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1 Introduction  

1.1 Optimization Overview  

1.1.1 Abstract Optimization Problem  

Given  and , we want to find  that minimizes or maximizes .

1.1.2 Important Special Cases  

Linear Programming (LP)  is implicitly given by linear constraints and  is linear.

Integer Programming (IP) Same as LP, but we want to max/min over integers in .

Nonlinear Programming (NLP) Constraints and  are now non-linear.

1.1.3 Typical Workflow  

1. Practical Problem  A description in plain English language with supporting data.

2. Mathematical Model  Capture problem in mathematics using LP, IP, NLP, etc.

3. Practical Implementations  Feed the model and data into a solver.

1.1.4 Terminology  

Formulation  A mathematical representation of the optimization problem.

Variable  Various parameters we wish to determine.

Objective Function  Represent the quantity that need to be maximized/minimized.

Mathematical Constraint  Each represent a constraint in the problem.

Solution  An assignment of values to each of the variables of the formulation.

Feasible Solution  All constraints in the problem are satisfied.

Optimal Solution  A feasible solution that yields the max/min of the objective fn.

1.1.5 Concrete Example  

Suppose WaterTech manufactures four products, requiring time on two machines and two types 

(skilled and unskilled) of labor:
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Each month,  hours are available on machine 1 and  on machine 2. Each month, the 

company can purchase up to  hours of skilled labour at  per hour and up to  hours of 

unskilled labour at  per hour. We want to decide how much of each product to produce each 

month and how much labour of each type to purchase in order to maximize profit. 

We introduce the following variables. Let  denote the number of units of product  to 

manufacture, ,  and  to denote the number of purchased hours of skilled and 

unskilled labour, respectively. 

Our objective function is simple -- revenue minus cost:

Our constraints have three parts. First, machine time:

Next, labour time:

Finally, labour cost:

Also, there is an implicit constraint: all variables must be non-negative. 

Combining everything above, we write the following "hello world" program:
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1.2 Linear Programs  

1.2.1 Affine Function  

A function  is affine if , where  and . Note that if 

,  becomes a linear function. Thus, every linear function is affine but the converse is not true.

1.2.2 Linear Constraint  

A linear constraint is a constraint that is one of the following forms (after algebraic 

manipulations): , or , or , where  is a linear function and . 

1.2.3 Linear Program  

A linear program is the problem of maximizing or minimizing an affine function subject to a 

finite number of linear constraints.

1.2.4 Example: LP  

The following is a linear program:

1.2.5 Example: Not LP  

The following is not a linear program:

1. The objective function is not affine.

2. The inequalities cannot be strict.

3. The number of constraints must be finite.

1.2.6 Multi-period Models  

A multi-period model is one where time is split into periods, we want to make a decision in 

each period, and all decisions influence the final outcome.

1.2.7 Concrete Example  

Suppose a company has the following demand of oil for each month where the prices are as given:
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The company has a storage tank on its facility which can hold up to  litres of oil. At the 

beginning of month 1, it contains  liters already. We want to calculate how much oil it should 

purchase at the beginning of each of the four months such that it satisfies the demand at the 

minimum possible total cost. Note that, oil that is left over at the end of the month goes into 

storage. 

Let ,  denote the number of litres of oil purchased at the beginning of each 

month, and ,  denote the number of litres in the storage tank at the beginning of 

each month (we are given that ). Then the objective function is 

For constraints, we first recognize the relationship between  and  -- the amount of available oil 

at the beginning of month  is comprised of two parts, namely the  litres of oil (newly) 

purchased in month , and  litres of left over from month . For example, we could express 

 as , since we purchased  litres in addition to the original  litres, then used 

 during the first month. Rearranging, we get the following equations:

Finally, in order to satisfy the demand in month , we have .

Notice  for  appears in two of the four constraints above. The constraints are 

therefore linked by 's. You will often see such linkage in multi-period models. These constraints 

are sometimes called balance constraints as they balance demand and inventory between periods.

In addition to these, we know that ,  for , and all variables are 

non-negative. Combining everything above, we get the following model for this multi-period 

problem:



1.3 Integer Programs  

1.3.1 Integer Program  

An integer program is obtained by taking a linear program and adding the condition that a 

non-empty subset of variables be required to take integer values. When all variables are required 

to take integer value, the integer program is called a pure integer program; otherwise, it is 

called a mixed integer program. 

1.3.2 Example: IP  

The following is a (mixed) integer program:

1.3.3 Efficiency  

An algorithm is efficient if its running time, , is a polynomial of . LPs can be solved 

efficiently, but IPs are very unlikely to have efficient algorithms.

