Module 4: Duality Theory

CO 250: Introduction to Optimization

David Duan, 2019 Spring

Contents

Lecture 21. Weak Duality

- 21.1 The Shortest Path Problem
- 21.2 Primal Dual Pairs

Lecture 22. Strong Duality

22.1 Strong Duality

Lecture 23. Geometric Optimality

23.0 Recap

- 23.1 Complementary Slackness Special Case
- 23.2 Complementary Slackness General Case
- 23.3 Geometry Cones of Vectors

Lecture 21. Weak Duality

21.1 The Shortest Path Problem

This subsection serves as a motivation for weak duality.

Example 21.1.1 Recall the following from previous lectures.

Shortest path primal LP (P):

$$egin{array}{lll} \min & \sum(c_e x_e: e \in E) \ s.\,t. & \sum(x_e: e \in \delta(U)) \geq 1 \quad (U \subseteq V, s \in U, t
otin U) \ x \geq oldsymbol{0} \end{array}$$

Shortest path dual LP (D):

$$egin{array}{lll} \max & \sum(y_U:s\in U,t
otin U) \ s.\,t. & \sum(y_U:e\in\delta(U))\leq c_e \quad (e\in E) \ & y\geq oldsymbol{0} \end{array}$$

We can rewrite them as $\min\{c^T x : Ax \ge b, x \ge 0\}$ and $\max\{b^T y : A^T y \le c, y \ge 0\}$, where

- c^T contains the costs of edges,
- b = 1,
- A has a row for every s, t-cut $\delta(U)$ and a column for every edge e, and
- $A_{Ue} = 1$ if $e \in \delta(U)$ and 0 otherwise.

Theorem 21.1.3 If x is feasible for (P) and y is feasible for (D), then $b^T y \leq c^T x$. Equivalently, if y is a feasible width assignment and P is an s, t-path, then $\mathbf{1}^T y \leq c(P)$.

21.2 Primal Dual Pairs

Remark 21.2.1 Can we find lower bounds on the optimal value of a general LP?

Observe in the primal-dual pair from 21.1.2,

- Each non-negative variable x_e (i.e., $x_e \ge 0$) in (P) corresponds to a \le -constraint in (D),
- Each \geq -constraint in (P) corresponds to a non-negative variable y_U (i.e., $y_U \geq 0$) in (D).

We see that primal variables \equiv dual constraints and primal constraints \equiv dual variables. It follows that the dual LP is given by

$$egin{array}{lll} \min & b^T y \ s.\,t. & A^T y \ ? \ c & ? \in \{\leq,=,\geq\} \ & y \ ? \ \mathbf{0} & ? \in \{\leq,=,\geq\} \end{array}$$

Proposition 21.2.2 The following table summarizes how constraints and variables in primal and dual LP correspond:

	(P_{max})		(P _{min})	
max subject to	$c^{\top}x$ Ax?b x?0	= constraint \geq constraint	min subject to	$b^{\top}y$ $A^{\top}y?c$ $y?0$

As a remark, besides trivial changes like $x \to y$, max \to min, and $= \to$ free, the tricky part is to remember that (P) \to (D) flips constraint signs and keeps variable signs; (D) \to (P) flips variable signs and keep constraint signs.

Example 21.2.3 We can derive the following based on 21.2.2:

$$\begin{array}{rcl} \max & (1,0,2)x & \min & (3,4)y \\ s.t. & \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} x \stackrel{\leq}{=} \begin{pmatrix} 3 \\ 4 \end{pmatrix} & \Longleftrightarrow & s.t. & \begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \stackrel{\geq}{=} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \\ x_1, x_2 \ge 0, x_3 \text{ free} & y_1 \ge 0, y_2 \text{ free} \\ & \min & d^T y & \max & e^T x \\ s.t. & W^T y \ge e & \Longleftrightarrow & s.t. & Wx \le d \\ & y \ge \mathbf{0} & & x \ge \mathbf{0} \\ & \max & (12, 26, 20)x & \max & (-2, 2, 13)y \\ s.t. & \begin{pmatrix} 1 & 2 & 1 \\ 4 & 6 & 5 \\ 2 & -1 & -3 \end{pmatrix} \stackrel{\geq}{=} \begin{pmatrix} -2 \\ 2 \\ 13 \end{pmatrix} & \iff & s.t. & \begin{pmatrix} 1 & 4 & 2 \\ 2 & 6 & -1 \\ 1 & 5 & -3 \end{pmatrix} \stackrel{\geq}{=} \begin{pmatrix} 12 \\ 26 \\ 20 \end{pmatrix} \\ & x_1 \ge 0, x_2 \text{ free}, x_3 \ge 0 & y_1 \le 0, y_2 \ge 0, y_3 \text{ free} \end{array}$$

Theorem 21.2.4 [Weak Duality] Let (P_{max}) and (P_{min}) be a primal-dual pair.

