
Module 1 and 2: Introduction and Solving LP

CO 250: Introduction to Optimization

2019 Spring, David Duan

1 Introduction

1.1 Optimization Overview

1.1.1 Abstract Optimization Problem

Given and , we want to find that minimizes or maximizes .

1.1.2 Important Special Cases

Linear Programming (LP) is implicitly given by linear constraints and is linear.

Integer Programming (IP) Same as LP, but we want to max/min over integers in .

Nonlinear Programming (NLP) Constraints and are now non-linear.

1.1.3 Typical Workflow

1. Practical Problem A description in plain English language with supporting data.

2. Mathematical Model Capture problem in mathematics using LP, IP, NLP, etc.

3. Practical Implementations Feed the model and data into a solver.

1.1.4 Terminology

Formulation A mathematical representation of the optimization problem.

Variable Various parameters we wish to determine.

Objective Function Represent the quantity that need to be maximized/minimized.

Mathematical Constraint Each represent a constraint in the problem.

Solution An assignment of values to each of the variables of the formulation.

Feasible Solution All constraints in the problem are satisfied.

Optimal Solution A feasible solution that yields the max/min of the objective fn.

1.1.5 Concrete Example

Suppose WaterTech manufactures four products, requiring time on two machines and two types

(skilled and unskilled) of labor:

af://n0
af://n2
af://n3
af://n4
af://n5
af://n6
af://n8
af://n16
af://n24
af://n42

Each month, hours are available on machine 1 and on machine 2. Each month, the

company can purchase up to hours of skilled labour at per hour and up to hours of

unskilled labour at per hour. We want to decide how much of each product to produce each

month and how much labour of each type to purchase in order to maximize profit.

We introduce the following variables. Let denote the number of units of product to

manufacture, , and to denote the number of purchased hours of skilled and

unskilled labour, respectively.

Our objective function is simple -- revenue minus cost:

Our constraints have three parts. First, machine time:

Next, labour time:

Finally, labour cost:

Also, there is an implicit constraint: all variables must be non-negative.

Combining everything above, we write the following "hello world" program:

af://n59

1.2 Linear Programs

1.2.1 Affine Function

A function is affine if , where and . Note that if

, becomes a linear function. Thus, every linear function is affine but the converse is not true.

1.2.2 Linear Constraint

A linear constraint is a constraint that is one of the following forms (after algebraic

manipulations): , or , or , where is a linear function and .

1.2.3 Linear Program

A linear program is the problem of maximizing or minimizing an affine function subject to a

finite number of linear constraints.

1.2.4 Example: LP

The following is a linear program:

1.2.5 Example: Not LP

The following is not a linear program:

1. The objective function is not affine.

2. The inequalities cannot be strict.

3. The number of constraints must be finite.

1.2.6 Multi-period Models

A multi-period model is one where time is split into periods, we want to make a decision in

each period, and all decisions influence the final outcome.

1.2.7 Concrete Example

Suppose a company has the following demand of oil for each month where the prices are as given:

af://n59
af://n60
af://n62
af://n64
af://n66
af://n69
af://n79
af://n81

The company has a storage tank on its facility which can hold up to litres of oil. At the

beginning of month 1, it contains liters already. We want to calculate how much oil it should

purchase at the beginning of each of the four months such that it satisfies the demand at the

minimum possible total cost. Note that, oil that is left over at the end of the month goes into

storage.

Let , denote the number of litres of oil purchased at the beginning of each

month, and , denote the number of litres in the storage tank at the beginning of

each month (we are given that). Then the objective function is

For constraints, we first recognize the relationship between and -- the amount of available oil

at the beginning of month is comprised of two parts, namely the litres of oil (newly)

purchased in month , and litres of left over from month . For example, we could express

 as , since we purchased litres in addition to the original litres, then used

 during the first month. Rearranging, we get the following equations:

Finally, in order to satisfy the demand in month , we have .

Notice for appears in two of the four constraints above. The constraints are

therefore linked by 's. You will often see such linkage in multi-period models. These constraints

are sometimes called balance constraints as they balance demand and inventory between periods.

In addition to these, we know that , for , and all variables are

non-negative. Combining everything above, we get the following model for this multi-period

problem:

1.3 Integer Programs

1.3.1 Integer Program

An integer program is obtained by taking a linear program and adding the condition that a

non-empty subset of variables be required to take integer values. When all variables are required

to take integer value, the integer program is called a pure integer program; otherwise, it is

called a mixed integer program.