1.3.4 Binary Variables  

Variables that can take only a value of  or  are called binary; they are useful for expressing 

logical conditions.

1.3.5 Assignment Problem  

Let  be an employee,  be a job, then  is the number of jobs employee  is 

assigned to and  is the number of employees job  is assigned to. We want both quantity 

to be one, so the following should hold:

Finally, let  denote the resource (e.g., time) needed for employee  to finish job , then our 

objective function is 

1.3.6 Knapsack Problem  
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Let  denote the number of type  selected. Suppose we want to express the condition "at least 

one of the following two conditions has to be satisfied":

A total of at least four crates of type 1 or type 2 is selected, or

A total of at least four crates of type 5 or type 6 is selected.

We introduce a binary variable . If , then we want the first condition to be true, and if 

 we want the second condition to be true. This can be achieved by adding the constraints 

 and .
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1.4 Optimization Problems on Graphs  

1.4.1 Graph Overview (See Introduction to Combinatorics)  

A graph  is an ordered pair , where  is a finite set and  is a set of (unordered) pairs of 

elements of . Elements of  are called vertices and elements of  edges. For ,  

and  are adjacent if there exists an edge ; we call vertices  and  the endpoints of 

edge , and edge  is incident to vertices  and . 

For vertices , an  path  is a sequence of edges  

such that , , and  for all . The length/cost/weight  of an  path 

is defined as the sum of the lengths/costs/weights of the edges of , i.e., .

1.4.2 Shortest Path Problem  

Given a graph  with non-negative weights  for every edge  and distinct 

vertices  and , we wish to find the one of minimum cost among all possible  paths:

1.4.3 Bipartite Graphs (See Introduction to Combinatorics)  

A graph  is bipartite if we can partition the vertices into two sets, say  and , such 

that every edge has one endpoints in  and the other one in . Given a graph, a subset of edges 

 is called a matching if no vertex is incident to more than one edge of . A matching is 

called perfect if every vertex is incident to exactly one edge in the matching. The weight  

of a matching  is defined as the sum of the weights of all edges in , i.e., .

1.4.4 Minimum Cost Perfect Matching Problem  

Given a bipartite graph  with non-negative edge weights  for all , we wish 

to solve
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1.5 Integer Programs Continued  

1.5.1 Minimum Cost Perfect Matching  

Let  be a graph and let . We denote by  the set of edges that have  as one 

of the endpoints, i.e.,  is the set of edges incident to . 

Given a graph  and edge weight  for every edge , we want to determine the 

variables, the objective function, and the constraints.

We introduce a binary variable  for every edge , where  indicates that edge  is selected 

to be part of our perfect matching and  indicates that edge  is not selected. We can thus 

express the edges in the matching by . 

Let  be a vertex. The number of edges incident to  that are selected is . Since 

we want a perfect matching, we need that number to be equal to , so .

To minimize the total weight of the edges in the matching  is selected, the objective function 

should return the weight of . If  is an edge of , we will have  and we should 

contribute  to the objective function, otherwise  and there is no contribution. This can 

be modelled by the term . Thus, the objective function is .

Note that we could also use an adjacency matrix for constraints.

1.5.2 Shortest Path Problem  

Let  be a graph and let  be a subset of the vertices. Generalizing from the 

previous section, let  denote the set of edges that have exactly one endpoint in , i.e.,

Consider a graph  with distinct vertices  and  and let  be an -path of . Let 

 be an arbitrary -cut of . Follow the path , starting from  and denote by  

the last vertex of  in , and denote by  the vertex that follows  in . Since  and , 

by definition,  is an edge that is in .
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Lecture 7. Possible Outcomes  

7.1 Feasibility and Optimality  

An assignment of values to each of the variables is a feasible solution if all of the constraints 

are satisfied. An optimization is feasible if it has at least one feasible solution. Otherwise, it is 

infeasible.

For a maximization problem, an optimal solution is a feasible solution that maximize the object 

function. For a minimization problem, an optimal solution is a feasible solution that minimize 

the object function. Note that an optimization problem can have several optimal solutions.

7.2 Fundamental Theorem of Linear Programming  

Theorem 7.2.1  For any linear program, exactly one of the following holds:

1. It has an optimal solution.

2. It is infeasible.

3. It is unbounded.

Remark.  The statement only holds for LPs; there are optimization problems where none of the 

above hold.

Example 7.2.2  

An LP with an optimal solution:  with .

An infeasible LP:  with  and .

An unbounded LP:  with .

