
2018-Spring-2A CS251: Processor David Duan

1 Single Cycle Datapath 1.1 R-Format

Datapath Flow for R-Type Instruction

R-Format : PC −→ Instruction Memory −→ Register File (Read) −→ ALU −→ Register File (Write)

Unique ID funct, as all op = 000000

Format add rd, rs, rt

Example add $s1, $s2, $s3

Effect $s1 <- $s2 + $s3

RegDst = 1: destination comes from rd [15:11]

ALUSrc = 0: second ALU input comes from register file
MemtoReg = 0: not interacting with data memory
RegWrite = 1: modifying register file
MemRead = 0: not interacting with data memory
MemWrite = 0: not interacting with data memory
Branch = 0: not a branch operation
ALUOp = 10: ALU control unit will generate ALU control signal

1.2 I-Format

Datapath Flow for lw Instruction

lw : PC −→ Instruction Memory −→ Register File (Read) −→ ALU −→ Data Memory (Read) −→ Register File (Write)

Unique ID op = 100011

Format lw rt, imm(rs)

Example lw $s1, 100($s2)

Effect $s1 <- M[100+$s2]

RegDst = 0: destination comes from rt [20:16]

ALUSrc = 1: second ALU input comes from sign-extended offset
MemtoReg = 1: loading data from memory to register
RegWrite = 1: modifying register file
MemRead = 1: loading data from memory to register
MemWrite = 0: not modifying data memory
Branch = 0: not a branch operation
ALUOp = 00: ALU control signal set to 0010, i.e. addition

Datapath Flow for sw Instruction

sw : PC −→ Instruction Memory −→ Register File (Read) −→ ALU −→ Data Memory (Read)

Unique ID op = 101011

Format sw rt, imm(rs)

Example sw $s1, 100($s2)

Effect M[100+$s2] <- $s1

RegDst = X: destination register is garbage as RegWrite = 0

ALUSrc = 1: second ALU input comes from sign-extended offset
MemtoReg = X: destination register is garbage as RegWrite = 0

RegWrite = 0: not modifying register file
MemRead = 0: not reading data memory
MemWrite = 1: storing data from register to data memory
Branch = 0: not a branch operation
ALUOp = 00: ALU control signal set to 0010, i.e. addition

Datapath Flow for beq Instruction

beq : PC −→ Instruction Memory −→

{
Register File (Read) −→ ALU

Sign Extension Unit −→ Shift Left 2 Unit −→ Adder
−→ Branch MUX −→ PC

Unique ID op = 000100

Format beq rs, rt, imm

Example beq $s1, $s2, 100

Effect if ($s1 == $s2) then PC <- PC + 4 + 100 * 4

RegDst = X: destination register is garbage as RegWrite = 0

ALUSrc = 0: second ALU input comes from register file
MemtoReg = X: destination register is garbage as RegWrite = 0

RegWrite = 0: not modifying register file
MemRead = 0: not interacting with data memory
MemWrite = 0: not interacting with data memory
Branch = 1: is a branch operation
ALUOp = 01: ALU control signal set to 0110 , i.e. subtraction.

2018-Spring-2A CS251: Processor David Duan

1.3 Modifying Datapath for J-Format

Unique ID op = 000010

Format j imm

Example j 3000

Effect PC <- 3000 * 4 = 12000

New Hardware Performing bitwise shift left 2 to the 26-bit
immediate recovers the 28-bit jump target.

New MUX When jump signal is on, we feed the jump target to
PC; otherwise we proceed with PC + 4 or branch target.

New Control Signal When control unit sees the instruction is
j, jump is turned on and all other control signals are as follows:

RegDst = X: destination register is garbage as RegWrite = 0

ALUSrc = X: jump completed before going through ALUSrc MUX
MemtoReg = X: destination register is garbage as RegWrite = 0

RegWrite = 0: avoid writing garbage data
MemRead = 0: avoid reading garbage data
MemWrite = 0: avoid writing garbage data
Branch = X: jump MUX is after branch
ALUOp = X: no ALU operation needed

1.4 Weakness of Single Cycle Datapath

The single cycle design is too inefficient for modern processors. Since we need to be able to execute any instruction in one cycle,
the clock cycle is essentially determined by the longest path in the processor. In MIPS instruction set, lw takes the longest path,
as it uses all five functional units in series: fetching from the instruction memory, reading the register file, calculating the address
using the ALU, reading the data memory, and finally writing back to the register file. Thus, the overall performance of a single-cycle
implementation is likely to be poor. In contrast, modern processors use the multicycle datapath design with an implementation
technique called pipelining.

2 Multicycle Datapath and Pipelining

Figure 2.1 Naive Pipelining with Control Signals Labeled (branch in MEM and no hazard handling)

2.1 Overview

Multicycle Datapath

• Single long clock cycle −→ several shorter clock cycles.

• Each instruction takes several clock systems to execute.

• Intermediate results are stored in pipeline registers.

• Execution Time: each cc = 200ps; total = 200 · 5 = 1000ps.

• Conclusion: slower than the original single cycle datapath.

Pipeling

• Overlapping execution of multiple instructions.

• New instruction is fetched every clock cycle.

• Benefit: improving the overall throughput of instructions
(more instructions completed in a given time) however not
decreasing execution time of individual instruction.

Pipeline Hazards Overview

• Structural Hazard: if instruction and data are in the same memory, instruction fetch cannot overlap with load/store.

– Solution: instruction memory and data memory.

• Data Hazard: result of one instruction is needed by next instruction before it is written back to the register file.

– Solution: Stalling

– Solution: Forwarding

• Control Hazard: conditional branch instructions may change sequence of instructions executed.

– Solution I: Flushing

– Improvement: Branch in ID

– Solution II: Code Rearrangement

2018-Spring-2A CS251: Processor David Duan

2.2 Data Hazard

Figure 2.2 Pipeline with Data Forwarding Unit and Data Hazard Detection Unit

Motivation

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Observe $2 is written back during the fifth clock cycle but and

and or need its updated value before that, two data hazards oc-
cur. The fourth instruction add does not create a data hazard as
the register write is performed during the first half of the clock
cycle and the register read is done during the second. The last
instruction sw asks for $2 after the fifth clock cycle thus is safe.

Data Hazard Condition

Recall that the data hazard affects the ALU input at EXE stage,
thus to detect data hazards, we want to check if any of our regis-
ter read target will be updated by the instruction that is current
in MEM or WB stage. More precisely, since the register read target
is stored in ID/EX pipeline register and the RegDst is stored in
EX/MEM and MEM/WB, we need to compare all possibilities:

1a. ID/EX.RegisterRs == EX/MEM.RegisterRd

1b. ID/EX.RegisterRt == EX/MEM.RegisterRd

2a. ID/EX.RegisterRs == MEM/WB.RegisterRd

2b. ID/EX.RegisterRt == MEM/WB.RegisterRd

The data hazard caused by and is of type 1a: sub is one instruction
ahead of and, so by the time and asks for the first ALU input, the
correct value would be stored in pipeline register EX/MEM. Next,
or creates a type 2b data hazard: sub is two instructions ahead of
or, so when or needs its second operand, the correct value would
be placed in MEM/WB.

Besides comparing register targets, we need to check

1. RegWrite == 1, i.e. we are updating the register file

2. RegDst != 0, i.e. $0 is not a valid destination and should
always have the value 0

Moreover, if the two previous instructions are modifying the same
register, we need to forward the more recently-updated result.
In other words, before we forward MEM/WB.RegisterRd, we must
check whether EX/MEM satisfies forwarding requirement. If yes,
then the data in EX/MEM is used when forwarding.