1.3.2 Example: IP

The following is a (mixed) integer program:

1.3.3 Efficiency

An algorithm is efficient if its running time, , is a polynomial of . LPs can be solved

efficiently, but IPs are very unlikely to have efficient algorithms.

1.3.4 Binary Variables

Variables that can take only a value of or are called binary; they are useful for expressing

logical conditions.

1.3.5 Assignment Problem

Let be an employee, be a job, then is the number of jobs employee is

assigned to and is the number of employees job is assigned to. We want both quantity

to be one, so the following should hold:

Finally, let denote the resource (e.g., time) needed for employee to finish job , then our

objective function is

1.3.6 Knapsack Problem

af://n94
af://n95
af://n97
af://n100
af://n102
af://n104
af://n109

Let denote the number of type selected. Suppose we want to express the condition "at least

one of the following two conditions has to be satisfied":

A total of at least four crates of type 1 or type 2 is selected, or

A total of at least four crates of type 5 or type 6 is selected.

We introduce a binary variable . If , then we want the first condition to be true, and if

 we want the second condition to be true. This can be achieved by adding the constraints

 and .

af://n118

1.4 Optimization Problems on Graphs

1.4.1 Graph Overview (See Introduction to Combinatorics)

A graph is an ordered pair , where is a finite set and is a set of (unordered) pairs of

elements of . Elements of are called vertices and elements of edges. For ,

and are adjacent if there exists an edge ; we call vertices and the endpoints of

edge , and edge is incident to vertices and .

For vertices , an path is a sequence of edges

such that , , and for all . The length/cost/weight of an path

is defined as the sum of the lengths/costs/weights of the edges of , i.e., .

1.4.2 Shortest Path Problem

Given a graph with non-negative weights for every edge and distinct

vertices and , we wish to find the one of minimum cost among all possible paths:

1.4.3 Bipartite Graphs (See Introduction to Combinatorics)

A graph is bipartite if we can partition the vertices into two sets, say and , such

that every edge has one endpoints in and the other one in . Given a graph, a subset of edges

 is called a matching if no vertex is incident to more than one edge of . A matching is

called perfect if every vertex is incident to exactly one edge in the matching. The weight

of a matching is defined as the sum of the weights of all edges in , i.e., .

1.4.4 Minimum Cost Perfect Matching Problem

Given a bipartite graph with non-negative edge weights for all , we wish

to solve

af://n118
af://n119
af://n122
af://n125
af://n127
af://n131

1.5 Integer Programs Continued

1.5.1 Minimum Cost Perfect Matching

Let be a graph and let . We denote by the set of edges that have as one

of the endpoints, i.e., is the set of edges incident to .

Given a graph and edge weight for every edge , we want to determine the

variables, the objective function, and the constraints.

We introduce a binary variable for every edge , where indicates that edge is selected

to be part of our perfect matching and indicates that edge is not selected. We can thus

express the edges in the matching by .

Let be a vertex. The number of edges incident to that are selected is . Since

we want a perfect matching, we need that number to be equal to , so .

To minimize the total weight of the edges in the matching is selected, the objective function

should return the weight of . If is an edge of , we will have and we should

contribute to the objective function, otherwise and there is no contribution. This can

be modelled by the term . Thus, the objective function is .

Note that we could also use an adjacency matrix for constraints.

1.5.2 Shortest Path Problem

Let be a graph and let be a subset of the vertices. Generalizing from the

previous section, let denote the set of edges that have exactly one endpoint in , i.e.,

Consider a graph with distinct vertices and and let be an -path of . Let

 be an arbitrary -cut of . Follow the path , starting from and denote by

the last vertex of in , and denote by the vertex that follows in . Since and ,

by definition, is an edge that is in .

af://n131
af://n132
af://n140

Lecture 7. Possible Outcomes

7.1 Feasibility and Optimality

An assignment of values to each of the variables is a feasible solution if all of the constraints

are satisfied. An optimization is feasible if it has at least one feasible solution. Otherwise, it is

infeasible.

For a maximization problem, an optimal solution is a feasible solution that maximize the object

function. For a minimization problem, an optimal solution is a feasible solution that minimize

the object function. Note that an optimization problem can have several optimal solutions.

7.2 Fundamental Theorem of Linear Programming

Theorem 7.2.1 For any linear program, exactly one of the following holds:

1. It has an optimal solution.

2. It is infeasible.

3. It is unbounded.

Remark. The statement only holds for LPs; there are optimization problems where none of the

above hold.