- If x and y are feasible for the two LPs, then $c^T x \leq b^T y$.
- Moreover, if $c^T x = b^T y$, then x is optimal for (P_{max}) and y is optimal for (P_{min}).

Proof. Let (P) be an arbitrary LP where the goal is to maximize the objective function. Then for some partition R_1, R_2, R_3 of the row indices and some partition C_1, C_2, C_3 of the column indices, we can express (P) and its dual (D) as

max	$c^{\top}x$		min	$b^{\top}y$	
subject to			subject to		
	$\operatorname{row}_i(A)x \le b_i$	$(i\in R_1)$		$\operatorname{col}_j(A)^\top y \ge c_j$	$(j \in C_1)$
	$\operatorname{row}_i(A)x \ge b_i$	$(i\in R_2)$		$\operatorname{col}_j(A)^{T} y \leq c_j$	$(j \in C_2)$
	$\operatorname{row}_i(A)x = b_i$	$(i\in R_3)$		$\operatorname{col}_{j}(A)^{\top} y = c_{j}$	$(j \in C_3)$
	$x_j \ge 0$	$(j\in C_1)$		$y_i \ge 0$	$(i \in R_1)$
	$x_j \leq 0$	$(j\in C_2)$		$y_i \leq 0$	$(i \in R_2)$
	x_j free	$(j\in C_3)$		y_i free	$(i \in R_3).$

Next, we add slack variables s and w and rewrite them as

max subject to	$c^{T}x$		min subject to	$b^{\top}y$	
	Ax + s = b			$A^{\top}y + w = c$	
	$s_i \ge 0$	$(i \in R_1)$		$w_j \leq 0$	$(j \in C_1)$
	$s_i \leq 0$	$(i\in R_2)$		$w_j \ge 0$	$(j \in C_2)$
	$s_i = 0$	$(i\in R_3)$		$w_j = 0$	$(j\in C_3)$
	$x_j \ge 0$	$(j\in C_1)$		$y_i \ge 0$	$(i\in R_1)$
	$x_j \leq 0$	$(j \in C_2)$		$y_i \leq 0$	$(i\in R_2)$
	x_j free	$(j\in C_3).$		y_i free	$(i\in R_3).$

Suppose \bar{x} and \bar{y} are feasible for the original primal and dual LPs. Let $\bar{s} = b - A\bar{x}$ and $\bar{w} = c - A^T \bar{y}$. Then $\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s}) = (\bar{y}^T A)\bar{x} + \bar{y}^T \bar{s} = (c - \bar{w})^T \bar{x} + \bar{y}^T s = c^T \bar{x} - \bar{w}^T \bar{x} + \bar{y}^T \bar{s}$, where the middle equality follows from the fact that $A^T \bar{y} + \bar{w} = c$ or equivalently $\bar{y}^T A = (c - \bar{w})^T$. Hence, to prove that $b^T \bar{y} \ge c^T \bar{x}$ it suffices to show the following:

•
$$\bar{w}^T \bar{x} = \sum_{j \in C_1} \underbrace{\bar{w}_j \quad \bar{x}_j}_{\leq 0 \quad \geq 0} + \sum_{j \in C_2} \underbrace{\bar{w}_j \quad \bar{x}_j}_{\geq 0 \quad \leq 0} + \sum_{j \in C_3} \underbrace{\bar{w}_j \quad \bar{x}_j}_{= 0} \leq 0$$
, and
• $\bar{y}^T \bar{s} = \sum_{i \in R_1} \underbrace{\bar{s}_i \quad \bar{y}_i}_{\geq 0 \quad \geq 0} + \sum_{i \in R_2} \underbrace{\bar{s}_i \quad \bar{y}_i}_{\leq 0 \quad \leq 0} + \sum_{i \in R_3} \underbrace{\bar{s}_i \quad \bar{y}_i}_{= 0} \geq 0$. \Box

Corollary 21.2.5 We close this section by noting the following consequences of the Weak Duality Theorem and the Fundamental Theorem of LP:

- If (P_{max}) is unbounded, then (P_{min}) is infeasible.
- If (P_{min}) is unbounded, then (P_{max}) is infeasible.
- If both are feasible, then both have optimal solutions.

Proof. (1) Suppose for a contradiction that y is feasible for (P_{\min}) . By weak duality, $c^T x \leq b^T y$ for all x feasible for (P_{\max}) and hence the latter is bounded. (2) Similar to above. (3) By Weak Duality, both are bounded. By the Fundamental Theorem of LP, both have optimal solutions. \Box

Lecture 22. Strong Duality

22.1 Strong Duality

Theorem 22.1.1 [Strong Duality] If (P_{max}) has an optimal solution \bar{x} , then (P_{min}) has an optimal solution \bar{y} such that $c^T \bar{x} = b^T \bar{y}$.

Proof. We prove a special case of the Strong Duality Theorem where (P) is in SEF:

- (P): $\max\{c^T x : Ax = b, x \ge 0\}.$
- (D): $\min\{b^T y : A^T y \ge c\}$. (Recall Ax = b in (P) implies all variables are free in (D).)

Suppose (P) has an optimal solution. Then the 2-Phase Simplex terminates with an optimal basis B. We can rewrite (P) for basis B to obtain (P'):

$$egin{array}{ll} \max & z = ar{y}^T b + ar{c}^T x \ s.\,t. & x_B + A_B^{-1} A_N x_N = A_B^{-1} b \ & x \geq oldsymbol{0} \end{array}$$

where $\bar{y} = A_B^{-T} c_B$ and $\bar{c}^T = c^T - \bar{y}^T A$. (For more information, review the notes from Module 2 on canonical form and Simplex.)

Let \bar{x} be the basic solution for B, i.e., $\bar{x}_N = \mathbf{0}$ and $\bar{x}_B = A_B^{-1}b$.

Since (P) and (P') are equivalent, for any feasible solution the values in (P) and (P') are the same. Moreover, (P') also has the property that $\bar{c}_B = 0$. Hence,

$$z = c^T ar{x} = ar{y}^T b + ar{c}^T ar{x} = b^T ar{y} + ar{c}_N^T ar{x}_N + ar{c}_B^T ar{x}_B = b^T ar{y}.$$

Since Simplex terminated, we must have $\bar{c} \leq \mathbf{0}$, i.e., $c^T - \bar{y}^T A \leq \mathbf{0}$, or equivalently, $A^T \bar{y} \geq c$. It follows that \bar{y} is feasible for (D). Since $c^T \bar{x} = b^T \bar{y}$, we know from Weak Duality that \bar{x} and \bar{y} are optimal solutions for (P) and (D), respectively. \Box

Corollary 22.1.2 Alternative statements for Strong Duality:

- 1. Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.
- 2. Let (P) and (D) be a primal-dual pair of LPs. If both are feasible, then both have optimal solutions of the same objective value.

Theorem 22.1.3 [Possible Outcomes]

$(D) \setminus (P)$	Optimal	Unbounded	Infeasible
Optimal	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

Lecture 23. Geometric Optimality

23.0 Recap

In the following section, unless otherwise specified, we define

- The primal LP (P) := $\max\{c^T x : Ax \le b\}.$
- The dual LP (D) := $\min\{b^T y : A^T y = c, y \ge \mathbf{0}\}.$

Theorem [Strong Duality] Given (P) and (D), if (P) has an optimal solution, then (D) has one and their objective values equal.

Proposition (Module 2) The feasible region of an LP is a polyhedron and basic solutions correspond to extreme points of this polyhedron.

From Module 2 and Strong Duality, Simplex computes a basic solution (if exists) and a certificate of optimality. In this lecture, we will investigate these certificate using geometry.

23.1 Complementary Slackness - Special Case

Theorem 23.1.1 Let \bar{x} and \bar{y} be feasible for (P) and (D). Then \bar{x} and \bar{y} are optimal iff for every row index i, $\bar{y}_i = 0$ or the *i*th constraint of (P) is *tight* for \bar{x} .

Proof. We can rewrite (P) using slack variables $s: (P') := \max\{c^T x : Ax + s = b, s \ge 0\}$. Then, if (x, s) is feasible for (P'), x is feasible for (P), as the \ge is satisfied. Conversely, if x is feasible for (P), (x, b - Ax) is feasible for (P'). Suppose \bar{x} is feasible for (P) and \bar{y} is feasible for (D). Then $(\bar{x}, b - A\bar{x})$ is feasible for (P'). Define $\bar{s} = b - A\bar{x}$.

From Weak Duality, $\bar{y}^T b = \bar{y}^T (A\bar{x} + \bar{s}) = (\bar{y}^T A\bar{x}) + \bar{y}^T \bar{s} = c^T \bar{x} + \bar{y}^T \bar{s}$. From Strong Duality, \bar{x}, \bar{y} both optimal if and only if $c^T \bar{x} = \bar{y}^T b$, or equivalently, $\bar{y}^T \bar{s} = 0$. That is, $\bar{y}^T \bar{s} = \sum_{i=1}^m \bar{y}_1 \bar{s}_i = 0$ (\diamond). By feasibility, $\bar{x} \ge \mathbf{0}$ and $\bar{s} \ge \mathbf{0}$, so \diamond holds iff for every $1 \le i \le m$, at least one of $\{\bar{y}_i, \bar{s}_i\}$ equals zero. Recall a constraint is tight when it is satisfied with equality. Therefore, we can rephrase this equivalently as $\bar{y}_i = \mathbf{0}$ or *i*th primal constraint is tight. \Box

Example 23.1.2 Consider the following LPs ((P) on the left and (D) on the right):

We claim that $\bar{x} = (1, -1, 1)^T$ and $\bar{y} = (0, 2, 1)^T$ are optimal:

- 1. $\bar{y}_1 = 0$ (yes!) or $(1, 2, -1)\bar{x} = 2$.
- 2. $\bar{y}_2 = 0$ or $(3, 1, 2)\bar{x} = 4$ (yes!).
- 3. $\bar{y}_3 = 0$ or $(-1, 1, 1)\bar{x} = -1$ (yes!).

23.2 Complementary Slackness - General Case

Theorem 23.2.1 Suppose (P_{max}) and (P_{min}) are a pair of primal and dual LPs according to the LP P-D conversion table (Lecture 21), with feasible solutions \bar{x} and \bar{y} . We say they satisfy the *complementary slackness conditions* if

- For all variables x_j of (P_{max}) , $\bar{x}_j = 0$ or the *j*th constraint of (P_{min}) is satisfied with equality for \bar{y} .
- For all variables y_i of (P_{\min}) , $\bar{y}_i = 0$ or the *i*th constraint of (P_{\max}) is satisfied with equality for \bar{x} .

Note that the "or"s here are inclusive, i.e., at least one of the two conditions needs to be true.

Let (P) and (D) be an arbitrary primal-dual pair of LPs, and let \bar{x} and \bar{y} be feasible solutions. Then these solutions are optimal if the complementary slackness conditions hold (see above).

Example 23.2.2 Consider the following LPs ((P) on the left and (D) on the right):

$$egin{array}{lll} \max & (-2,-1,0)x & \min & (5,7)y \ s.\,t. & egin{pmatrix} 1 & 3 & 2 \ -1 & 4 & 2 \end{pmatrix} x \stackrel{\geq}{\leq} egin{pmatrix} 5 \ 7 \end{pmatrix} & \iff & s.\,t. & egin{pmatrix} 1 & -1 \ 3 & 4 \ 2 & 2 \end{pmatrix} y \stackrel{\leq}{\geq} egin{pmatrix} -2 \ -1 \ 3 & 4 \ 2 & 2 \end{pmatrix} y \stackrel{\geq}{=} egin{pmatrix} -2 \ -1 \ 0 \end{pmatrix} \ x_1 \leq 0, x_2 \geq 0 & y_1 < 0, y_2 > 0 \end{array}$$

We claim that $\bar{x} = (-1, 0, 3)^T$ and $\bar{y} = (-1, 1)^T$ are optimal:

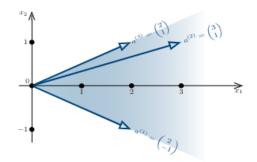
- 1. Primal conditions:
 - a. First (D) constraint is tight for \bar{y} .
 - b. $\bar{x}_2 = 0$.
 - c. Third (D) constraint is tight for \bar{y} .
- 2. Dual conditions:
 - a. First (P) constraint is tight for \bar{x} .
 - b. Second (P) constraint is tight for \bar{x} .

By Theorem 23.2.1, \bar{x} and \bar{y} are optimal.

23.3 Geometry - Cones of Vectors

Definition 23.3.1 Let $a^{(1)}, \ldots, a^{(k)}$ be vectors in \mathbb{R}^n . The cone generated by these vectors is given by $C = \{\lambda_1 a^{(1)} + \lambda_2 a^{(2)} + \cdots + \lambda_k a^{(k)} : \lambda \ge \mathbf{0}\}.$

Example 23.3.2 The cone generated by $a^{(1)}, a^{(2)}, a^{(3)}$ is the blue-shaded area:



Definition 23.3.3 Let $P = \{x : Ax \leq b\}$ be a polyhedron, $\bar{x} \in P$, and $J(\bar{x})$ be the row indices of A corresponding to the tight constraints of $Ax \leq b$ for \bar{x} , i.e., $i \in J(\bar{x}) \Leftrightarrow \operatorname{row}_i(A)\bar{x} = b_i$. We define the **cone of tight constraints** for \bar{x} to be the cone C generated by the rows of Acorresponding to the tight constraints, i.e., $C = \{\sum_{i \in J(\bar{x})} \lambda_i \operatorname{row}_i(A) : \lambda_i \geq \mathbf{0}\}.$

Example 23.3.4 Consider the following polyhedron:

$$P=\left\{x\in \mathbb{R}^2: egin{pmatrix} 1&0\ 1&1\ 0&1 \end{pmatrix}x\leq egin{pmatrix} 2\3\2 \end{pmatrix}
ight\}$$

Consider $\bar{x} = (2,1)^T$. Observe $\bar{x} \in P$ and the first two rows are tight for \bar{x} . Thus, the cone of tight constraints at \bar{x} is $\{\lambda_1(1,0)^T + \lambda_2(1,1)^T : \lambda_1, \lambda_2 \ge 0\}$.

Theorem 23.3.5 Let \bar{x} be a feasible solution to $\max\{c^T x : Ax \leq b\}$. Then \bar{x} is optimal iff c is in the cone of tight constraints of x.

Example 23.3.6 Consider the LP $\max\{(3/2, 1/2)x : x \in P\}$ with $\bar{x} = (2, 1)^T$ and P defined in 23.3.4. Observe $(3/2, 1/2)^T$ is in the cone of tight constraints of x:

$$\binom{3/2}{1/2} = 1 \cdot \binom{1}{0} + 1/2 \cdot \binom{1}{1}.$$

By the theorem above, \bar{x} is an optimal solution!

Proof for 23.3.5

$$(P): \max\{c^Tx: Ax\leq b\}, \quad (D): \min\{b^Ty: A^Ty=c, y\geq \mathbf{0}\}.$$

If c is in the cone of tight constraints, then \bar{x} is optimal. Suppose \bar{x} is a solution to (P) and let $J(\bar{x})$ be the indices of tight constraints for \bar{x} , i.e., $\operatorname{row}_i(A)\bar{x} = b_i$ for $i \in J(\bar{x})$ and $\operatorname{row}_i(A)\bar{x} < b_i$ for $i \notin J(\bar{x})$. Suppose c is in the cone of tight constraints at \bar{x} , so that for some $\lambda \ge \mathbf{0}$, $c = \sum_{i \in J(\bar{x})} \lambda_i \operatorname{row}_i(A)^T$. This is equivalent to $A^T \bar{y} = c$, where

$${ar y}_i = egin{cases} \lambda_i: i \in J(ar x) \ 0: ext{otherwise} \end{cases}$$

Since $\lambda \ge 0$, \bar{y} is feasible for (D). Also note that $\bar{y}_i > 0$ only if $\operatorname{row}_i(A)\bar{x} = b_i$, which implies the CS conditions -- $y_i = 0$ or $\operatorname{row}_i(A)\bar{x} = b_i$ -- hold! By Theorem 23.1.1, (\bar{x}, \bar{y}) are optimal.

If \bar{x} is optimal, then c is in the cone of tight constraints. By 23.1.1, \bar{x} is an optimal solution implies there exists \bar{y} which is a feasible solution to the dual (D) and satisfies the CS conditions with \bar{x} . This implies that $\bar{y} \ge 0$, $A^T y = c$, and $\bar{y}_i > 0 \implies \operatorname{row}_i(A)\bar{x} = b_i$. Let $J(\bar{x})$ be the indices of tight constraints for \bar{x} . Then $c = A^T y = \sum_{i \in J(\bar{x})} \bar{y}_i \operatorname{row}_i(A)^T$, which in turn implies c is in the cone of tight constraints. \Box