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Lecture 21. Weak Duality  

21.1 The Shortest Path Problem  

This subsection serves as a motivation for weak duality.

Example 21.1.1  Recall the following from previous lectures.

Shortest path primal LP (P):

Shortest path dual LP (D):

We can rewrite them as  and , where

 contains the costs of edges,

,

 has a row for every -cut  and a column for every edge , and

 if  and  otherwise.

Theorem 21.1.3  If  is feasible for (P) and  is feasible for (D), then . Equivalently, 

if  is a feasible width assignment and  is an -path, then .

21.2 Primal Dual Pairs  

Remark 21.2.1  Can we find lower bounds on the optimal value of a general LP?

Observe in the primal-dual pair from 21.1.2, 

Each non-negative variable  (i.e., ) in (P) corresponds to a -constraint in (D),

Each -constraint in (P) corresponds to a non-negative variable  (i.e., ) in (D). 

We see that primal variables  dual constraints and primal constraints  dual variables. It 

follows that the dual LP is given by
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Proposition 21.2.2  The following table summarizes how constraints and variables in primal 

and dual LP correspond: 

As a remark, besides trivial changes like , , and , the tricky part is to 

remember that (P)  (D) flips constraint signs and keeps variable signs; (D)  (P) flips variable 

signs and keep constraint signs.

Example 21.2.3  We can derive the following based on 21.2.2:

Theorem 21.2.4 [Weak Duality]  Let (Pmax) and (Pmin) be a primal-dual pair. 

If  and  are feasible for the two LPs, then . 

Moreover, if , then  is optimal for (Pmax) and  is optimal for (Pmin).

Proof.  Let (P) be an arbitrary LP where the goal is to maximize the objective function. Then for 

some partition  of the row indices and some partition  of the column indices, 

we can express (P) and its dual (D) as 



 

 

Next, we add slack variables  and  and rewrite them as 

Suppose  and  are feasible for the original primal and dual LPs. Let  and 

. Then , 

where the middle equality follows from the fact that  or equivalently 

. Hence, to prove that  it suffices to show the following:

, and 

. 

Corollary 21.2.5  We close this section by noting the following consequences of the Weak 

Duality Theorem and the Fundamental Theorem of LP:

If (Pmax) is unbounded, then (Pmin) is infeasible.

If (Pmin) is unbounded, then (Pmax) is infeasible.

If both are feasible, then both have optimal solutions.

Proof.  (1) Suppose for a contradiction that  is feasible for (Pmin). By weak duality,  

for all  feasible for (Pmax) and hence the latter is bounded. (2) Similar to above. (3) By Weak 

Duality, both are bounded. By the Fundamental Theorem of LP, both have optimal solutions. 
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Lecture 22. Strong Duality  

22.1 Strong Duality  

Theorem 22.1.1  [Strong Duality]  If (Pmax) has an optimal solution , then (Pmin) has an 

optimal solution  such that . 

Proof.  We prove a special case of the Strong Duality Theorem where (P) is in SEF:

(P): .

(D): . (Recall  in (P) implies all variables are free in (D).)

Suppose (P) has an optimal solution. Then the 2-Phase Simplex terminates with an optimal basis 

. We can rewrite (P) for basis  to obtain (P'):

where  and . (For more information, review the notes from Module 2 

on canonical form and Simplex.)

Let  be the basic solution for , i.e.,  and . 

Since (P) and (P') are equivalent, for any feasible solution the values in (P) and (P') are the 

same. Moreover, (P') also has the property that . Hence, 

Since Simplex terminated, we must have , i.e., , or equivalently, . It 

follows that  is feasible for (D). Since , we know from Weak Duality that  and  are 

optimal solutions for (P) and (D), respectively. 

Corollary 22.1.2  Alternative statements for Strong Duality:

1. Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has 

one, and their objective values equal. 

2. Let (P) and (D) be a primal-dual pair of LPs. If both are feasible, then both have optimal 

solutions of the same objective value. 

Theorem 22.1.3 [Possible Outcomes]  
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Lecture 23. Geometric Optimality  

23.0 Recap  

In the following section, unless otherwise specified, we define

The primal LP (P) .

The dual LP (D) .

