

2.54. (Cont’d): The t-distribution approximation of a sampling distribution may work
for certain attributes, but not all of them, as it requires ã(S) to be approximately over all
possible samples. For example, if a(P) is the median or a measure of skewness, we would
not expect the t-distribution to be a good approximation.

2.55. Note (Bootstrap-F Confidence Intervals): Instead of approximating the sampling
distribution with a t-distribution, we suppose that

Z =
ã(S)− a(P)

S̃D[ã(S)]
∼ F
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, which motivates the following CI:[
a(S)− fupper × ŜD[ã(S)], a(S)− flower × ŜD[ã(S)]

]
2.56. (Cont’d): We can estimate F by the following simulation. Start by generating

S1, . . . ,SM , then for each sample, we calculate

Zi =
a (Si)− a(P)

ŜD [ã (Si)]
and estimate F using {Z1, . . . , ZM}. Again, this means that we require an estimate of the
standard deviation of the estimator of a standard error.

2.57. Note (Bootstrap): CI] We have seen that the bootstrap may be used to approxi-
mate the sampling distribution of ã(S). Here, we will use bootstrap to estimate the sampling
distribution of

Z =
ã(S)− a(P)

S̃D[ã(S)]

and use it to construct confidence intervals. On the negative side, this requires a lot of
computation, but on the positive side, the bootstrap automatically adjusts its shape to the
form of ã(S).

2.58. (Cont’d): To use bootstrap to approximate the sampling distribution of Z, we
estimate the population P with the estimate P∗ = S. Construct bootstrap sample S∗, then
generate S∗1 , . . . ,S∗B and calculate

Z?
b =

ã (S?b )− a(S)

ŜD [ã (S?b )]

and then bootstrap estimate of the sampling distribution is {Z∗1 , . . . , Z∗B}. Then using a
p ∈ (0, 1), the bootstrap estimate we can find Z∗lower and Z∗upper such that

1− p = Pr
(
Z?

lower ≤ Z? ≤ Z?
upper

)
≈ Pr

(
Z?

lower ≤ Z ≤ Z?
upper

)
.

A CI using the bootstrap estimate of the pivotal quantity is[
a(S)− Z?

upper × ŜD[ã(S)], a(S)− Z?
lower × ŜD[ã(S)]

]
.

Note that Z∗lower and Z∗upper are quantities from {Z∗1 , . . . , Z∗B}.

2.59. Note: We here summarize the general approach. For a given sample S, attribute
a(S), and standard error ŜD[ã(S)]. Calculate a(S) and ŜD[ã(S)] and generate B bootstrap
samples S∗1 , . . . ,S∗B from S. For each of the B bootstrap samples from above, calculate a(S∗b )
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and ŜD[ã(S∗b )] and then compute

zb =
a (S?b )− a(S)

ŜD [ã (S?b )]
.

From the values z1, . . . , zB, find clower = Qz(p/2) and cupper = Qz(1−p/2). Then a 100(1−p)%
bootstrap-t CI is

[
a(S)− cupper × ŜD[ã(S)], a(S)− clower × ŜD[ã(S)]

]
. Note the signs and

positions of the constants clower and cupper in the interval definition.

2.60. Remark: So far, this method requires an analytic form ot calculate ŜD[ã(S)]
(i.e., the standard deviation of the estimator given a single sample). Another interval can

be constructed using the bootstrap estimate of the standard error ŜD∗[ã(S)]. When this
quantity is used, this approach is called the double bootstrap which we will look at next.

Double Bootstrap

2.61. Motivation: We saw that we can use the bootstrap method to approximate the
sampling distribution of a pivotal quantity, which can then be used to construct a confidence
interval. However, this requires an estimate of the standard error of an attribute. Here, we
explore a procedure where we use the bootstrap to obtain an estimate of the standard error.

2.62. Note: When a(S) = y, we have an analytic form for its standard deviation:

SD[Ȳ ] =
σ√
n
×
√
N − n
N − 1

.