Definition 7.2.3  We now describe what we mean by solving a linear program:

1. If the LP has an optimal solution, return an optimal solution with a proof.

2. If the LP is infeasible, return a proof of infeasibility.

3. If the LP is unbounded, return a proof of unboundedness.

We always need to justify our solution!
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Lecture 8. Certificates  

8.1 Proving Infeasibility  

Example 8.1.1  Consider the following LP. Does the LP have a feasible solution?

 We can rewrite the set of constraints and use linear algebra.

The problem now becomes, does there exist an  such that ? Using Gaussian 

elimination, we find a vector  such that  and . This 

vector  is a certificate of infeasibility. 

Theorem 8.1.2 [Gauss]  Let , . Then exactly one of the following holds:

1. (Has Solution) There exists  such that , or

2. (No Solution) There exists  such that  and . 

In general, we would like to be able to perform such tests for the inequality .

Theorem 8.1.3 [Farkas]  Let , . Then exactly one of the following holds:

1. (Feasible) There exists  such that  and , or

2. (Infeasible) There exists  such that  and .

8.2 Proving Optimality  

Example 8.2.1  Suppose we are given the following LP.

One of the optimal solution is , which yields a value of . 
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To show optimality of the solution, we can use the following argument. Let  be an arbitrary 

feasible solution. Then  as . The result 

follows.

Theorem 8.2.2  To show optimality of  given an objective vector : Let  be an arbitrary 

feasible solution. Since  and , we have  as . The result 

follows.

8.3 Proving Unboundedness  

Example 8.3.1  Suppose we are given the following LP.

Observe (1)  is feasible for all  and (2) .

Proof for (1): Define  and . Observe  for all 

 as . Then . 

Proof for (2): Define . Then  where 

. 

We now generalize the result to form the following theorem.

Theorem 8.3.2  The LP  is unbounded if we can find  and  such 

that
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Lecture 9. Standard Equality Forms  

9.1 Standard Equality Form  

Definition 9.1.1  A LP is in Standard Equality Form if 

1. It is a maximization problem.

2. For every variable  we have a constraint , and

3. All other constraints are equality constraints.

Example 9.1.2  Is the following LP in SEF?

No, as there is no constraint . We say  is free. Note that  is implied by the 

constraints, but it is still free as the constraint  is not given explicitly.

Remark 9.1.3  We introduce this SEF as we will develop an algorithm called the Simplex that 

can solve any LP as long as it is in SEF.

Remark 9.1.4  What do we do if the LP is not in SEF? 

1. Find an equivalent LP in SEF.

2. Solve the equivalent LP using Simplex.

3. Use the solution of the equivalent LP to get the solution of the original LP.

Basically, two LPs are equivalent if they behave in the same way. We now give the formal 

definition.

9.2 Equivalent LPs  

Definition 9.2.1  LPs  and  are equivalent if

 infeasible  infeasible.

 unbounded  unbounded.

Given an optimal solution of one, we could construct an optimal solution of the other.

Theorem 9.2.2  Every LP has an equivalent LP that is in SEF.

Example 9.2.3  We now provide a series of examples to turn an LP into its SEF equivalent.
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1. Replace minimization by maximization: .

2. Replacing inequalities by equalities: , ; , 

.

3. Free variables: Suppose we are given 

Since any number is the difference between two non-negative numbers, we set  

where . We then rewrite the objective function and constraints by carrying out the 

arithmetic (omitted) and arrive at the following:

Note this new LP is in SEF. 

 



Lecture 11. Basis and Basic Solutions  

11.1 Basis  

Remark 11.1.1  Let  be an integer matrix and  be a subset of column indices. Then 

 is a column sub-matrix of  indexed by set ;  denotes column  of .

Example 11.1.2  Consider the following.

Definition 11.1.3  Let  and  be a subset of column indices. Then  is a basis if 

1.  is a square matrix,

2.  is non-singular, i.e., columns are independent.

Example 11.1.4  Consider the following. 

1.  is not a basis, because  is not a square matrix.

2.  is not a basis, because the columns are independent ( ).

Remark 11.1.5  Does every matrix have a basis? No. Recall from linear algebra, the max 

number of independent columns equals the max number of independent rows. Thus, if not all 

rows are independent, there will not be a basis for the matrix. On the other hand, if all rows of  

are independent, then  is a basis if and only if  is a maximal set of independent columns of . 

11.2 Basic Solutions I  

Definition 11.2.1  Let  be a basis for . Then  is a basic variable if and only if .

Example 11.2.2  Given basis ,  are basic variables and  are not.