Theorem [Strong Duality]  Given (P) and (D), if (P) has an optimal solution, then (D) has 

one and their objective values equal. 

Proposition (Module 2) The feasible region of an LP is a polyhedron and basic solutions 

correspond to extreme points of this polyhedron.

From Module 2 and Strong Duality, Simplex computes a basic solution (if exists) and a certificate 

of optimality. In this lecture, we will investigate these certificate using geometry. 

23.1 Complementary Slackness - Special Case  

Theorem 23.1.1  Let  and  be feasible for (P) and (D). Then  and  are optimal iff for 

every row index ,  or the th constraint of (P) is tight for . 

Proof.  We can rewrite (P) using slack variables : (P') . Then, 

if  is feasible for (P')   is feasible for (P), as the  is satisfied. Conversely, if  is feasible for 

(P),  is feasible for (P'). Suppose  is feasible for (P) and  is feasible for (D). Then 

 is feasible for (P'). Define . 

From Weak Duality, . From Strong Duality,  

both optimal if and only if , or equivalently, . That is,  (

). By feasibility,  and , so  holds iff for every , at least one of  

equals zero. Recall a constraint is tight when it is satisfied with equality. Therefore, we can 

rephrase this equivalently as  or th primal constraint is tight. 

Example 23.1.2  Consider the following LPs ((P) on the left and (D) on the right):

We claim that  and  are optimal:

1.  (yes!) or .

2.  or  (yes!).

3.  or  (yes!).
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By Theorem 23.1.1,  and  are indeed optimal.

23.2 Complementary Slackness - General Case  

Theorem 23.2.1  Suppose (Pmax) and (Pmin) are a pair of primal and dual LPs according to the 

LP P-D conversion table (Lecture 21), with feasible solutions  and . We say they satisfy the 

complementary slackness conditions if 

For all variables  of (Pmax),  or the th constraint of (Pmin) is satisfied with 

equality for .

For all variables  of (Pmin),  or the th constraint of (Pmax) is satisfied with 

equality for .

Note that the "or"s here are inclusive, i.e., at least one of the two conditions needs to be true.

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let  and  be feasible solutions. 

Then these solutions are optimal if the complementary slackness conditions hold (see above).

Example 23.2.2  Consider the following LPs ((P) on the left and (D) on the right):

We claim that  and  are optimal:

1. Primal conditions:

a. First (D) constraint is tight for .

b. .

c. Third (D) constraint is tight for . 

2. Dual conditions:

a. First (P) constraint is tight for .

b. Second (P) constraint is tight for . 

By Theorem 23.2.1,  and  are optimal.

23.3 Geometry - Cones of Vectors  

Definition 23.3.1  Let  be vectors in . The cone generated by these vectors is 

given by .

Example 23.3.2  The cone generated by  is the blue-shaded area:
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Definition 23.3.3  Let  be a polyhedron, , and  be the row indices 

of  corresponding to the tight constraints of  for , i.e., . We 

define the cone of  tight constraints for  to be the cone  generated by the rows of  

corresponding to the tight constraints, i.e., .

Example 23.3.4  Consider the following polyhedron:

Consider . Observe  and the first two rows are tight for . Thus, the cone of 

tight constraints at  is .

Theorem 23.3.5  Let  be a feasible solution to . Then  is optimal iff  is 

in the cone of tight constraints of . 

Example 23.3.6  Consider the LP  with  and  defined in 

23.3.4. Observe  is in the cone of tight constraints of :

By the theorem above,  is an optimal solution!

Proof for 23.3.5  

If  is in the cone of tight constraints, then  is optimal.  Suppose  is a solution to (P) and let 

 be the indices of tight constraints for , i.e.,  for  and  

for . Suppose  is in the cone of tight constraints at , so that for some , 

. This is equivalent to , where 

Since ,  is feasible for (D). Also note that  only if , which implies the 

CS conditions --  or  -- hold! By Theorem 23.1.1,  are optimal.



If  is optimal, then  is in the cone of tight constraints.  By 23.1.1,  is an optimal solution 

implies there exists  which is a feasible solution to the dual (D) and satisfies the CS conditions 

with . This implies that , , and . Let  be the 

indices of tight constraints for . Then , which in turn implies  is 

in the cone of tight constraints. 
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