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Lecture 17. Duality Through Examples  

1. A width assignment  for all -cuts  is feasible if for all , 

.

2. If  is a feasible width assignment and  is an -path, then . 

3. Intuitively, a width assignment counts the number of cuts of the same type in the 

corresponding cardinality graph.

17.1 The Shortest Path Problem  

Given a graph , a non-negative length  for each edge  and a pair of vertices 

, our goal is to compute an -path  of smallest total length. 

An -path is a sequence  where  for all  and , 

, and  for all . The length of  is given by .

We focus on two questions:

1. Given a shortest-path instance and a candidate shortest -path , is there a short proof 

of its optimality?

2. How can we find a shortest -path?

17.2 Finding an Intuitive Lower Bound: Cardinality Case  

We will first consider the cardinality special case of the shortest path problem. That is, each edge 

 has length , so we are therefore looking for an -path with the smallest number of edges. 

Definition 17.2.1  For a subset of vertices , we define  

and call it an -cut, if  and . 

Remark 17.2.2  Recall the following:

1. If  is an -path and  is an -cut, then  contains an edge from .

2. If  contains an edge from every -cut, then  contains an -path.

Example 17.2.3  The following example shows  -cuts,  for :
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We have two important notes:

1.  for , and 

2. An -path must contain an edge from  for all .

By (2), we know that every -path must have at least  edges. Thus,  is the shortest 

-path! Notice if an edge is not in any of the cuts (e.g., ), then it must not be on any of the 

shortest -path.

17.3 Finding an Intuitive Lower Bound: General Case  

We now consider the general case, where we assign a non-negative width  to every -cut 

.

Definition 17.3.1  A width assignment  is feasible if, for every edge , 

the total width of all cuts containing  is no more than . Using math,  is feasible if for all , 

Example 17.3.2  Consider the following example with  -cuts:

Consider the width assignment . It is easy to check this is 

feasible. 

 is contained in  only, and we see that .

 is contained in  and , and we see that .

The rest of edges can be checked using an identical argument.
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Remark 17.3.3  We now provide the intuition behind width assignments. For simplicity, assume 

all lengths are positive integers. We take each edge with length  and split the edge into  edges.

Let  be the original graph (left) and  be the transformed (right). It should be easy to see that 

any -path from  of length  corresponds to an -path from  that uses  edges, and vice 

versa.

Suppose now we have some disjoint -cuts in  that proves our -path is the shortest. 

We set the restriction such that each edge is only allowed to be used in at most one such cut. 

Then, we combine cuts of the same type (i.e., they cross the same corresponding 

edges in ) into one, and give the number of such cuts as the width assignment of 

the corresponding cut in . For example, we see that three cuts in  go through  and , 

which corresponds to  in . Thus, we set . Similarly, we see that only one cut in  

go through  and , which is , so we set . We set  and  the same 

way.

Note that the constraints on the width assignments (i.e., ) are 

satisfied, since each edge in  of length  is part of at most  cuts in the corresponding  edges 

in . For example, edge  has length  in , and that corresponds to  edges in . Since each 

edge in  is used at most once, this means that at most  cuts in  use these edges. By 

combining them to get cuts in  (there are two of them,  and ), we do not exceed a 

total width assignment of  for edge .  

Again, the key intuition is that we combined the cuts of the same type into one and gave the 

number of such cuts as the width assignment of the corresponding cut in . 

Proposition 17.3.4  If  is a feasible width assignment, then any -path must have length at 

least 



Proof.  Consider an -path . It follows that

The first inequality follows from the definition of a feasible width assignment. Next, if  is an 

-cut, then  contains at least one edge from , thus variable  appears at least once on 

the LHS. 

Remark 17.3.5  This result should be quite intuitive as it's merely a combination of 17.3.2 (2) 

and 17.3.3. From 17.3.3, we know that the width assignment of a general graph  corresponds to 

the number of cuts in its corresponding cardinality graph . By 17.3.2 (2), an -path must 

contain one edge from each cut. By the constraint on the width assignments, each edge in  of 

length  is part of at most  cuts in the corresponding  edges in , i.e., each  has the 

property that  is no less than the total number of cuts going through its corresponding edge(s) 

in . Translating this from cardinality graph to general graph, the -path then must have a 

length at least the sum of all width assignments.

Remark 17.3.6  Consider the following two questions:

1. In an instance with a shortest path, can we always find feasible widths to prove optimality?

2. If so, how do we find a path and these widths?

In future lectures, we will answer (A) affirmatively, and provide an efficient algorithm for (B).
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Lecture 18. Weak Duality  

1. The dual LP of  is given by .

2. Weak Duality: If  is feasible for (P) and  is feasible for (D), then .

3. The LP relaxation of an IP is obtained by dropping the integrality restriction.

4. The dual of the shortest path LP is given by

18.1 Dual of Primal LP  

Example 18.1.1  The LP below is feasible (e.g., ):

Can we find a good lower-bound on the objective value of the LP? Suppose that  is feasible for 

the given LP. Then it satisfies

Adding up LHS and RHS,  must also satisfy

Additionally, for any , it satisfies 

In other words, for any , a feasible  for the LP satisfies 
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Let , we obtain , or . Thus, 

Given , it follows that  for every feasible solution . The solution  

yields a value of , so the optimal value of the LP is in the closed interval . Can we find a 

better lower bound on  for a feasible ? 