Replacing σ by σ̂ gives an estimate ŜD[Y ] based on the sample values yu for u ∈ S. More

generally, when a(S) is an HT estimate, we also have an analytic form for ŜD[ã(S)]. However,
very often an analytic solution is not available. In this case, an estimate can be obtained by
using bootstrap, by generating S∗1 , . . . ,S∗B and calculate

ŜD?[ã(S)] =

√∑B
b=1 (a (S?b )− ā?)2

B − 1

where ā? = 1
B

∑B
b=1 a (S?b ).

The next problem is that for bootstrap-t, we need an estimate of SD[ã(S∗b )] for each bootstrap
sample S∗b . To address this, we use the double bootstrap, i.e., apply bootstrap to each
bootstrap sample S∗b .

2.63. (Cont’d): To apply a bootstrap within a bootstrap for each bootstrap sample S∗b ,
we generate D bootstrap samples, S∗∗1 , . . . ,S∗∗D , each with replacement from a population now
defined as P∗∗ = S∗b . The standard deviation of the corresponding values a(S∗∗1 ), . . . , a(S∗∗D )

will provide the estimate ŜD∗[a(S∗b )]. This estimate is then substituted into the general
approach for bootstrap-t confidence intervals.
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The Percentile Method

2.64. Motivation: The sampling distribution of ã(S) can be estimated using a sample
S and bootstrap, so why not simply use quantiles from the bootstrap distribution to directly
construct a confidence interval?

2.65. Note: The percentile method for bootstrap CI is described below. For a given
sample S, generate B bootstrap samples S∗1 , . . . ,S∗B by sampling with replacement from
sample S. For the bth bootstrap sample, calculate ab = a(S∗b ). From the values a1, . . . , aB,
find alower = Qa(p/2) and aupper = Qa(1− p/2). Then the 100(1− p)% CI is [alower, aupper].

2.66. Note: This approach is equivariant to any 1:1 transformation of the attribute,
say T (a(P)). For an increasing function T (·), the corresponding interval for T (a(P)) is
simply [T (alower), T (aupper)]. For a decreasing function T (·), the corresponding interval is
[T (aupper), T (alower)]. Hence, we only need to determine the values alower and aupper once for
a(P) and we have them for any T (a(P)).

2.67. Remark: Simplicity and transformation equivalent are the main attraction of
this method. However, the coverage probability is often incorrect if the distribution of the
estimator is not nearly symmetric.
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3.1. Motivation: Oftentimes, interest lies in predicting the value of the response vari-
ate given the values of one or more explanatory variates. We build a response model
that encodes how that prediction is to be carried out:

y = µ(x) + ε.

The explanatory variates x = (x1, . . . , xp) are used to explain or predict the values of the
response. We use our observed data to estimate the function µ(x), yielding the predictor
function µ̂(x). This predictor function µ̂(x) is then used to predict y at any given value x.

For example, for an SLR model, we assume the underlying model µ(x) = α+βx and estimate
the parameters of the function using least squares to obtain

µ̂(x) = α̂ + β̂x.

But how do we know if our predictions are good? What metrics should we use?
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Section 1. Prediction Accuracy

3.2. Motivation: One intuitive way of measuring prediction error is to see how far our
prediction is from the true value. The APSE metric quantifies the distance between true
and predicted values. In particular, it is the average squared distance between a response
observation and its corresponding prediction across the population.

3.3. Definition (APSE): Given observations xu and true responses yu for u ∈ P , the
average prediction squared error (APSE) is given by

1

N

∑
u∈P

(yu − µ̂(xu))
2.

3.4. Remark: Note that APSE is proportional the the residual sum of squares

N∑
i=1

r̂2i =
N∑
i=1

(yi − µ̂ (xi))
2 .

3.5. Note: So far, we estimate the predictor function and measure its accuracy using
the same set of observations. Thus, we can write the measure as

APSE (P , µ̂P) =
1

N

∑
u∈P

(yu − µ̂ (xu))
2

=
1

N

∑
u∈P

(yu − µ̂P (xu))
2 .

The notation µ̂P(xu) here emphasizes the fact that the predictor function was determined
from the entire population. However, this will underestimate the APSE for predictions at
values of x not existing in the data, because the training set is exactly the same as the test
set, inevitably leading to overfitting.

3.6. (Cont’d): Ideally, to provide a more fair evaluation of prediction accuracy, we
would use different data to train and test the model. More precisely, we estimate the predictor
function using a sample S (known as the training set) and measure the inaccuracy over
the population P , or over the units in the population not included in the sample,

T := P \ S,

sometimes called the test set. With the notion of train set introduced, we would write

APSE (P , µ̂S) =
1

N

∑
u∈P

(yu − µ̂S (xu))
2 .

Note that the notation µ̂S emphasizes that the estimate of the predictor function µ̂ is based
on a sample S, and we are evaluating it based on elements u ∈ P .

35



Chapter 3. Prediction

3.7. (Cont’d): Since P = S ∪ T and S ∩ T = ∅, the APSE defined in the way above
can be decomposed into a sum of two pieces:

APSE (P , µ̂S) =
1

N

∑
u∈P

(yu − µ̂S (xu))
2

=
( n
N

) 1

n

∑
u∈S

(yu − µ̂S (xu))
2

︸ ︷︷ ︸
APSE from the train set S

+

(
N − n
N

)
1

N − n
∑
u∈T

(yu − µ̂S (xu))
2

︸ ︷︷ ︸
APSE from the test set T

=
( n
N

)
APSE (S, µ̂S) +

(
N − n
N

)
APSE (T , µ̂S)

Given that interest often lies in the quality of the predictions outside of the sample (i.e.,
how well the model generalizes to unseen data), we might exclusively calculate the average
prediction squared error over T :

APSE (T , µ̂S) =
1

N − n
∑
u∈T

(yu − µ̂S (xu))
2

Clearly, if n� N , the value APSE (T , µ̂S) will not be too different from APSE (P , µ̂S).

3.8. Remark: Since µ̂S(x) is based on a single sample S, the quality of the predictor
function depends crucially on the quality of the sample. If the sample is not a good/fair
representation of the population, then any predictor function is bound to perform poorly.
In practice, we tend to assume our sample is a good representation of the population, but
in case that’s not true, it is important to choose a predictor function that performs well no
matter which sample was used to estimate it. Simpler is often better.

36



2. Prediction over Multiple Samples

Section 2. Prediction over Multiple Samples

3.9. Motivation: Previously, the performance of the estimated predictor function de-
pends highly on the particular choice of sample and could vary quite a lot from one sample
to another. Let us now try to estimate the predictor function using multiple samples.

3.10. Note: Suppose that we have many samples Sj for j = 1, . . . , NS . For each sample
Sj, we can come up with a model µ̂Sj(x) and hence calculate APSE(P , µ̂Sj). The average
APSE over all NS samples should be a better measure of the quality of a predictor function:

APSE(P , µ̃) =
1

NS

NS∑
j=1

APSE
(
P , µ̂Sj

)
=

1

NS

NS∑
j=1

1

N

∑
u∈P

(
yu − µ̂Sj (xu)

)2
Note that in APSE(P , µ̃), the estimator notation µ̃ is used to emphasize that the APSE
metric is evaluating µ̂ over many samples Sj.

3.11. Note: Let us try to decompose the above APSE into separable pieces, much like
what we did in the previous section. Starting with

µ̂(x) =
1

NS

NS∑
j=1

µ̂Sj(x),

i.e., the average of the estimated predictor function µ̂ over all NS samples, we can write

APSE(P , µ̃)