Example 7.2.2

An LP with an optimal solution: with .

An infeasible LP: with and .

An unbounded LP: with .

Definition 7.2.3 We now describe what we mean by solving a linear program:

1. If the LP has an optimal solution, return an optimal solution with a proof.

2. If the LP is infeasible, return a proof of infeasibility.

3. If the LP is unbounded, return a proof of unboundedness.

We always need to justify our solution!

af://n0
af://n2
af://n5

Lecture 8. Certificates

8.1 Proving Infeasibility

Example 8.1.1 Consider the following LP. Does the LP have a feasible solution?

 We can rewrite the set of constraints and use linear algebra.

The problem now becomes, does there exist an such that ? Using Gaussian

elimination, we find a vector such that and . This

vector is a certificate of infeasibility.

Theorem 8.1.2 [Gauss] Let , . Then exactly one of the following holds:

1. (Has Solution) There exists such that , or

2. (No Solution) There exists such that and .

In general, we would like to be able to perform such tests for the inequality .

Theorem 8.1.3 [Farkas] Let , . Then exactly one of the following holds:

1. (Feasible) There exists such that and , or

2. (Infeasible) There exists such that and .

8.2 Proving Optimality

Example 8.2.1 Suppose we are given the following LP.

One of the optimal solution is , which yields a value of .

af://n0
af://n2
af://n21

To show optimality of the solution, we can use the following argument. Let be an arbitrary

feasible solution. Then as . The result

follows.

Theorem 8.2.2 To show optimality of given an objective vector : Let be an arbitrary

feasible solution. Since and , we have as . The result

follows.

8.3 Proving Unboundedness

Example 8.3.1 Suppose we are given the following LP.

Observe (1) is feasible for all and (2) .

Proof for (1): Define and . Observe for all

 as . Then .

Proof for (2): Define . Then where

.

We now generalize the result to form the following theorem.

Theorem 8.3.2 The LP is unbounded if we can find and such

that

af://n27

Lecture 9. Standard Equality Forms

9.1 Standard Equality Form

Definition 9.1.1 A LP is in Standard Equality Form if

1. It is a maximization problem.

2. For every variable we have a constraint , and

3. All other constraints are equality constraints.

Example 9.1.2 Is the following LP in SEF?

No, as there is no constraint . We say is free. Note that is implied by the

constraints, but it is still free as the constraint is not given explicitly.

Remark 9.1.3 We introduce this SEF as we will develop an algorithm called the Simplex that

can solve any LP as long as it is in SEF.

Remark 9.1.4 What do we do if the LP is not in SEF?

1. Find an equivalent LP in SEF.

2. Solve the equivalent LP using Simplex.

3. Use the solution of the equivalent LP to get the solution of the original LP.

Basically, two LPs are equivalent if they behave in the same way. We now give the formal

definition.

9.2 Equivalent LPs

Definition 9.2.1 LPs and are equivalent if

 infeasible infeasible.

 unbounded unbounded.

Given an optimal solution of one, we could construct an optimal solution of the other.

Theorem 9.2.2 Every LP has an equivalent LP that is in SEF.

Example 9.2.3 We now provide a series of examples to turn an LP into its SEF equivalent.

af://n0
af://n2
af://n24

1. Replace minimization by maximization: .

2. Replacing inequalities by equalities: , ; ,

.

3. Free variables: Suppose we are given

Since any number is the difference between two non-negative numbers, we set

where . We then rewrite the objective function and constraints by carrying out the

arithmetic (omitted) and arrive at the following:

Note this new LP is in SEF.

Lecture 11. Basis and Basic Solutions

11.1 Basis

Remark 11.1.1 Let be an integer matrix and be a subset of column indices. Then

 is a column sub-matrix of indexed by set ; denotes column of .

Example 11.1.2 Consider the following.

Definition 11.1.3 Let and be a subset of column indices. Then is a basis if

1. is a square matrix,

2. is non-singular, i.e., columns are independent.

Example 11.1.4 Consider the following.

1. is not a basis, because is not a square matrix.

2. is not a basis, because the columns are independent ().

Remark 11.1.5 Does every matrix have a basis? No. Recall from linear algebra, the max

number of independent columns equals the max number of independent rows. Thus, if not all

rows are independent, there will not be a basis for the matrix. On the other hand, if all rows of

are independent, then is a basis if and only if is a maximal set of independent columns of .

11.2 Basic Solutions I

Definition 11.2.1 Let be a basis for . Then is a basic variable if and only if .

Example 11.2.2 Given basis , are basic variables and are not.

Definition 11.2.3 We say is a basic solution for basis if and for any

.

af://n0
af://n2
af://n21

Example 11.2.4 Consider the following.

For basis , is a basic solution as and .

11.3 Basic Solutions II

Example 11.3.1 To find a basic solution for given a basis , we rewrite the equation in

the form of , set for all , then solve for rest of the entries.

Theorem 11.3.2 Given and a basis of , there exists a unique basic solution for .

Proof. Observe . Since

 is a basis, is non-singular, so exists. Hence, .

Definition 11.3.3 We say is a basic solution if it is a basic solution for some basis .

Remark 11.3.4 To show that is a basic solution, find an appropriate basis ; to show that

is not a basic solution, prove by contradiction: suppose is a basic solution for basis and reach

the conclusion that is singular or not square.

Remark 11.3.5 A basic solution can be the basic solution for more than one basis. Note we

used "the" here as each basis has only one corresponding basic solution.

Remark 11.3.6 How is this related to LPs? Recall LPs in SEF:

. If the rows of are dependent, then either there is no solution

to , so is infeasible, or a constraint of is redundant and can be removed

without changing the solutions. Thus, we may always assume that, when trying to solve the LP,

the rows of are independent.

Definition 11.3.7 A basic solution of is feasible if , i.e., if it is feasible for .

af://n28

Lecture 12. Canonical Forms

12.1 Canonical Form

Definition 12.1.1 Let be a basis of . Then (P) is in canonical form for if

1. , and

2. for all .

Example 12.1.2 The following IP is in canonical form for :

12.2 Rewriting (P) into Canonical Form

Proposition 12.2.1 For any basis , there exists (P') in canonical form for such that

1. (P) and (P') have the same feasible region, and

2. Feasible solutions have the same objective values for (P) and (P').

Proposition 12.2.2 To rewrite (P) in canonical form for basis :

1. Replace by with . This is done by multiplying to both

sides:

2. Replace by where for and is a constant.

3. Construct a new objective function by multiplying constraint by , and

adding the resulting constraints to the objective function.

4. Choose , to get for .

af://n0
af://n2
af://n11

(Note that for any non-singular matrix , .)

Example 12.2.3 Consider the following example, where we rewrite its constraints.

Observe we multiplied the inverse of to both sides, which guaranteed to turn to .

Example 12.2.4 Consider the following example, where we rewrite the objective function.

First, construct a new objective function:

As a remark, line 4 is the objective function; line 5 is the sum of line 3 and line 4. Observe for

any choice of , and any feasible solution , the objective value of for the old objective

function is equal to that of the new objective function.

Now choose and to make :

We get the rewritten LP:

Lecture 13. Formalizing the Simplex

13.1 Simplex

Remark 13.1.1 Given an LP (P) in canonical form for some basis and a feasible solution

(w.r.t), how do we find a better feasible solution? One obvious approach is to pick where

, and set as large as possible while keeping all other non-basic variables at . At

each iteration, there will be one index entering the basis and another one leaving it. We stop

when we reach the upper bound of the objective function (see previous lectures on proving

optimality), or found out the LP is unbounded (see previous lectures on proving unboundedness).

Theorem 13.1.2 We now present the simplex algorithm. Given an LP with a feasible basis ,

we want to output an optimal solution or report that the LP is unbounded. First, we rewrite the

LP in canonical form for the basis :

At this stage, is a feasible basis, ; the LP is in canonical form for , and is a

basic solution (Remark:). Next, we find a better basis or get required outcome:

1. If , STOP. The basic solution is optimal. (Proof A)

2. Pick such that and set .

3. Pick .

4. If , STOP. The LP is unbounded. (Proof B)

5. Choose .

6. Let be a basis variable forced to .

7. Obtain the new basis by having enter and leave.

Proof A. If , STOP. The basic solution is optimal.

Given , , and has value , let be a feasible solution. Then

Proof B. If , STOP. The LP is unbounded.

af://n0
af://n2

First, given and all other non-basic variables have value zero,

. Next, as , as

.

Remark 13.1.3 Indeed, Simplex tells us the truth: if it claims the LP is unbounded, it is

unbounded; if it claims a solution is optimal, it is optimal. However, the Simplex algorithm may

not terminate! In other words, starting with a feasible basis , we may enter a cycle and reach

 again. To solve this, we introduce Bland's rule.

Definition 13.1.4 Bland's rule states that, if we have a choice for element entering or leaving

the basis, always pick the smallest one.

Theorem 13.1.5 If we use Bland's rule, then the Simplex algorithm always terminates.

Remark 13.1.6 So far, we have seen a formal description of the Simplex algorithm; we showed

that if the algorithm terminates, then it is correct; we defined Bland's rule and asserted that the

Simplex terminates as long as we are following Bland's rule. But to get started with Simplex, we

need to have a feasible basis. Therefore, the next step in our journey is to define a procedure to

find a feasible basis.

Lecture 15. Half-Spaces and Convexity

15.1 Geometry of Half-Spaces

Definition 15.1.1

The feasible region for an optimization problem is the set of all feasible solutions.

 is a polyhedron if there exists a matrix and a vector such that

.

Remark 15.1.2 The feasible region of an LP is a polyhedron.

Definition 15.1.3 Let be a vector and .

1. is a hyperplane, which is the set of solutions to a single linear equation.

2. is a half-space, which is the set of solutions to a single linear inequality.

Remark 15.1.4 A polyhedron is the intersection of a finite set of half-spaces. Thus,

understanding the geometry of a polyhedra is satisfied by understanding the geometry of half-

spaces.

Remark 15.1.5

Let be vectors. Then where is the Euclidean norm and the

angle between and . Recall ; ;

.

Given vector and , we have

The set of vectors orthogonal to : .

The set of vectors on the side of opposite to : .

Definition 15.1.6 Let . The is a translate of if there exists and

.

Proposition 15.1.7

Let be a vector and and let and .

Then is a translate of .

Let be a vector and and let and .

Then is a translate of .

af://n0
af://n2

Proof. Choose . We want to show . Observe

. The

second part can be proved using an identical argument.

Remark 15.1.8 Let , and let . Define and

. We define the dimension of to be the dimension of , which is a vector

space whose dimension can be computed as . In short, the

dimension of a hyperplane in is .

15.2 Convexity

Definition 15.2.1 Let .

The line through and is defined as .

The line segment between and is defined as .

A set is convex if the line segment between and is in for any .

Remark 15.2.2 For , if and are both convex then must be convex.

Proposition 15.2.3 Let be a half-space. Then is convex.

Proof. Pick arbitrary points and an arbitrary point in the line segment between and

. We want to show that :

Corollary 15.2.4 If is a polyhedron, then is convex.

Proof. As a polyhedron, is the intersection of half-spaces; each half-space is convex and the

intersection of convex set is convex. Thus, is convex.

Remark 15.2.5 This tells us that the feasible region of an LP is always a convex set!

af://n37

Lecture 16. Extreme Points

Definition Point is properly contained in the line segment if and is distinct

from the endpoints of .

Definition Let be a convex set and . Then is NOT an extreme point if there exists

a line segment where properly contains .

Remark

A convex set may have an infinite number of extreme points, e.g., a circle.

A convex set may have no extreme points at all, e.g., a half-space.

Definition Let be a polyhedron and let . A constraint is tight for if

it is satisfied with equality; we denote the set of all tight constraints by .

Remark Let , and where . Suppose and .

Then . To see this, observe . The result follows.

Theorem Let be a polyhedron and let .

If , then is an extreme point.

If , then is NOT an extreme point.

Proof.

(A) Suppose is not an extreme point. Then is properly contained in a line segment with end

points . That is, and for some , . Observe

where and . By our remark, . However, since , there is a

unique solution to , which implies . Contradiction.

(B) Since , there exists a vector such that . Pick small and define

 and . It suffices to prove the following:

1. is properly contained in the line segment between and .

Indeed, observe

2. .

We have two types of constraints:

af://n0

a. Tight ones : observe , so this type is satisfied.

b. Non-tight ones : .

i. Since is non-tight, it is satisfied with a strict inequality, i.e., .

ii. We don't know , but we get to choose to make the result small enough.

A mirror argument can be used to show .

Remark We must look at the rank of , not just how many rows it has (may be linearly

dependent)!

Theorem Let where rows of are independent. TFAE:

 is an extreme point of .

 is a basic feasible solution to .

Remark The Simplex algorithm moves from extreme points to extreme points.