Definition 11.2.3  We say  is a basic solution for basis  if  and  for any 

.
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Example 11.2.4  Consider the following.

For basis ,  is a basic solution as  and . 

11.3 Basic Solutions II  

Example 11.3.1  To find a basic solution for  given a basis , we rewrite the equation in 

the form of , set  for all , then solve for rest of the entries.

Theorem 11.3.2  Given  and a basis  of , there exists a unique basic solution  for .  

Proof.  Observe . Since 

 is a basis,  is non-singular, so  exists. Hence, . 

Definition 11.3.3  We say  is a basic solution if it is a basic solution for some basis . 

Remark 11.3.4  To show that  is a basic solution, find an appropriate basis ; to show that  

is not a basic solution, prove by contradiction: suppose  is a basic solution for basis  and reach 

the conclusion that  is singular or not square.

Remark 11.3.5  A basic solution can be the basic solution for more than one basis. Note we 

used "the" here as each basis has only one corresponding basic solution.

Remark 11.3.6  How is this related to LPs? Recall LPs in SEF: 

. If the rows of  are dependent, then either there is no solution 

to , so  is infeasible, or a constraint of  is redundant and can be removed 

without changing the solutions. Thus, we may always assume that, when trying to solve the LP, 

the rows of  are independent. 

Definition 11.3.7  A basic solution  of  is feasible if , i.e., if it is feasible for .
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Lecture 12. Canonical Forms  

12.1 Canonical Form  

Definition 12.1.1  Let  be a basis of . Then (P) is in canonical form for  if

1. , and 

2.  for all . 

Example 12.1.2  The following IP is in canonical form for :

12.2 Rewriting (P) into Canonical Form  

Proposition 12.2.1  For any basis , there exists (P') in canonical form for  such that

1. (P) and (P') have the same feasible region, and

2. Feasible solutions have the same objective values for (P) and (P').

Proposition 12.2.2  To rewrite (P) in canonical form for basis :

1. Replace  by  with . This is done by multiplying  to both 

sides: 

2. Replace  by  where  for  and  is a constant.

3. Construct a new objective function by multiplying constraint  by ,  and 

adding the resulting constraints to the objective function. 

4. Choose ,  to get  for . 
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(Note that for any non-singular matrix , .)

Example 12.2.3  Consider the following example, where we rewrite its constraints. 

Observe we multiplied the inverse of  to both sides, which guaranteed to turn  to . 

Example 12.2.4  Consider the following example, where we rewrite the objective function.

First, construct a new objective function:

As a remark, line 4 is the objective function; line 5 is the sum of line 3 and line 4. Observe for 

any choice of ,  and any feasible solution , the objective value of  for the old objective 

function is equal to that of the new objective function.

Now choose  and  to make :



We get the rewritten LP:

 



Lecture 13. Formalizing the Simplex  

13.1 Simplex  

Remark 13.1.1  Given an LP (P) in canonical form for some basis  and a feasible solution  

(w.r.t ), how do we find a better feasible solution? One obvious approach is to pick  where 

, and set  as large as possible while keeping all other non-basic variables at . At 

each iteration, there will be one index entering the basis and another one leaving it. We stop 

when we reach the upper bound of the objective function (see previous lectures on proving 

optimality), or found out the LP is unbounded (see previous lectures on proving unboundedness).

Theorem 13.1.2  We now present the simplex algorithm. Given an LP with a feasible basis , 

we want to output an optimal solution or report that the LP is unbounded. First, we rewrite the 

LP in canonical form for the basis :

At this stage,  is a feasible basis, ; the LP is in canonical form for , and  is a 

basic solution (Remark: ). Next, we find a better basis  or get required outcome: 

1. If , STOP. The basic solution  is optimal. (Proof A)

2. Pick  such that  and set .

3. Pick .

4. If , STOP. The LP is unbounded. (Proof B)

5. Choose .

6. Let  be a basis variable forced to .

7. Obtain the new basis by having  enter and  leave.

Proof A. If , STOP. The basic solution  is optimal.  

Given , , and  has value , let  be a feasible solution. Then 

Proof B. If , STOP. The LP is unbounded.  
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First, given  and all other non-basic variables have value zero, 

. Next, as ,  as 

. 

Remark 13.1.3  Indeed, Simplex tells us the truth: if it claims the LP is unbounded, it is 

unbounded; if it claims a solution is optimal, it is optimal. However, the Simplex algorithm may 

not terminate! In other words, starting with a feasible basis , we may enter a cycle and reach 

 again. To solve this, we introduce Bland's rule.