=
1

NS

NS∑
j=1

1

N

∑
u∈P

(yu − µ̂Sj(xu))2

=
1

NS

NS∑
j=1

1

N

∑
u∈P

(yu − µ(xu))
2 +

1

NS

NS∑
j=1

1

N

∑
u∈P

(µ̂Sj(xu)− µ(xu))
2

=
1

NS

NS∑
j=1

1

N

∑
u∈P

(yu − µ(xu))
2 +

1

NS

NS∑
j=1

1

N

∑
u∈P

(µ̂Sj(xu)− µ̂(xu))
2 +

1

NS

NS∑
j=1

1

N

∑
u∈P

(µ̂(xu)− µ(xu))
2

=
1

N

∑
u∈P

(yu − µ(xu))
2 +

1

NS

NS∑
j=1

1

N

∑
u∈P

(µ̂Sj(xu)− µ̂(xu))
2 +

1

N

∑
u∈P

(µ̂(xu)− µ(xu))
2

The second term reflects the variability of the estimator µ̃ and the third term reflects the
(squared) estimator’s bias.
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3.12. Note: To interpret the first term, define

Ak = {u : u ∈ P ,xu = xk} .

to be the collection of units who all have the same value x = xk. (Indeed, it is common to
see many data points in the same dataset to have the same value.) Now rewrite the sum
over u ∈ P as a sum of u over the unique x values:

1

N

∑
u∈P

(yu − µ(xu))
2 =

K∑
k=1

nk
N

∑
u∈Ak

1

nk
(yu − µ(xk))

2.

Thus, the first term can be interpreted as the conditional variance of y given x, averaged
over all of the unique x values.

3.13. (Cont’d): To summarize, we have

APSE(P , µ̃)

=
K∑
k=1

nk
N

∑
u∈Ak

1

nk
(yu − µ(xk))

2 +
1

NS

NS∑
j=1

1

N

∑
u∈P

(µ̂Sj(xu)− µ̂(xu))
2 +

1

N

∑
u∈P

(µ̂(xu)− µ(xu))
2

≡ Avgx (Var[Y |x]) + Var[µ̃] + Bias2[µ̃].

• The first term is the average of the conditional variance of the response y given x.

• The second term is the variance of the estimator.

• The third term is the squared bias of the estimator.

3.14. Note: We can further decompose APSE(P , µ̃) as

APSE(P , µ̃) =
( n
N

){
ÂPSE(P , µ̃) based on the same samples used by µ̂

}
+

(
N − n
N

){
ÂPSE(P , µ̃) based on samples not used by µ̂

}
Notice that if n� N , then the second term dominates the overall APSE. However, regardless
of the size of n, we may sometimes want to focus our evaluation only on the second term,
since this evaluation is based only on values not used in the actual estimation process. This
provides the most fair assessment of the model’s out of sample performance.
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Section 3. Back to Reality: Predictions with a Single Sample

3.15. Motivation: Predictive accuracy provides insights into the performance of a pre-
dictor function and can be used to choose between competing ones. The key to this useful-
ness, however, is that the predictive accuracy can be measured on population P about which
we want to make inference. Unfortunately, we typically only have S, the training set. What
should we do?

3.16. Note: This is the basic problem of inductive inference. Experience says that
whenever interest lies in some attribute of the population a(P), we might use a(S) as an
estimate of that attribute. More specifically, we cast predictive accuracy as an attribute of
population P and then use the corresponding attribute evaluated on S as its estimate. In
particular, we care about the attribute

a1(P) = APSE (P , µ̂S) =
1

N

∑
u∈P

(yu − µ̂S (xu))
2 .

We call it the single subset version of APSE as it only relies on the single sample S.

3.17. (Cont’d): If we have multiple samples, we care about

a2(P) = APSE(P , µ̃) =
1

NS

NS∑
j=1

APSE
(
P , µ̂Sj

)
,

known as the multiple subset version of APSE.

3.18. (Cont’d): These are two distinct population attributes, each a slightly different
measure of an average prediction squared error. However, we are usually more concerned
with how well each predictor function performs on the population that was not used to
construct the estimate. With this in mind, we can define these notions as

a3(P) = APSE (T , µ̂S) =
1

N − n
∑
u∈T

(yu − µ̂S (xu))
2

a4(P) = APSE(T , µ̃) =
1

NS

NS∑
j=1

APSE
(
Tj, µ̂Sj

)
.