Figure 2.3 Data Forwarding Unit Control Signal

Load-use Hazard

Data forwarding can effectively solve all the data hazards except
for one case: a load instruction followed by a register read reading
the same register. In this case, one stall must be forced. To detect
possible load-use hazards, we want to check

1. whether the instruction in EX stage is a load

2. if the instruction in ID stage wants to read the lw destination

If both satisfies, we stall both ID and IF stages by replacing the
current ID instruction with an instruction that has no effect: nop.
By deasserting all nine control signals in the EX, MEM, and WB

stages, we create a ”do-nothing” or nop instruction.

Algorithm: Data Forward Unit

if ((EX/MEM.RegWrite == 1)

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd == ID/EX.RegisterRs))

then ForwardA = 10

if ((EX/MEM.RegWrite == 1)

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd == ID/EX.RegisterRt))

then ForwardB = 10

if ((MEM/WB.RegWrite == 1)

and (MEM/WB.RegisterRd != 0)

and not ((EX/MEM.RegWrite == 1)

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRs))

and (MEM/WB.RegisterRd == ID/EX.RegisterRs))

then ForwardA = 01

if ((MEM/WB.RegWrite == 1)

and (MEM/WB.RegisterRd != 0)

and not ((EX/MEM.RegWrite == 1)

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRt))

and (MEM/WB.RegisterRd == ID/EX.RegisterRt))

then ForwardB = 01

Algorithm: Data Hazard Detection Unit

if ((ID/EX.MemRead == 1)

and ((ID/EX.RegisterRt == IF/ID.RegisterRs) or

(ID/EX.RegisterRt == IF/ID.RegisterRt)))

then STALL

2018-Spring-2A CS251: Processor David Duan

2.3 Control Hazard

Motivation

An instruction must be fetched at every clock cycle to sustain the
pipeline, yet in our design the decision about whether to take the
branch doesn’t occur until the MEM stage. This delay in determin-
ing the proper instruction to fetch is called a control hazard or
branch hazard and we will look at two possible solutions.

Solution II. Dynamic Prediction: Tracking Past Results

In an aggressive pipeline, a simple static prediction might not be
enough. One approach is to look up the address of the instruction
to see if a branch was taken the last time this instruction was
executed. If so, predict we will branch this time as well. This is
called dynamic branch prediction.

One implementation is a branch prediction buffer or branch
history table, which is a small memory indexed by the lower por-
tion of the address of the branch instruction. However, the simple
1-bit prediction scheme might lead us predicting incorrectly twice
(consider a while loop). To remedy this weakenss, we use a 2-bit
prediction scheme, i.e. a prediction must be wrong twice before it
is changed.

Solution I. Static Prediction: Assume Branch Not Taken

Since stalling until the branch decision is complete is too slow
(wasting three cycles), one solution is to assume that the branch
will not be taken and thus continue execution down the sequen-
tial instruction stream. If the branch is taken, however, we flush
the three instructions in IF, ID, and EX stages by changing the
control values to 0s, then continue execution at the branch target.
If branches are untaken half of the time, this optimization halves
the cost of control hazards.

Currently, the branch decision happens in MEM stage, meaning that
the penalty for wrong prediction is three flushes. To reduce the
cost of the taken branch, we move the branch execution up in the
pipeline to decrease the number of instructions to be flushed. This
requires two actions to occur earlier: computing the branch target
address and evaluting the branch decision.

Computing the branch target address is the easy part: PC and
the offset are already stored in IF/ID register, so we just move
the branch adder to the ID stage. The branch decision itself is
harder. Take beq as an example, we need to compare two register
reads during the ID stage (this can be accomplished by XORing on
respective bits then ORing the result). However, this may lead to
additional forwarding and hazard detection unit and data in ID

stage. Consider the following two complications.