Definition 13.1.4  Bland's rule states that, if we have a choice for element entering or leaving 

the basis, always pick the smallest one.

Theorem 13.1.5  If we use Bland's rule, then the Simplex algorithm always terminates.

Remark 13.1.6  So far, we have seen a formal description of the Simplex algorithm; we showed 

that if the algorithm terminates, then it is correct; we defined Bland's rule and asserted that the 

Simplex terminates as long as we are following Bland's rule. But to get started with Simplex, we 

need to have a feasible basis. Therefore, the next step in our journey is to define a procedure to 

find a feasible basis.

 

 



Lecture 15. Half-Spaces and Convexity  

15.1 Geometry of Half-Spaces  

Definition 15.1.1  

The feasible region for an optimization problem is the set of all feasible solutions.

 is a polyhedron if there exists a matrix  and a vector  such that 

.

Remark 15.1.2  The feasible region of an LP is a polyhedron.

Definition 15.1.3  Let  be a vector and . 

1.  is a hyperplane, which is the set of solutions to a single linear equation.

2.  is a half-space, which is the set of solutions to a single linear inequality.

Remark 15.1.4  A polyhedron is the intersection of a finite set of half-spaces. Thus, 

understanding the geometry of a polyhedra is satisfied by understanding the geometry of half-

spaces.

Remark 15.1.5  

Let  be vectors. Then  where  is the Euclidean norm and  the 

angle between  and . Recall ; ; 

.

Given vector  and , we have

The set of vectors orthogonal to : .

The set of vectors on the side of  opposite to : .

Definition 15.1.6  Let . The  is a translate of  if there exists  and 

.

Proposition 15.1.7  

Let  be a vector and  and let  and . 

Then  is a translate of .

Let  be a vector and  and let  and . 

Then  is a translate of .
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Proof.  Choose . We want to show . Observe 

. The 

second part can be proved using an identical argument.  

Remark 15.1.8  Let ,  and let . Define  and 

. We define the dimension of  to be the dimension of , which is a vector 

space whose dimension can be computed as . In short, the 

dimension of a hyperplane in  is . 

15.2 Convexity  

Definition 15.2.1  Let .

The line through  and  is defined as .

The line segment between  and  is defined as .

A set  is convex if the line segment between  and  is in  for any .

Remark 15.2.2  For , if  and  are both convex then  must be convex.

Proposition 15.2.3  Let  be a half-space. Then  is convex.

Proof.  Pick arbitrary points  and an arbitrary point  in the line segment between  and 

. We want to show that : 

Corollary 15.2.4  If  is a polyhedron, then  is convex.

Proof.  As a polyhedron,  is the intersection of half-spaces; each half-space is convex and the 

intersection of convex set is convex. Thus,  is convex. 

Remark 15.2.5  This tells us that the feasible region of an LP is always a convex set!
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Lecture 16. Extreme Points  

Definition  Point  is properly contained in the line segment  if  and is distinct 

from the endpoints of .

Definition  Let  be a convex set and . Then  is NOT an extreme point if there exists 

a line segment  where  properly contains .

Remark  

A convex set may have an infinite number of extreme points, e.g., a circle.

A convex set may have no extreme points at all, e.g., a half-space.

Definition  Let  be a polyhedron and let . A constraint is tight for  if 

it is satisfied with equality; we denote the set of all tight constraints by .

Remark  Let , and  where . Suppose  and . 

Then . To see this, observe . The result follows.

Theorem  Let  be a polyhedron and let . 

If , then  is an extreme point.

If , then  is NOT an extreme point.

Proof.  

(A) Suppose  is not an extreme point. Then  is properly contained in a line segment with end 

points . That is,  and for some , . Observe

where  and . By our remark, . However, since , there is a 

unique solution to , which implies . Contradiction.

(B) Since , there exists a vector  such that . Pick small  and define 

 and . It suffices to prove the following:

1.  is properly contained in the line segment between  and .

Indeed, observe 

2. .

We have two types of constraints: 
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a. Tight ones : observe , so this type is satisfied.

b. Non-tight ones : .

i. Since  is non-tight, it is satisfied with a strict inequality, i.e., .

ii. We don't know , but we get to choose  to make the result small enough.

A mirror argument can be used to show .  

Remark  We must look at the rank of , not just how many rows it has (may be linearly 

dependent)!

Theorem  Let  where rows of  are independent. TFAE:

 is an extreme point of .

 is a basic feasible solution to .

Remark  The Simplex algorithm moves from extreme points to extreme points.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


