Notes on CS-348:

Introduction to Database Management

Unwersity of Waterloo

DAviD DUAN

Last Updated: May 26, 2021 (draft)

CONTENTS

Contents

1 Introduction 1
1 Motivation e e 2
2 Database Management Systems 3
3 Database Languages e 4
2 The Relational Model 5
1 Relational Databases e 6
2 Integrity Constraints L L 8
3 Safety and Finiteness 9
3 Introduction to SQL 12
1 Overview of SQL e 13
2 SQL Data Definition 14
3 Conjunctive Queries L 16
4 Set Operations e 19
5 Nested Queries L L 20
6 Aggregation L. 22
7 Transactions and Database Update 24
4 More on SQL 26
1 General Integrity Constraints L oL 27
2 VIeWS . . . o 28
3 On Multiset Semantics e e 29
4 Null Values e e 30
5 Ordering and Limits o L 31
6 Triggers Lo 32
7 Authorization e e 34
5 The Entity-Relationship Data Model 35
1 The Entity-Relationship Model 36
2 Integrity Constraints L 37
3 Extensions to E-R Modeling 39

CONTENTS

4 Design Methodology e 41
5 ER Diagrams to Relational Schemata 43
6 Mapping Extended Features 45

ii

Chapter 1

Introduction

1 Motivation e e e
2 Database Management Systems L L e
3 Database Languages L e

1. MOTIVATION

Section 1. Motivation

1.1. Consider part of a university organization that, among other data, keeps information about
all instructors, students, departments, and course offerings. One way to keep the information on a
computer is to store it in OS files. However, keeping organizational information in a file-processing
system has a number of disadvantages:

Data redundancy and inconsistency: As time passes, the same information may be
duplicated in several files and the various copies of the same data may no longer agree.

Difficulty in accessing data: The conventional file-processing environments do not allow
needed data to be retrieved in a convenient and efficient manner.

Data isolation: Because data are scattered in various files which may be in different formats,
writing new programs to retrieve appropriate data is difficult.

Integrity problems: It is difficulty to enforce consistency constraints. The problem is
compounded when constraints involve several data items from different files.

Atomicity problems: Many operations must be atomic — it must happen in its entirety or
not at all. It is difficulty to ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies: It is difficult to provide consistent query results when
multiple clients are accessing and possibly modifying the data.

Security problems: Not every user of the database system should be able to access all the
data. Enforcing such security constraints is difficulty in a file-processing system.

In what follows, we shall see the concepts and algorithms that enable database systems to solve
the problems with file-processing systems.

2. DATABASE MANAGEMENT SYSTEMS

Section 2. Database Management Systems

2.1. Definition: A database is a large and persistent collection of data and metadata organized
in a way that facilitates efficient retrieval and revision.

2.2. Definition: A data model is a collection conceptual tools for describing data, data
relationships, data semantics, and consistency constraints.

2.3. Note (Data Models): The data models can be classified into four different categories:

¢ Relational Model. Uses a collection of tables (known as relations) to represent both data
and the relationships among those data.
— Each table has multiple columns and each column has a unique name.
— Each row of the table represents one piece of information.

o Entity-Relationship Model. Uses a collection of basic objects, called entities, and rela-
tionships among these objects. Widely used in database design.

e Object-Based Data Model. Extending the E-R model with encapsulation, methods, and
object identity.
e Semi-structured Data Model. Permits the specification of data where individual data

items of the same type may have different sets of attributes.

— This is in contrast to the data models mentioned earlier, where every data item of a
particular type must have the same set of attributes.

— Examples include JSON and XML.

2.4. Note (Data Abstraction): Database developers hide the complexity from users through
several levels of data abstraction, to simplify users’ interactions with the system:

e Physical level: how the data are actually stored (on a physical level).
e Logical level: what data are stored and what relationship exists among those data.

e View level: provide different views for different users based on needs.

2.5. Definition: The collection of information stored in the database at a particular moment
is called an instance of the database. The overall design of the database is called the database
schema. The physical schema describes the database design at the physical level, while the
logical schema describes the database design at a logical level. At the view level, a subschema
describes a view of the database.

2.6. Definition: A database management system (DBMS) is a set of programs that
implements a dta model to manage a database.

3. DATABASE LANGUAGES

Section 3. Database Languages

3.1. Definition: A DBMS provides a data-definition language (DDL) to specify the database
schema and a data-manipulation language (DML) to express database queries and updates.

3.2. Note: We specify the storage structure and access methods used by the DBMS by a set
of statements in a special type of DDL, called a data storage and definition language. These
statements define the implementation details of the database schemas, which are usually hidden
from users.

3.3. Note: The data values stored in the database must satisfy certain consistency con-
straints. The DDL provides facilities to specify such constraints. The DBMS checks these con-
straints every time the database is updated.

e Domain Constraints. A domain of possible values must be associated with every attribute,
e.g., integer types, character types, data-time types, etc.

e Referential Integrity. A value that appears in one relation for a given set of attributes
also appear in a certain set of attributes in anther relation.

e Authorization. Give different users different access privilege, e.g., read authorization, insert
authorization, update authorization, and delete authorization, etc.

3.4. Note: The processing of DDL statements generates some output, which is placed in the
data dictionary, which contains metadata. The data dictionary is considered to be a special
type of table that can be accessed and updated only by the DBMS itself (not a regular user). The
DBMS consults the data dictionary before reading or modifying actual data.

3.5. Note: There are two types of DML:

e Procedural DMLs require a user to specify what data are needed and how to get them.

e Declarative DMLs (or nonprocedural DMLs) require a user to specify what data are
needed without specifying how to get those data.

Declarative DMLs are usually easier as the user does not have to specify how to get the data.
Instead, the DBMS will figure out an efficient means of accessing data.

3.6. Definition: A query is a statement requesting the retrieval of information. The portion
of a DML that involves information retrieval is called a query language.

3.7. Definition: A transaction is a sequence of indivisible DML requests; applications access
a database via transactions. The ACID properties of a transaction, which is short for atomicity,
consistency, isolation, and durability, guarantees data integrity.

Chapter 2

The Relational Model

1 Relational Databases e e
2 Integrity Constraints« . L e
3 Safety and Finiteness L

1. RELATIONAL DATABASES

Section 1. Relational Databases

1.1. Motivation: Set-comprehension {(x1,...,2,) : condition} specifies the conditions that
the variables (z1,...,x,) need to satisfy without specifying how to find them.

1.2. Example: Let +(z,y, 2) denote the relation z = x + y. We can express the + table as

_ -0 O
—_— O = O
N =R = O

To find (z,y) such that z +y =2 —y, note that z —y =2 < z+y=ux:

{(@,9) | 32 +(z,y,2) A +(z,9,2) }-
To find the additive identity:

{z: +(x,z,2)} = {0}.

1.3. Note: In a relational database, all information is organized into a finite number of
relations or tables. Features of relational databases include:

e simple and clean data model accommodating data independence;
e powerful and declarative DML based on well-formed formulas in first order predicate logic;

e integrity constraints via well-formed formulas.

1.4. Definition: There are three components to a relational database:

(1). Universe, a set of values D with equality =;

(2). Relation,
o Metadata: predicate name R (table name) and arity k (# of columns), written R/k;
e Extension: a set of k-tuples, R C DF, i.e., an instance of the relation R.

(3). Database

e Signature (metadata): finite set p = (Ry,..., Ry) of predicate names;
o Instance (data, structure): an extension R, for each relation R;.

An instance of a relational db is DB = (D,=,Ry,...,R,;,), where each R, is an instance of R;.

1.5. Example: The set of integers, together with addition and multiplication (represented by ta-
bles, see Example 1.2), can be viewed as a relational database, with signature p := (PLUS/3, TIMES/3)
and data DB := (Z,=,PLUS, TIMES).

1. RELATIONAL DATABASES

1.6. Definition: A valuation is a function 8 that maps variable names to values in the universe:
0 : {xl,xg,...} — D.
To denote a modification to # in which variable z is instead mapped to value v, one writes

Oz — v].

1.7. Definition: Given a signature p = (R1/ki1, ..., Ry/kn), a set of variable names {z1, z9, ...},
and a set of constants {c1, ¢, ...}, the conditions are formulas defined by the grammar

= Ri(Ti1, .-, Tig) | Ti = x5 | Ti =cj [o1 A2 | Tzi 1| 01V o2 | —1.

1.8. Definition: The free variables of a formula ¢, written Fv(y), are defined as follows:

FV (R(xiyy--smiy)) ={ziy, ..., 2 };

Fv(z; = ;) = {zi, z;};

Fv (z; = ¢;) = {z;};
Fv(p A1) = Fv(p) UFv(9);
Fv (3z; :) =Fv(p) — {z;}
Fv(p V) = Fv(p) UFv(y);
Fv(—¢) = Fv(p).

A condition is called a sentence when it has no free variables.

1.9. Definition: The truth of a formula ¢ over a signature p = (R1/k1, ..., Ry/ky) is defined
wrt a database instance DB = (D,=,R,4,...,R;,) and a valuation 0 : {x1,xs,...} — D as follows:

e DB, =R (xi1,...,xik,) if (0(xi1),....0(xik,)) €R;
e DB, = x; =x; if 0 (z;) = 0 (z);

e DB,0 = x; =c; if 0 (x;) = ¢j3

DB, E A9 if DB, = ¢ and DB, 6§ = 1;

e DB,0 =3z, : ¢ if DB, [z; — v] = ¢, for some v € D;
DB,0 = ¢V if DB, = ¢ or DB, 6§ = ;

DB, 6 = —¢ if DB, }~ .

1.10. Definition: A query in the relational calculus is a set comprehension of the form

{(.11?1, 0100 >$k) ’ 90},

where {x1,..., 2} = Fv(p) (are the free variables of ¢). The answers to a query {(z1,...,zr) | ¢}
over a database instance DB is the relation that consists of the valuations applied to the tuple of
variables that make the formula true wrt the database:

{(0(1),...,6(zx)) | DB, |= ©}.

2. INTEGRITY CONSTRAINTS

Section 2. Integrity Constraints

2.1. Note: A database signature captures only the structure of relations; valid database
instances must satisfy additional integrity constraints in the form of sentences over the given
signature. Consider the set of integers with addition (as a table). Since the addition is commutative,
we must have Vx,y, z : +(x,y,2) = +(y,x, z). It is also a total function, so Vx,y : 3z : +(x,y, 2).
Common types of integrity constraints include:

e Datatypes: Values of a particular attribute belong to a prescribed data type.

e Keys: Values of attributes are unique among tuples in a relation.

Referential Integrity: Values appearing in one relation must appear in another relation.

Disjointness: Values cannot appear simultaneously in certain relations.

e Coverage: Values in a relation must appear in at least one of another set of relations.

2.2. Definition: Given a signature p, a table R occurring in p is a view when the relational
database schema contains exactly one integrity constraint of the form

V:Ul,...,xk:R(xl,...,xk) <~ P,

where {z1,...,21} = Fv(p). This condition ¢ is called the view definition of R and R is said
to depend on any table mentioned in ¢. Note that no table occurring in a schema is allowed to
depend on itself, either directly or indirectly (i.e., dependency graph is acyclic).

2.3. Definition: A relational database schema is a pair (p,), where p is a signature and
. is a finite set of integrity constraints that are sentences over p.

2.4. Definition: A relational database consists of a relational database schema (p,¥) and
an instance DB of its signature p.

2.5. Definition: A relational database is consistent iff for any integrity constraint ¢ € ¥ and
any valuation 6, we have DB, 0 |= ¢.

3. SAFETY AND FINITENESS

Section 3. Safety and Finiteness

3.1. Motivation: So far, we have seen that databases are relational structures, queries are set
comprehensions with conditions as formulas in first order predicate logic, and integrity constraints
are sentences in FOPL. Are there any remaining issues? Yes. Relational databases and relational
calculus queries should have the following properties:

e The extension of any relation in a signature should be finite;

e Queries should be safe, i.e., their answers should be finite when database instances are finite.

3.2. Definition: A relational calculus query {(z1,...,zx) | ¢} is domain independent when,
for any pair of instances DBy = (D1,=R4,...,Ry) and DBy = (D3, =,R4,...,Ry) and any 6,

DB1,9):<p <~ DBQ,H):()O

3.3. Intuition: The following theorem says that domain independence and finite database
instances together give safety (finiteness) of queries.

3.4. Theorem: Let (Ry,...,Ry) be the signature of a relational database. Answers to domain
independent queries contain only values that occur in the extension R; of any relation R;.

Proof. Suppose the query @ := {x : ¢} is domain-independent. If there exists y € Q\(R1U- - -UR),
we can redefine the domain to be D’ := D\ {y} so that under this domain, y ¢ Q. This contradicts
the domain-independence of query @ as querying in D and D’ yields different results. O

3.5. Theorem: Satisfiability of relational calculus queries is undecidable.

Proof. Recall the undecidable problem post correspondence problem (PCP): Given two lists uy, . .., u,
and v1, ..., v, of two words over the same alphabet ¥ with at least two symbols, find a sequence if
indexes 41,...,i, 1 <4; < n, such that u;, ---u;, = v;;, ---v;,. Now do reduction from PCP! O

3.6. Theorem: Domain independence of relational calculus queries is undecidable.

Proof. Consider queries of the form @ := {x : (x = x) A ¢} where x does not appear in .

e If ¢ is unsatisfiable, then no valuation # exists such that DB, = ¢ and thus Q = @ is
domain independent.

o If is satisfiable, there exists a valuation ