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Undecidability

Terminology

A decision problem is a question with a yes or no answer on a given input. We say a decision
problem is decidable if and only if there exists an algorithm to solve it. Otherwise, we say that
the decision problem is undecidable.

The Halting Problem

Input A string P and a string I. We think of P as a program.

Output True if P halts on I and False if P goes into an infinite loop on I.

Turing’s Theorem There is no program to solve the Halting Problem.

Proof Assume towards a contradiction there exists a program Halt(P, I) that solves the halting
problem, i.e. Halt(P, I) returns True if and only if P halts on I. Given this program for the
halting problem, we could construct the following algorithm Z

Program (String X)

If Halt(X, X) then

Loop Forever

Else Halt.

End.

Then if Z is run with Z as input:

Case 1 Program Z halts on Z, meaning the if guard Halt(Z, Z) fails, Z does not halt on Z.
Contradiction.

Case 2 Program Z runs forever on Z, meaning the if guard Halt(Z, Z) holds, Z does halt on Z.
Contradiction.

Hence the program Halt(P, I) cannot exist. �

Reduction and Consequences

A typical way to prove that a problem is undecidable is to use reduction. If a problem can be
reduced to the halting problem, it is undecidable.

A problem A is reducible to problem B if a solution to B could be used to solve A. If A has
been proven to be an undecidable problem, to prove that a new problem B is undecidable, it is
sufficient to show that a solution B could be used to decide A. This yields a contradiction since it
was already proven that A is undecidable, and therefore, B is also undecidable.



2018-Spring-2A David Duan

Proving Undecidability

Proof Template

Solution Assume towards a contradiction there exists an algorithm B that solves this problem.

/* Suppose B solves the given problem */

program B(program X) {
...

}

/* Show that A(P, I) is equivalent to Halt(P, I) */

program A (program P, input I) {
program P’ ( ) {

return P(I);

}
return B(P’);

}

Halting-No-Input Problem

Problem Given a program P that requires no input, does P halt?

Solution Assume towards a contradiction there exists an algorithm B that solves this problem.

/* Suppose B solves the halting-no-input problem */

program B(program X) {
if (Halt(X))

return True;

}

/* Show that A(P, I) is equivalent to Halt(P, I) */

program A (program P, input I) {
program P’ ( ) {

return P(I);

}
return B(P’);

}

A returns True iff B(P’) returns True iff P’ halts iff P(I) halts. Hence A(P, I) solves the halting
problem. By Turing’s theorem, such A should not exists. Contradiction. Hence B does not exist.
The problem is undecidable. �
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Both-Halt Problem

Problem Given two programs P1 and P2 that take no input, do both programs halt?

program B(program X1, program X2) {
if (Halt(X1) && Halt(X2))

return True;

}

program A (program P, input I) {
program P’ ( ) {

return P(I);

}
return B(P’, P’);

}

A returns True iff B(P’, P’) returns True iff P’ halts iff P(I) halts. Hence A(P, I) solves the
halting problem. By Turing’s theorem, such A should not exists. Contradiction. Hence B does not
exist. The problem is undecidable. �

Program-agreement Problem

Problem Given two programs P1 and P2, do they agree on all inputs? We say that two problems
agree on all input if and only if, for every input , either they both run forever, or they both halt
and return the same value.

/* Suppose B solves the program-agreement problem */

program B(program X1, program X2) {
if ((!Halt(X1) && !Halt(X2)) || (forall x: X1(x) == X2(x)))

return True;

}

/* We shall show A solves the halting problem */

program A (program P, input I) {
program P1 (program ) { return P(I); }
program P2 (program ) { return True; }
return B(P1, P2);

}

A returns True iff B(P1, P2) returns True iff both runs forever or both returns the same value for
all inputs. As P2 halts and returns True, P1 must halt as well. P1 halts iff P(I) halts. Hence A(P,

I) solves the halting problem. By Turing’s theorem, such A should not exists. Contradiction.
Hence B does not exist. The problem is undecidable. �
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Hoare-triple Total Correctness Problem

Problem Given a hoare triple, is the triple satisfied under total correctness?

/* Suppose B solves the hoare-triple total correctness problem */

program B(Hoare<P, C, Q>) {
if (Halt(C) && (Hoare<P, C, Q> is valid))

return True;

}

/* We shall show A solves the halting problem */

program A (program P, input I) {
program P’ (program ) { return P(I); }
return B(Hoare<true, P’, true>);

}

A returns True iff B(Hoare<true, P’, true>) returns True iff P’ halts (and the triple is valid)
iff P(I) halts. Hence A(P, I) solves the halting problem. By Turing’s theorem, such A should not
exists. Contradiction. Hence B does not exist. The problem is undecidable. �

Hoare-triple Partial Correctness Problem

Problem Given a hoare triple, is the triple satisfied under partial correctness?

/* Suppose B solves the hoare-triple partial-correctness problem */

program B(Hoare<P, C, Q>) {
if (!Halt(C) || (Hoare<P, C, Q> is valid))

return True;

}

/* We shall show A solves the halting problem */

program A (program P, input I) {
program P’ (program ) { return P(I); }
return (!B(Hoare<true, P’, false>));

}

A returns True iff B(Hoare<true, P’, true>) returns False iff P’ halts and the triple is invalid.
If P’ halts (i.e. P(I) halts), as the postcondition is never satisfied so the triple is always invalid, A
returns True. If P’ does not halt (i.e. P(I) does not halt), B returns True, A returns False. Hence
A(P, I) solves the halting problem. By Turing’s theorem, such A should not exists. Contradiction.
Hence B does not exist. The problem is undecidable. �


