
Module 3: Duality Through Examples

CO 250: Introduction to Optimization

David Duan, 2019 Spring

Contents

Lecture 17. Duality Through Examples

17.1 The Shortest Path Problem

17.2 Finding an Intuitive Lower Bound: Cardinality Case

17.3 Finding an Intuitive Lower Bound: General Case

Lecture 18. Weak Duality

18.1 Dual of Primal LP

18.2 Lower-bounding the Length of s,t-Paths

Lecture 19. Shortest Path Algorithm

19.1 Slack

19.2 Shortest Path Algorithm

Lecture 20. Correctness

20.1 Shortest Path Characterization

20.2 Proof for Correctness

af://n0
af://n2
af://n3
af://n6

Lecture 17. Duality Through Examples

1. A width assignment for all -cuts is feasible if for all ,

.

2. If is a feasible width assignment and is an -path, then .

3. Intuitively, a width assignment counts the number of cuts of the same type in the

corresponding cardinality graph.

17.1 The Shortest Path Problem

Given a graph , a non-negative length for each edge and a pair of vertices

, our goal is to compute an -path of smallest total length.

An -path is a sequence where for all and ,

, and for all . The length of is given by .

We focus on two questions:

1. Given a shortest-path instance and a candidate shortest -path , is there a short proof

of its optimality?

2. How can we find a shortest -path?

17.2 Finding an Intuitive Lower Bound: Cardinality Case

We will first consider the cardinality special case of the shortest path problem. That is, each edge

 has length , so we are therefore looking for an -path with the smallest number of edges.

Definition 17.2.1 For a subset of vertices , we define

and call it an -cut, if and .

Remark 17.2.2 Recall the following:

1. If is an -path and is an -cut, then contains an edge from .

2. If contains an edge from every -cut, then contains an -path.

Example 17.2.3 The following example shows -cuts, for :

af://n6
af://n15
af://n24

We have two important notes:

1. for , and

2. An -path must contain an edge from for all .

By (2), we know that every -path must have at least edges. Thus, is the shortest

-path! Notice if an edge is not in any of the cuts (e.g.,), then it must not be on any of the

shortest -path.

17.3 Finding an Intuitive Lower Bound: General Case

We now consider the general case, where we assign a non-negative width to every -cut

.

Definition 17.3.1 A width assignment is feasible if, for every edge ,

the total width of all cuts containing is no more than . Using math, is feasible if for all ,

Example 17.3.2 Consider the following example with -cuts:

Consider the width assignment . It is easy to check this is

feasible.

 is contained in only, and we see that .

 is contained in and , and we see that .

The rest of edges can be checked using an identical argument.

af://n43

Remark 17.3.3 We now provide the intuition behind width assignments. For simplicity, assume

all lengths are positive integers. We take each edge with length and split the edge into edges.

Let be the original graph (left) and be the transformed (right). It should be easy to see that

any -path from of length corresponds to an -path from that uses edges, and vice

versa.

Suppose now we have some disjoint -cuts in that proves our -path is the shortest.

We set the restriction such that each edge is only allowed to be used in at most one such cut.

Then, we combine cuts of the same type (i.e., they cross the same corresponding

edges in) into one, and give the number of such cuts as the width assignment of

the corresponding cut in . For example, we see that three cuts in go through and ,

which corresponds to in . Thus, we set . Similarly, we see that only one cut in

go through and , which is , so we set . We set and the same

way.

Note that the constraints on the width assignments (i.e.,) are

satisfied, since each edge in of length is part of at most cuts in the corresponding edges

in . For example, edge has length in , and that corresponds to edges in . Since each

edge in is used at most once, this means that at most cuts in use these edges. By

combining them to get cuts in (there are two of them, and), we do not exceed a

total width assignment of for edge .

Again, the key intuition is that we combined the cuts of the same type into one and gave the

number of such cuts as the width assignment of the corresponding cut in .

Proposition 17.3.4 If is a feasible width assignment, then any -path must have length at

least

Proof. Consider an -path . It follows that

The first inequality follows from the definition of a feasible width assignment. Next, if is an

-cut, then contains at least one edge from , thus variable appears at least once on

the LHS.

Remark 17.3.5 This result should be quite intuitive as it's merely a combination of 17.3.2 (2)

and 17.3.3. From 17.3.3, we know that the width assignment of a general graph corresponds to

the number of cuts in its corresponding cardinality graph . By 17.3.2 (2), an -path must

contain one edge from each cut. By the constraint on the width assignments, each edge in of

length is part of at most cuts in the corresponding edges in , i.e., each has the

property that is no less than the total number of cuts going through its corresponding edge(s)

in . Translating this from cardinality graph to general graph, the -path then must have a

length at least the sum of all width assignments.

Remark 17.3.6 Consider the following two questions:

1. In an instance with a shortest path, can we always find feasible widths to prove optimality?

2. If so, how do we find a path and these widths?

In future lectures, we will answer (A) affirmatively, and provide an efficient algorithm for (B).

af://n80

Lecture 18. Weak Duality

1. The dual LP of is given by .

2. Weak Duality: If is feasible for (P) and is feasible for (D), then .

3. The LP relaxation of an IP is obtained by dropping the integrality restriction.

4. The dual of the shortest path LP is given by

18.1 Dual of Primal LP

Example 18.1.1 The LP below is feasible (e.g.,):

Can we find a good lower-bound on the objective value of the LP? Suppose that is feasible for

the given LP. Then it satisfies

Adding up LHS and RHS, must also satisfy

Additionally, for any , it satisfies

In other words, for any , a feasible for the LP satisfies

af://n80
af://n92

Let , we obtain , or . Thus,

Given , it follows that for every feasible solution . The solution

yields a value of , so the optimal value of the LP is in the closed interval . Can we find a

better lower bound on for a feasible ?

We know that a feasible satisfies

for any . Therefore,

We want the second term to be non-negative (because we are trying to find a lower bound for

; making the second term negative would defeat the purpose). Since , this amounts to

choosing such that

Now with the same , we also have

In other words, to find the best possible lower-bound on , we need to find such that

holds and the RHS of is maximized! We arrive at the following LP:

Solving this gives and the objective value is . Thus, there is no

feasible solution to the original LP that has an objective value smaller than . Since

 is a feasible with value , it must be optimal! We now present a general argument.

Proposition 18.1.2 Suppose we are given an LP

Then any feasible solution must satisfy for and hence .

Therefore,

If we also know that , then implies that . The best lower bound on)

can thus be found by solving the following LP:

The LP (D) is called the dual of primal LP (P).

Theorem 18.1.3 [Weak Duality] If is feasible for (P) and is feasible for (D), then

.

Proof.

18.2 Lower-bounding the Length of -Paths

Example 18.2.1 Recall that given a shortest path instance , , for all

, the shortest-path LP is

Consider the following example:

af://n127

If is an -path, then letting iff is an edge of and otherwise for all would

yield a feasible IP solution with an objective value . For example, path

 with an objective value . As a remark, the optimal value

of the shortest path IP is, at most, the length of a shortest -path.

Now, if we drop the condition , the objective value could go down but not up (as the

objective function would seek to minimize the value; taking decimal values could achieve this).

The resulting LP is called the linear programming relaxation of the IP. Straight from Weak

Duality theorem, we have that the dual of (P) has optimal value no larger than of (P).

The dual of (P) is given by

Note that the dual solutions assign the value for every -cut ! Focus on the

constraint for edge , i.e., : LHS is precisely the -value assigned to the two

-cuts which contain ! In other words, it is saying that adding the width assignments to -cut

containing should be no more than the length of edge ! This is true for all inequalities here,

which should remind you of the width assignment constraint .

In conclusion, is feasible for the above LP iff it is a feasible width assignment for the -cuts in

the given shortest path instance.

Proposition 18.2.2 Here is the general argument for general shortest path instances. Given

, , for all , the LP is of the form

 has a column for every edge and a row for every -cut ,

 if and otherwise.

Its dual is of the form

Note that the dual has a constraint for every edge ; each constraint precisely correspond to

what we have seen before: .

Remark 18.2.3 Feasible solutions to (D) correspond precisely to feasible width assignments.

Weak duality implies that is, at most, the length of a shortest -path. (Again, think

about the general graph vs cardinality graph example! It explains the inequality in

.)

af://n150

Lecture 19. Shortest Path Algorithm

1. An arc is an ordered pair of vertices; a directed path (dipath) is a sequence of arcs.

2. The slack of an edge is defined as .

3. For the shortest path algorithm, start with for all -cut and set . In

each iteration, we find the minimal slack, set to that value, and add the new vertex to .

When the algorithm returns, we get a directed -path and a feasible width assignment.

19.1 Slack

Definition 19.1.1 An arc is an ordered pair of vertices. We denote an arc from to as ,

and draw it as an arrow from to .

Definition 19.1.2 A directed path (dipath) is a sequence of arcs ,

where is an arc in the given graph and for all . For example, is a

-dipath.

Definition 19.1.3 Let be a feasible dual solution. The slack of an edge is defined as

Remark 19.1.4 Recall the width assignment constraint , i.e., the

sum of widths of all cuts containing an edge is no greater than . If we think of as some sort

of resource and the widths as users, then the slack is like the portion of resource not allocated by

the width assignment.

Example 19.1.5 For the dual given below,

19.2 Shortest Path Algorithm

Example 19.2.1 We present a step-by-step example finding the shortest -path for the given

graph.

af://n150
af://n159
af://n168

We start with the trivial dual . The simplest -cut is . The key strategy is to

increase as much as we can while still maintaining feasibility (recall the constraint

). Let . This decreases the slack of to , so we replace by .

Next, we look at all vertices that are reachable from via directed paths () and try to

increase . By how much we can increase it? The maximum increase possible for is

determined by the (minimum of) slack of edges in :

Note that edges and minimize slack. We pick one arbitrary, say , setting

 and converting into arc . (The picture should add vertex to the

shaded region.)

Now which vertices are reachable from via directed paths? We get . Again, we

increase by as much as possible. Since the slack of is , we have . We then

change to and let be the set of reachable vertices from .

Again, we compute the slack of edges in . We find and both have slack , so we let

, and add the equality arc and update .

Finally, we compute the slack of edges in and see edge has the minimum slack of . We

let and add the equality arc .

We now have a directed -path in our graph: . It has a length of . We also have

a feasible dual solution: and otherwise. Therefore,

we know that path is a shortest path!

Algorithm 19.2.2 The following algorithm helps us find a shortest -path in a graph.

af://n187

Lecture 20. Correctness

1. An edge is called an equality edge if it has zero slack.

2. A cut is said to be active for a dual solution if .

3. Given an -path and a feasible dual solution , is shortest if all edges are equality

edges and every active cut has exactly one edge in .

4. The correctness can be proved using five invariants: feasible; all equality arcs; no entering

arc for any active cut; existence of directed -path ; all arcs have both ends in .

20.1 Shortest Path Characterization

Remark 20.1.1 In this lecture, we prove that both of the following yield an answer of true:

1. Will the algorithm always terminate?

2. Will it always find an -path whose length is equal to the value of a feasible dual

solution?

Definition 20.1.2 Recall the slack of an edge for a feasible dual solution is

. We call an edge an equality edge if its slack is zero.

Definition 20.1.3 We call a cut active for a dual solution if .

Proposition 20.1.4 Let be a feasible dual solution and an -path. Then is a shortest

path if

1. All edges on are equality edges, i.e. ,

2. Every active cut has exactly one edge of , i.e., for all if .

Proof. Suppose and satisfy both conditions. Then the length of the path satisfies the

equality because every edge on is an equality edge by (1).

Consider RHS: how often does for an active cut appear on the RHS? Exactly the

number of edges in that is contained in . Thus, we can rewrite it as

. But, by (2), only if . Hence, .

Example 20.1.5 Consider the following graph:

af://n187
af://n198

 is an equality edge (); is not ().

If we have , then is

active and is not, as those cuts have .

Both conditions for proposition 20.1.4 are satisfied, thus is a shortest -path.

20.2 Proof for Correctness

Remark 20.2.1 First, observe the algorithm always terminates since one vertex is added to

in every step and is finite. We now prove the correctness of the algorithm.

Proposition 20.2.2 The Shortest Path Algorithm maintains throughout its execution if:

1. is a feasible dual,

2. Arcs are equality arcs (i.e., always have slack),

3. No active cut has an entering arc, i.e., an arc with and ,

4. For every there is a directed -path,

5. Arcs have both ends in .

Remark 20.2.3 Before we start the proof, we need to recognize the implication of the

proposition above. Suppose the invariants hold when the algorithm terminates. Then:

1. and (4) implies there is a directed -path ,

2. is feasible by (1),

3. Arcs on are equality arcs by (2).

Now, to show that is the shortest path, we are left to show that every active cut contains

exactly one arc from . Once we have this, we have proved the correctness of the algorithm by

the 20.1.4.

Lemma 20.2.4 If all 5 conditions for proposition 20.2.2 are satisfied, then every active cut

contains exactly one edge from path .

Proof. For a contradiction, suppose is an active cut containing more than one edge in .

Let and be the first two edges on that leaves .

af://n223

Since there are two edges leaving , there must also be an edge between and that enters ;

we call it . But this contradicts (3)! The result follows.

Proof for proposition. For convenience, we provide a copy of the algorithm here.

First, it is trivial that all five conditions hold after line 1:

 is indeed feasible because for all and .

There are no arcs found yet.

The only active arc is , which obviously has no entering arc.

 only contains , and there is a trivial -path.

There are no arcs found yet.

Now, suppose they hold before line 3 (before a new iteration). We want to show that they still

hold after line 6 (after a new iteration).

Note that, during line 3 to 6, the only change to the dual solution is that for the current

changes (line 4). Which of the dual constraints can be impacted by this change in the dual

variable? Recall the constraints for the dual LP: ; appears only

on the LHS of edges in the dual if . Thus, the only constraint in the dual that might be

affected by this change in dual variable are those constraints corresponding to edges in).

Since we choose the smallest slack of any of these constraints to update , no constraints

corresponding to gets violated by increasing . Thus, remains feasible after line 6; (1)

holds.

Next, the constraint of the newly created arc holds with equality after the increase, thus, (2)

continues to hold as the constraints for arcs have slack .

From inductive hypothesis (5), all old arcs have both ends in . The new arc has tail in and

head outside , so it is not an entering arc and thus (3) holds.

Suppose the new arc is where and . By inductive hypothesis (4), there exists a

directed path from to in . By inductive hypothesis (5), any arc different from has both

ends in . Since , it cannot be on , and thus together with is a directed -path; (4)

holds.

Finally, the new arc added is . As is added to , (5) holds.

The proof is complete.

Remark 20.2.5 In this and previous lecture, we saw that the shortest path algorithm always

produces an -path and a feasible dual solution . Moreover, the length of always equals

the objective value of and hence, must be a shortest -path. Implicitly, we therefore showed

that the shortest path LP always has an integer solution!

	Module 3: Duality Through Examples
	CO 250: Introduction to Optimization
	David Duan, 2019 Spring
	Lecture 17. Duality Through Examples
	17.1 The Shortest Path Problem
	17.2	Finding an Intuitive Lower Bound: Cardinality Case
	17.3	Finding an Intuitive Lower Bound: General Case

	Lecture 18.	Weak Duality
	18.1	Dual of Primal LP
	18.2	Lower-bounding the Length of s,t-Paths

	Lecture 19. Shortest Path Algorithm
	19.1	Slack
	19.2	Shortest Path Algorithm

	Lecture 20. Correctness
	20.1	Shortest Path Characterization
	20.2	Proof for Correctness