3.19. Note: Let us first look at the single subset version. Suppose we were interested
in estimating

APSE (T , µ̂S) =
1

|T |
∑
i∈T

(yi − µ̂S (xi))
2 .

Note that the predictor function is constructed using S and the prediction error is evaluated
on T = P \S. If all we observed was the sample S from P , we might approximate the single
subset version of APSE by partitioning S into S0 and T0 and then use these as the training
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and test set:

ÂPSE (T , µ̂S) = APSE
(
T̂ , µ̂Ŝ

)
= APSE (T0, µ̂S0) =

1

|T0|
∑
u∈T0

(yu − µ̂S0 (xu))
2

ÂPSE (P , µ̂S) = APSE
(
P̂ , µ̂Ŝ

)
= APSE (P0, µ̂S0) =

1

|P0|
∑
u∈P0

(yu − µ̂S0 (xu))
2

3.20. (Cont’d): In this setting, S0 is typically called the training set, T0 is typi-
cally called the validation set or hold-out sample, and performing such a partitioning is
referred to as cross validation. Of course, the real challenge is how to pick S0 from P0 = S.

3.21. Note: Now suppose we were interested in estimating the average performance
over all NS possible samples:

APSE(T , µ̃) =
1

NS

NS∑
j=1

APSE
(
Tj, µ̂Sj

)
Again, we may use an observed sample S as an estimate of P , then mimic taking many
samples and sets from P , i.e., define (S0,j, T0,j) where j denotes the jth sample from the set
of NS samples. We then estimate APSE(T , µ̃) by

ÂPSE(T , µ̃) =
1

NS

NS∑
j=1

APSE
(
T0,j, µ̂S0,j

)
.

As with the single subset version, the key remains as to how to pick the subsets.

3.22. Note: Indeed, it is not always obvious how one should choose S0 and T0 in a given
situation. One guide is that the method of selecting S0 from P0 = S should be as similar
as possible to that of selecting the sample S from the study population P ; that is, the same
sampling mechanism should be used. We now address the following concerns.

• Should be sampling be done with or without replacement?

• How large should the sample S0 be?

• Should T0 be the full complement of S0 or just a sample from S \ S0? If the latter,
how large should it be?

3.23. Note (Sampling Mechanism): If predictive accuracy is meant to be an out-of-
sample assessment, then we should restrict ourselves to sampling without replacement, which
results in a clear distinction between the training and test set and reduces the possibility
of overestimating the predictor’s accuracy. On the other hand, sampling with replacement
would require redefining APSE to account for duplicates in the sample, unless APSE was
calculated using only out-of-sample units.

3.24. Note (Training Set Size): We can gain insight into how large the training set
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should be from the fact that the predicted squared errors are averaged. Recall that SD(Y ) =
σ/
√
n. If the test set T0 contains |T0| units, then the standard deviation of the APSE will

decrease proportionately to 1/
√
|T0|. In other words, the larger |T0| is, the better (i.e., less

variable) will be our estimate of the APSE. However, the larger |T0| is, the smaller S0 will
be, so the estimated predictor function will have lower quality. Thus, choosing a sample
size requires some trade-off between the variability and the bias of the estimate predictor
function.

3.25. The above questions also apply to the multiple subset version, along with addi-
tional consideration:

• How many samples Sj should we take?

• how do we ensure that every unit the sample is selected in the training and test set?

3.26. Note: A simple way to create a collection of samples Sj is to partition P0 into
pieces or groups then selected some groups to form S0,j and the remainder to form T0,j.
Typically, P0 is partitioned into k groups G1, . . . , Gk of equal size, called a k-fold partition
of P0. The most common defined method of selecting the groups would be to select k − 1
groups to form S0,j and the remaining group form T0,j. Calculating

ÂPSE(T , µ̃) =
1

NS

NS∑
j=1

APSE
(
T0,j, µ̂S0,j

)
using sampling that selects all k − 1 groups from a k-fold partition is called k-fold cross-
validation.
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