
2018-Spring-2A CS251: Memory David Duan

1 Introduction to Memory

The principle of locality states that programs access a relatively
small portion of their address space at any instant of time.

• The principle of temporal locality states that if a data
location is reference then it will tend to be referenced again
soon.

• The principle of spatial locality states that if a data loca-
tion is referenced, data locations with nearby addresses will
tend to be referenced soon.

Speed Size Cost Technology
Fast Small High SRAM

Medium DRAM
Slow Big Low Magnetic Disk

We take advantage of the principle of locality by implementing
the memory of a computer as a memory hierarchy, which con-
sists of multiple levels of memory with different speeds and sizes.
Memory hierarchies take advantage of temporal locality by keep-
ing more recently accessed data items closer to the processor and
spatial locality by moving blocks consisting of multiple contiguous
words in memory to upper levels of the hierarchy.

block The minimum unit of information that can be either
present or missing in a cache.

hit time The time required to access a level of the memory hier-
archy, including the time needed to determine whether the
access is a hit or a miss.

miss penalty The time required to fetch a block into a level of
the memory hierarchy from the lower level, including the
time to access the block, transmit it from one level to the
other, insert it in the level that experienced the miss, and
then pass the block to the requestor.

2 The Basics of Caches

2.1 Direct-mapped Cache

Each memory location is mapped directly to exactly one location
in the cache:

(Block address) modulo (Number of blocks in the cache)

Each address is divided into a tag field, which is used to compare
with the value of the tag field of the cache, and a cache index,
which is used to select the block. In addition, there is a valid bit
indicating whether the cached data is valid.

2.2 Fully Associative Cache

Recall that in a direct-mapped scheme a block can go to exactly
one place. The fully associative scheme is the other extreme,
where a block can be placed in any location in the cache. To find
a given block in a fully associative cache, all the entries in the
cache must be searched. To make the search practical, it is done
in parallel with a comparator associated with each cache entry.
These comparators significantly increase the hardware cost, effec-
tively making fully associative placement practical only for caches
with small numbers of blocks.

2.3 Set Associative Cache

The middle range of designs between direct mapped and fully asso-
ciative is called set associative. In a set-associative cache, there
are a fixed number of locations where each block can be placed.
A set-associative cache with n locations for a block is called an
n-way set-associative cache. An n-way set-associative cache con-
sists of a number of sets, each of which consists of n blocks. Each
block in the memory maps to a unique set. Thus, a set-associative
placement combines direct-mapped placement and fully associa-
tive placement: a block is directly mapped into a set, and then all
the blocks in the set are searched for a match. In a set-associative
cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)

2.4 Choosing Which Block to Replace

The most commonly used scheme is least recently used (LRU),
in which the block replaced is the one that has been unused for
the longest time.

2.5 Average Memory Access Time

AMAT = Time for a hit + Miss rate × Miss penalty

Figure 2.1 A direct-mapped cache holding 1024 words or 4 KiB

Figure 2.3 An eight-block cache configured as direct mapped,

two-way set associative, four-way set associative, and fully

associative

Figure 2.4 The location of a memory block whose address is 12 in

a cache with eight blocks varies for direct-mapped, set-associative,

and fully assoctiave placement

Figure 2.2 A 4-way set-associative cache requires four

comparators and a 4-to-1 MUX

2.6 Handling Cache Misses

When a request for data from the cache that cannot be filled be-
cause the data is not present in the cache, the control unit must
detect the miss and process it by fetching the requested data from
a lower-level cache. This work is done in collaboration with the
processor control unit with a separate controller that initiates the
memory access and refills the cache. For a cache miss, we can stall
the entire processor, essentially freezing the contents of the tempo-
rary and programmer-visible registers, while we wait for memory.

1. Send the original PC value (current PC - 4) to the memory.

2. Instruct main memory to perform a read and wait for the
memory to complete its access.

3. Write the cache entry, putting the data from memory in the
data portion of the entry, writing the upper bits of the ad-
dress (from the ALU) into the tag field, and turn the valid
bit on.

4. Resume the instruction execution at the first step, which will
fetch the instruction, this time finding it in the cache.

2.7 Handling Writes

Suppose on a store instruction, we wrote the data into only the
data cache without changing the main memory, then after the
write into the cache, memory would have a different value from
that in the cache. In such a case, the cache and memory are said
to be inconsistent. The simplest way to keep the main memory
and the cache consistent is always to write the data into both the
memory and the cache. This scheme is called write-through.
The alternative is a scheme called write-back. When a write
occurs, the new value is written only to the block in cache. The
modified block is written back to the lower level of the hierarchy
when it is replaced. This improves performance but is harder to
implement.

2018-Spring-2A CS251: Memory David Duan

2.8 Problem Solving: Calculating Clock Cycle

MIPS Instructions

112 addi $1, $0, 100

116 sub $4, $2, $6

120 addi $2, $0, 0

124 lw $5, 0($4)

128 add $2, $5, $2

132 addi $4, $4, 4

136 subi $1, $1, 5

140 bne $1, $0, -5

144 sll $0, $0, 0

C Translation

$1 = 100; // while guard

$4 = $2 - $6; // array 1st

$2 = 0; // sum counter

while ($1 != 0) {
$5 = M[$4]; // load elem

$2 += $5; // update sum

$4 += 4; // update arr ptr

$1 -= 5; // update guard

}

Assumptions:

1. Forwarding is implemented (so ALU instructions are safe)

2. Flushing is implemented (1 stall for each load-use hazard)

3. Pipeline alreadying running (so no pipeline start-up time)

4. Branching in ID stage (1 stall for each branch data hazard)

5. Block size = 4 words (load 4 words into cache each time)

6. Cache begins initially empty (all valid bits are off)

7. Assume once something (data or instruction) is in cache it
does not get kicked out of cache

Three Components of the Running Time

1. Pipeline (read CS251: Processor)

2. Instruction Cache Misses

3. Data Cache Misses

Pipeline

• Three instructions before the loop (112-120).

• Loop runs 20 times; 8 instructions each iteration:

– Five instructions inside the loop (124-140).

– Load-use hazard requires 1 stall (124-128).

– Branch data hazard requires 1 stall (136-140).

– Branch control hazard requires 1 stall (144 nop).

• Hence the total running time is 3 + 8 · 20 = 163.

Instruction Cache Misses

• Examine the first address: is this aligned to the beginning
of a block? The block size is 4 and addresses are increments
of 4, so is the first address multiple of 4× 4 = 16? Yes.

• The block size is 4 implies each time we make an request,
3 additional (consecutive) words will be brought into cache.
We have 9 instructions in total and 112 is a multiple of 16,
so we need to fetch d9/4e = 3 times.

• It takes 104cc to fetch 4 words from RAM. Thus the overall
running time for instruction cache misses is 3× 104 = 312.

Data Cache Misses

• Same ideas from instruction cache misses apply here. More-
over, assume data memory accesses are aligned to the first
word in the block.

• Recall this program loops over 20 elements of an array and
calculate the sum; each array element is brought into cache
for use by lw at line 124.

• Since block size is 4 and the data access are aligned, we
need to fetch 20/4 = 5 times in order to get all 20 elements.
Therefore, the overall running time for data cache misses is
5× 104 = 520.

Conclusion

• Hence, the total running time when the block size is 4 is
520 + 163 + 312 = 995.

• Additionally, if the block size is 2, instruction cache misses
takes d9/2e × 102 = 510 and data cache misses take
10× 102 = 1020. The total number of clock cycle needed is
163 + 510 + 1020 = 1693.

Other Possible Questions

• No flushing; use rearrangement (remove nops if possible)

• No forwarding (ALU instructions now cause data hazards)

• Branching in MEM (3 stalls for branch decision instead of 1)

• Pipeline not already running (requires start-up time = 4)

• Cache not initially empty (less fetch from RAM to cache)

• Varying block size (e.g. block size from 4 to 2)

• Varying memory access time (e.g. 102 instead of 104)

Remark on Load vs. Data Cache Miss

• Data cache is also accessed and modified through sw.

• If block size is greater than 1, on a cache miss, we need to
first fetch the block from RAM.

• If block size is 1, we do not need to load data from RAM;
modifying cache directly is enough.

3 Virtual Memory

3.1 Overview

Just as caches provide fast access to recently used portions of a
program’s code and data, the technique of virtual memory, such
that the main memory acts as a ”cache” for the secondary stor-
age, allows efficient and safe sharing of memory among multiple
programs (e.g. for cloud computing) and removes the size limit of
main memory. To ensure that a program can only read and write
the portions of memory that have been assigned to it, we would
like to compile each program into its own address space – a sepa-
rate range of memory locations accessible only to this program.