We know that a feasible  satisfies 

for any . Therefore, 

We want the second term to be non-negative (because we are trying to find a lower bound for 

; making the second term negative would defeat the purpose). Since , this amounts to 

choosing  such that

Now with the same , we also have

In other words, to find the best possible lower-bound on , we need to find  such that  

holds and the RHS of  is maximized! We arrive at the following LP:



Solving this gives  and the objective value is . Thus, there is no 

feasible solution  to the original LP that has an objective value smaller than . Since 

 is a feasible with value , it must be optimal! We now present a general argument.

Proposition 18.1.2  Suppose we are given an LP

Then any feasible solution  must satisfy  for  and hence . 

Therefore, 

If we also know that , then  implies that . The best lower bound on ) 

can thus be found by solving the following LP:

The LP (D) is called the dual of primal LP (P).

Theorem 18.1.3 [Weak Duality]  If  is feasible for (P) and  is feasible for (D), then 

.

Proof.  

18.2 Lower-bounding the Length of -Paths  

Example 18.2.1  Recall that given a shortest path instance , ,  for all 

, the shortest-path LP is 

Consider the following example:
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If  is an -path, then letting  iff  is an edge of  and  otherwise for all  would 

yield a feasible IP solution with an objective value . For example, path 

 with an objective value . As a remark, the optimal value 

of the shortest path IP is, at most, the length of a shortest -path.

Now, if we drop the condition , the objective value could go down but not up (as the 

objective function would seek to minimize the value; taking decimal values could achieve this). 

The resulting LP is called the linear programming relaxation of the IP. Straight from Weak 

Duality theorem, we have that the dual of (P) has optimal value no larger than of (P).

The dual of (P) is given by

Note that the dual solutions assign the value  for every -cut ! Focus on the 

constraint for edge , i.e., : LHS is precisely the -value assigned to the two 

-cuts which contain ! In other words, it is saying that adding the width assignments to -cut 

containing  should be no more than the length of edge ! This is true for all inequalities here, 

which should remind you of the width assignment constraint . 

In conclusion,  is feasible for the above LP iff it is a feasible width assignment for the -cuts in 

the given shortest path instance.

Proposition 18.2.2  Here is the general argument for general shortest path instances. Given 

, ,  for all , the LP is of the form

 has a column for every edge and a row for every -cut ,



 if  and  otherwise.

Its dual is of the form

Note that the dual has a constraint for every edge ; each constraint precisely correspond to 

what we have seen before: .

Remark 18.2.3  Feasible solutions to (D) correspond precisely to feasible width assignments. 

Weak duality implies that  is, at most, the length of a shortest -path. (Again, think 

about the general graph vs cardinality graph example! It explains the inequality in 

.)
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Lecture 19. Shortest Path Algorithm  

1. An arc is an ordered pair of vertices; a directed path (dipath) is a sequence of arcs.

2. The slack of an edge  is defined as .

3. For the shortest path algorithm, start with  for all -cut  and set . In 

each iteration, we find the minimal slack, set  to that value, and add the new vertex to . 

When the algorithm returns, we get a directed -path and a feasible width assignment.

19.1 Slack  

Definition 19.1.1  An arc is an ordered pair of vertices. We denote an arc from  to  as , 

and draw it as an arrow from  to .

Definition 19.1.2  A directed path (dipath) is a sequence of arcs , 

where  is an arc in the given graph and  for all . For example,  is a 

-dipath.

Definition 19.1.3  Let  be a feasible dual solution. The slack of an edge  is defined as 

Remark 19.1.4  Recall the width assignment constraint , i.e., the 

sum of widths of all cuts containing an edge  is no greater than . If we think of  as some sort 

of resource and the widths as users, then the slack is like the portion of resource not allocated by 

the width assignment. 

Example 19.1.5  For the dual  given below,

19.2 Shortest Path Algorithm  

Example 19.2.1  We present a step-by-step example finding the shortest -path for the given 

graph.
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We start with the trivial dual . The simplest -cut is . The key strategy is to 

increase  as much as we can while still maintaining feasibility (recall the constraint 

). Let . This decreases the slack of  to , so we replace  by .

Next, we look at all vertices that are reachable from  via directed paths ( ) and try to 

increase . By how much we can increase it? The maximum increase possible for  is 

determined by the (minimum of) slack of edges in :

Note that edges  and  minimize slack. We pick one arbitrary, say , setting 

 and converting  into arc . (The picture should add vertex  to the 

shaded region.)



Now which vertices are reachable from  via directed paths? We get . Again, we 

increase  by as much as possible. Since the slack of  is , we have . We then 

change  to  and let  be the set of reachable vertices from . 

Again, we compute the slack of edges in . We find  and  both have slack , so we let 

, and add the equality arc  and update . 

Finally, we compute the slack of edges in  and see edge  has the minimum slack of . We 

let  and add the equality arc . 

We now have a directed -path in our graph: . It has a length of . We also have 

a feasible dual solution:  and  otherwise. Therefore, 

we know that path  is a shortest path!

Algorithm 19.2.2  The following algorithm helps us find a shortest -path in a graph.
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Lecture 20. Correctness  

1. An edge  is called an equality edge if it has zero slack.

2. A cut  is said to be active for a dual solution  if .

3. Given an -path  and a feasible dual solution ,  is shortest if all edges are equality 

edges and every active cut  has exactly one edge in .

4. The correctness can be proved using five invariants:  feasible; all equality arcs; no entering 

arc for any active cut; existence of directed -path ; all arcs have both ends in .

20.1 Shortest Path Characterization  

Remark 20.1.1 In this lecture, we prove that both of the following yield an answer of true: 

1. Will the algorithm always terminate?

2. Will it always find an -path  whose length is equal to the value of a feasible dual 

solution? 

Definition 20.1.2  Recall the slack of an edge  for a feasible dual solution  is 

. We call an edge  an equality edge if its slack is zero. 

Definition 20.1.3  We call a cut  active for a dual solution  if . 

Proposition 20.1.4  Let  be a feasible dual solution and  an -path. Then  is a shortest 

path if

1. All edges on  are equality edges, i.e. ,

2. Every active cut  has exactly one edge of , i.e.,  for all  if . 

Proof.  Suppose  and  satisfy both conditions. Then the length of the path satisfies the 

equality  because every edge on  is an equality edge by (1). 

Consider RHS: how often does  for an active cut  appear on the RHS? Exactly the 

number of edges in  that is contained in . Thus, we can rewrite it as 

. But, by (2),  only if . Hence, . 

 

Example 20.1.5  Consider the following graph:
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 is an equality edge ( );  is not ( ).

If we have , then  is 

active and  is not, as those cuts have .

Both conditions for proposition 20.1.4 are satisfied, thus  is a shortest -path.

20.2 Proof for Correctness  

Remark 20.2.1  First, observe the algorithm always terminates since one vertex is added to  

in every step and  is finite. We now prove the correctness of the algorithm. 

Proposition 20.2.2  The Shortest Path Algorithm maintains throughout its execution if:

1.  is a feasible dual,

2. Arcs are equality arcs (i.e., always have  slack),

3. No active cut  has an entering arc, i.e., an arc  with  and ,

4. For every  there is a directed -path,

5. Arcs have both ends in .

Remark 20.2.3  Before we start the proof, we need to recognize the implication of the 

proposition above. Suppose the invariants hold when the algorithm terminates. Then:

1.  and (4) implies there is a directed -path ,

2.  is feasible by (1),

3. Arcs on  are equality arcs by (2).

Now, to show that  is the shortest path, we are left to show that every active cut contains 

exactly one arc from . Once we have this, we have proved the correctness of the algorithm by 

the 20.1.4.

Lemma 20.2.4  If all 5 conditions for proposition 20.2.2 are satisfied, then every active cut  

contains exactly one edge from path . 

Proof.  For a contradiction, suppose  is an active cut containing more than one edge in . 

Let  and  be the first two edges on  that leaves . 
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Since there are two edges leaving , there must also be an edge between  and  that enters ; 

we call it . But this contradicts (3)! The result follows. 

Proof for proposition.  For convenience, we provide a copy of the algorithm here.

First, it is trivial that all five conditions hold after line 1:

 is indeed feasible because  for all  and .

There are no arcs found yet.

The only active arc is , which obviously has no entering arc.

 only contains , and there is a trivial -path.

There are no arcs found yet.

Now, suppose they hold before line 3 (before a new iteration). We want to show that they still 

hold after line 6 (after a new iteration). 

Note that, during line 3 to 6, the only change to the dual solution is that  for the current  

changes (line 4). Which of the dual constraints can be impacted by this change in the dual 

variable? Recall the constraints for the dual LP: ;  appears only 

on the LHS of edges  in the dual if . Thus, the only constraint in the dual that might be 

affected by this change in dual variable are those constraints corresponding to edges in ). 

Since we choose the smallest slack of any of these constraints to update , no constraints 

corresponding to  gets violated by increasing . Thus,  remains feasible after line 6; (1) 

holds.

Next, the constraint of the newly created arc holds with equality after the increase, thus, (2) 

continues to hold as the constraints for arcs have slack . 

From inductive hypothesis (5), all old arcs have both ends in . The new arc  has tail in  and 

head outside , so it is not an entering arc and thus (3) holds.



Suppose the new arc is  where  and . By inductive hypothesis (4), there exists a 

directed path  from  to  in . By inductive hypothesis (5), any arc different from  has both 

ends in . Since , it cannot be on , and thus  together with  is a directed -path; (4) 

holds.

Finally, the new arc added is . As  is added to , (5) holds. 

The proof is complete. 

Remark 20.2.5  In this and previous lecture, we saw that the shortest path algorithm always 

produces an -path  and a feasible dual solution . Moreover, the length of  always equals 

the objective value of  and hence,  must be a shortest -path. Implicitly, we therefore showed 

that the shortest path LP always has an integer solution!
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