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Lecture 26. Convexity  

26.1 Nonlinear Programs  

Definition 26.1.1  A nonlinear program (NLP) is a program of the form

where  and  for .

Example 26.1.2  

Remark 26.1.3  We may assume  is a linear function, i.e., . 

Remark 26.1.4  We can rewrite (P) as 

The optimal solution to (Q) will have . 

Remark 26.1.5  Recall . Thus NLPs generalize binary IPs:

Remark 26.1.6  Recall . Thus NLPs generalize pure IPs:

26.2 Convex Sets  

Definition 26.2.1  Consider (P) . We call  a local optimum if there 

exists  such that
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Proposition 26.2.2  Consider (P) . If  is convex and  is a local optimum, 

then  is optimal.

Proof.  Let  be the local optimum. Suppose to the contrary that  with . Let 

 for  small. Since  is convex, . For  small, , then 

This contradicts the optimality of .  

26.3 Convex Functions  

Definition 26.3.1  A function  is convex if for all , 

 for all .

Proposition 26.3.2  Let  be a convex function and . It follows that 

 is a convex set. 

Proof.  Let  and . Let . We want to show that , i.e., 

:

Proposition 26.3.3  If all constraint functions  are convex for (P), then the feasible region of 

(P) is convex.

Proof.  Let . By Proposition 26.3.2,  is convex. The feasible region of (P) is 

. Since the intersection of convex sets is convex, the result follows.  

26.4 Convex Functions vs. Convex Sets  

Definition 26.4.1  Let  be a function. The epigraph of  is given by

Proposition 26.4.2  Let  be a function. It follows that  is convex if and only if 

 is a convex set.
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Proof. Suppose  is convex. Pick  and . Observe 

 as  and . Thus 

.

The other direction is left for exercise. 
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Lecture 27. KKT Theorem  

27.1 Subgradient  

Definition 27.1.1  Let  be a convex function and . Then,  is a 

subgradient of  at  if  for all .

Remark 27.1.2  There are three key points in this definition:

 is affine: Observe  where  is a constant vector.

: The affine function  touches the convex function  at .

 is a lower bound for : We restrict that for all , .

Remark 27.1.3  Remarks on subgradients and subdifferentials.

The subgradient generalize the derivative to convex functions which are not necessarily 

differentiable. They arise in convex analysis, the study of convex functions, often in 

connection to convex optimization. 

Let  be a real-valued function defined on an open interval of the real line. Such a 

function need not be differentiable at all points. For example, the absolute value function 

 is non-differentiable when . However, for any  in the domain of the 

function one can draw a line which goes through the point  and which is 

everywhere either touching or below the graph of . The slope of such a line is called a 

subgradient or subderivative (because the line is under the graph of ).

Rigorously, a subderivative of a function  at a point  open is  such 

that  for all . We can show that the set of subderivatives at 

 for a convex function is a non-empty closed interval , where  and  are one-sided 

limits as , which are guaranteed to exist and satisfy . The set  of all 

subderivatives is called the subdifferential of the function  at . Since  is convex, if its 

subdifferential at  contains exactly one subderivative, then  is differentiable at . 

Putting together, a convex function  is differentiable at  if and only if the 

subdifferential is made up of only one point, which is the derivative at .

A point  is a global minimum of a convex function  if and only if zero is contained in the 

subdifferential, that is, one may draw a horizontal "subtangent line" to the graph of  at 
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. This is a generalization of the fact that the derivative of a function 

differentiable at a local minimum is zero.

The concepts of subderivative and subdifferential can be generalized to functions of several 

variables. If  is a real-valued convex function defined on a convex open set in the 

Euclidean space , a vector  in the space is called a subgradient at  if for any 

 one has , where the dot denotes the dot product. The set 

of all subgradients at  is called the subdifferential at  and is denoted . The 

subdifferential is always a non-empty convex compact set. 

Example 27.1.4  Consider  where  and . We claim that 

 is a subgradient of  at . 

Evaluate :

Check  for all : 

27.2 Supporting Halfspace  

Definition 27.2.1  Let  be a convex set and . The halfspace  is 

supporting  at  if 

1.  and 

2. . That is,  is on the boundary of .

Remark 27.2.2  Remarks on halfspaces.

A halfspace is either of the two parts into which a plane divides the 3D Euclidean space. 

More generally, it is either of the two parts into which a hyperplane divides an affine plane. 

That is, the points that are not incident to the hyperplane are partitioned into two convex 

sets (i.e., half-spaces), such that any subspace connecting a point in one set to a point in 

the other must intersect the hyperplane. 

A 2D halfspace is called halfplane; a 1D halfspace is a ray.
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An open halfspace is specified by ; a closed halfspace is specified by 

. Here, one assumes that not all  are zero. 

The epigraph of a real-valued function  is a halfspace if and only if  is a real valued-affine 

function.

Remark 27.2.3.  Remarks on support hyperplane.

A supporting hyperplane of a set  in Euclidean space  is a hyperplane that has both of 

the following properties:

1.  is entirely contained in one of the two closed halfspaces bounded by the hyperplane.

2.  has at least one boundary point on the hyperplane. 

In 1D,  is a segment,  is a ray, and they have one endpoint together.

Proposition 27.2.4  

Let  be convex and let  where . 

Let  be a subgradient of  at .

Let .

Let .

Then,  is a supporting halfspace of  at .

Remark 27.2.5  We make the following observations:

1. By 26.2.2, since  is a convex,  is a convex set.

2.  is a halfspace as  is an affine function.

3. , thus,  is on the boundary of .

Proof.  

1. : Let , i.e., . By definition of a subgradient, we know that . 

It follows that . Hence . 

2. : .  

Example 27.2.6  Given , , . 



The subgradient  at  is . Let 

. We see that  is the supporting halfspace of . 

27.3 LP Relaxation of NLP  

Remark 27.3.1  We can use this proposition to construct relaxations of NLPs. Suppose we are 

given NLP . Let  be a feasible solution,  be convex, 

, and  be a subgradient for  at . If we replace the nonlinear constraint  with the 

linear constraint , we get a relaxation.

This motivates the following proposition.

Proposition 27.3.2  Given NLP , suppose  are all 

convex,  is a feasible solution,  for all  and  is a subgradient for  at  for all 

. If , then  is optimal.

Proof.  Rewrite the constraints as  and we get a relaxation 

. From previous theorem,  is optimal for the relaxation if 

. This means that  is also optimal for the NLP.  

Example 27.3.3  
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Observe  is feasible, ,  is a subgradient for  at ,  is a 

subgradient for  at . Since , we get  optimal. 

27.4 KKT  

Proposition 27.4.1  Let  be a convex function and let . If the gradient  

of  exists at , then it is a subgradient. 

Definition 27.4.2  A feasible solution to  is a Slater point of  if 

 for all , i.e., every inequality is satisfied strictly by .

Theorem 27.4.3 [KKT]  Given NLP , if

1.  is convex for all ,

2. There exists a Slater point,

3.  is a feasible solution,

4.  is the set of indices  for which , and

5. For all  there exists a gradient  of  at .

Then  is optimal if and only if . 

Proof.  We proved the  direction in 27.3.5. The other direction is omitted. 
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