1. During ID, we must decode the instruction and decide whether
we need to forward the data to the equality unit. We then com-
plete the equality comparison so if the instruction is a branch and
is taken, we can set the PC to the branch target address. Re-
call that forwarding was formerly handled by the ALU forwarding
logic, introducing the equality test unit in ID requires some new
forwarding logic. Note that the bypassed source operands may
come from either EX/MEM or MEM/WB.

2. Because the values in a branch comparison are needed during
ID but may be produced later in time, it is possible that a data
hazard can occur and a stall will be needed. For example, if an
ALU instruction immediately proceeding a branch updates one of
the operands of branch, we need one stall so that EX for the ALU
instruction is completed and can be forwarded. Similarly, if a load
is immediately followed by a conditional branch depending on the
load result, two stalls will be needed.

Despite these difficulties, moving the branch execution to the
ID stage is an improvement, because it reduces the penalty of
a branch to only one instruction if the branch is taken, namely
the one immediately follows it.

To flush instructions in the IF stage, we introduce a new con-
trol line, IF.Flush, that zeros the instruction field of the IF/ID

pipeline register and transforms the instruction into a nop as it
has no action and changes no state.

Assembler/Compiler Optimization: Delayed Branch

The five-stage MIPS pipeline allows delayed branch to handle
control hazards, meaning the compiler and assembler will try to
place an instruction that does not affect the branch (that instruc-
tion always executes) after the branch in the branch delay slot,
the slot directly after a delayed branch instruction.

The limitations on delayed branch scheduling arises from (1) the
restrictions on the instruction that are scheduled into the delayed
slots and (2) our ability to predict at compile time whether a
branch is likely to be taken or not. Moreover, as the processors go
to both longer pipelines and issuing multiple instructions per clock
cycle, the branch delay becomes longer, and a single delay slot is
insufficient. Hence, delayed branches has lost popularity compared
to more expensive but more fiexible dynamic approaches.

This figure shows three cases for scheduling the branch delay slot.

a This is the best choice as the delay slot is filled with an
independent instruction from before the branch.

b We cannot move add because it updates $s1, so sub is moved
into the slot. Note that the instruction is usually copied so it
can be reached by another path. This strategy is preferred
when the branch is taken with high probability, such as a
loop branch.

c Finally, the branch may be scheduled from the not-taken fall
through. We prefer this branch when it is taken with low
probability, as we basically predict that the branch won’t be
taken (so sub is not skipped).

To make this optimization legal for (b) or (c), it must be OK (the
work is wasted, but the program will still execute correctly) to ex-
ecute the sub instruction when the branch goes in the unexpected
direction.

2.4 Problem Solving

Code Rearrangement Guidelines

1. Code behavior should not be affected and the original final
state should be achieved after execution.

2. Do not swap lines of code with data. dependencies.

3. Do not swap into or out of any loops.

Code Rearrangement for Data Hazard

Recall that forwarding is enough to handle ALU instructions, but
load-use hazards requires one stall even with data forwarding. We
can, however, rearrange the code, placing another instruction be-
low the lw that would need to execute anyways.

Consider the following example:

lw $t1, 0($t0)

lw $t1, 0($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

lw $t1, 0($t0)

lw $t1, 0($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

By moving lw $t4, 8($t0) to the third line, we solve both load-
use hazards currently on line 2-3 and line 5-6.

Code Rearrangement for Control Hazard

100 addi $1, $0, 20

104 addi $2, $0, 0

108 lw $3, 0($4)

112 add $2, $2, $3

116 addi $4, $4, 4

120 addi $1, $1, -1

124 bne $1, $0, -5

128 slt $6, $2, $0

132 add $8, $2, $2

136 lw $7, 100($5)

Set up:

• 100: $1 <- 20

• 104: $2 <- 0

Loop:

• 108: read A[0]

($4: first element)

• 112: Update sum $2

• 116: $4 += 4

• 120: $1 -= 1

• 124: $1 != 0 → PC=108

(124+4-5*4=108)Ending:

• 128: $2 < 0 → $6 = 1

• 132 and 136: omitted

In short, this code segment sums up an array of numbers and sets
$6 to 1 if the sum if negative. We want to examine it from different
perspectives:

1. Branching in MEM

2. Branching in ID

3. Using code rearrangement

2018-Spring-2A CS251: Processor David Duan

1. Branch in MEM

Suppose this program runs on a pipeline that implements data
forwarding and load-use stalling and branch decision is known
in MEM. How many clock cycles are needed to execute this program?

First, classify the instructions: two instructions happen before the
loop, five (108-124) during the loop plus one for lw stall (108-112)
plus three for branch flush in each iteration. In addition to this,
we need 4 clock cycles of pipeline start up time, so total clock
cycles required is

4 + 2 + (5 + 1 + 3) · 20 = 186

Line 124 is tested 20 times; the first 19 times bne fails and three
instructions following it are flushed; the 20th test succeeded so
128-136 are executed normally. In total, 19 · 3 = 57 instructions
are flushed.

2. Branch in ID

Suppose the branch decision is now known in ID. How many clock
cycles are needed to execute this program? Observe that a branch
data hazard now happens at line 120-124:

120 addi $1, $1, -1

124 bne $1, $0, -5

Since line 120 modifies $1 at its EX stage, the result won’t be ready
for 124 at ID stage unless one stall is inserted. Other things re-
main the same (4 for pipeline start up, 2 for first two instructions,
5 loop instructions plus 1 for load-use hazard, 1 for branch data
hazard, and 1 for branch flushing, then 2 instructions after the
loop), thus the total clock cycle required is

4 + 2 + (5 + 1 + 1 + 1) · 20 + 2 = 168

3. Using Code Rearrangement

Suppose flushing is not supported and branch is done in ID stage.
Can we use code rearrangement to eliminate hazards completely?
Recall that code rearrangement should not affect the outcome;
branch in ID means 1 branch delay slot; if in MEM then 3 slots.
Our strategy is thus

• moving an instruction independent of lw right after it to
handle load-use hazards,

• moving an instruction independent of bne right after it to
handle branch control hazards, and

• avoid branch data hazard by seperating line 120 and 124.

100 addi $1, $0, 20

104 addi $2, $0, 0

108 lw $3, 0($4)

112 addi $1, $1, -1

116 add $2, $2, $3

120 bne $1, $0, -4

124 addi $4, $4, 4

128 slt $6, $2, $0

132 add $8, $2, $2

136 lw $7, 100($5)

The blue line eliminats the load-
use hazard, the pink line solves
the control hazard, and finally,
since we moved addi ”out of”
the branch (but not really since
it still executes), we need to
change the offset for bne.

By rearranging the code, no
stall is needed and the total ex-
ecution time is 4+2+20·5+3 =
109, which is much faster than
before.

Performance of Pipelined Design

Given the following assumptions:

• 22% lw, 11% sw, 49% R-format, 16% branches, 2% jumps

• Half of all loads followed by use

• Quarter of all branches are mispredicted

• Jump and branches are determined in ID

Calculate the average number of cycles per instruction (CPI):

• lw with load-use hazards: 0.22 · 1 + 0.5 · 0.22 · 1·
• sw and R-format are safe: (0.11 + 0.49) · 1
• Jump forces one flush: 0.02 · 1 + 0.02 · 1
• Branch with control hazards: 0.16 · 1 + 0.25 · 0.16 · 1
• Total: 1.17

Figure 2.4 ALU Data Forwarding Zoom In (red triangle in Figure 2.5)

Figure 2.5 Final Pipeline Design with Some Details Missing (Control Lines and ALU)

	Single Cycle Datapath
	R-Format
	I-Format
	Modifying Datapath for J-Format
	Weakness of Single Cycle Datapath

	Multicycle Datapath and Pipelining
	Overview
	Data Hazard
	Control Hazard
	Problem Solving