A virtual memory block is called a page; a virtual memory miss
is called a page fault. With virtual memory, the processor pro-
duces a virtual address that is translated by a combination of
hardware and software to a physical address, which in turn can
be used to access main memory. This process is called address
mapping or address translation.

3.2 Address Translation

In virtual memory, the address is broken into a virtual page
number and a page offset. The physical page number consti-
tutes the upper portion of the physical address, while the page
offset, which is not changed, constitutes the lower portion. The
number of bits in the page offset field determines the page size.
The number of pages addressable with the virtual address (length
of VPN) need not match the number of pages addressable with
the physical address (length of PPN), thus you can have a large
number of virtual pages and create an illusion of an essentially
unbounded amount of virtual memory.

3.3 Page Table

The page table contains the virtual to physical address transla-
tions in a virtual memory system. The table, which itself is stored
in RAM, is typically indexed by the virtual page number; each en-
try in the table contains the physical page number for that virtual
page if the page is currently in memory.

The page table, together with the PC and the registers, specifies
the state of the program. To allow another program to use the
processor, we must save this state. Later, after restoring this state,
the program can continue execution. We often refer to this state
as a process; it is considered active when it is in possession of the
processor; otherwise, it is considered inactive. The OS can make
a process active by loading the process’s state, including the PC,
which will initiate execution at the value of the saved PC.

The process’s address space, and hence all the data it can access
in memory, is defined by its page table, which resides in RAM.
Rather than save the entire page table, the OS simply loads the
page table register to point to the page table of the process
it wants to make active. Each process has its own page table,
since different processes use the same virtual addresses. The OS
is responsible for allocating the physical memory and updating
the table tables, so that the virtual address spaces of different
processes do not collide.

• The page table register leads us to this page table.

• The valid bit indicates whether the data of this entry is valid.

• The 12-bit page offset stays the same after translation.

• Each 20-bit VPN is mapped to an 18-bit PPN in the table.

• Given a VA, we go to the page table pointed to by PTR and
look up the 20-bit VPN. If the entry exists and the valid bit
is on, we concatenate the corresponding PPN with the page
offset to produce PA.

2018-Spring-2A CS251: Memory David Duan

3.4 Page Faults

If the valid bit for a virtual page is off, or the entry for that VA
does not exist in the page table, a page fault occurs; the OS must
be given control. The OS also creates a data structure that tracks
which processes and which virtual addreses use each physical page.
When a page fault occurs, if all the pages in main memory are in
use, the OS must choose a page to replace. Using the LRU scheme,
the replace pages are written to swap space, the space on the disk
reserved for the full virtual memory space of a process.

Implementing a completely accurate LRU scheme is too expensive,
thus most OS approximate LRU with a reference bit, which is
set whenever a page is accessed. The OS periodically clears the
reference bit and later records them so it can determines which
pages were used during a particular time period. With this usage
info, the OS can select a page that is among the least recently
referenced to be replaced.

3.5 Translation-Lookaside Buffer

Since the page tables are stored in RAM, each memory access by
a program can take at least twice as long: one memory access to
obtain the PA and a second access to get the data. The key to
improving access performance is to rely on locality of reference to
the page table. Accordingly, most modern processors include a
special cache that keeps track of recently used translations, called
a translation-lookaside buffer.

Because we access the TLB instead of the page table on every
reference, it must include other status bits, such as the dirty and
reference bits, just like other caches.

TLB Table Details

• Valid Bit: is the data valid for this entry?

• Dirty Bit: do we need to write back when this it is replaced?

• Reference Bit: approximates LRU as before.

• Tag Field: the entry is referenced by VA.

• Physical Page address: records the corresponding PA.

2018-Spring-2A CS251: Memory David Duan

C-Style Pseudocode for address translation and cache access

	Introduction to Memory
	The Basics of Caches
	Direct-mapped Cache
	Fully Associative Cache
	Set Associative Cache
	Choosing Which Block to Replace
	Average Memory Access Time
	Handling Cache Misses
	Handling Writes
	Problem Solving: Calculating Clock Cycle

	Virtual Memory
	Overview
	Address Translation
	Page Table
	Page Faults
	Translation-Lookaside Buffer

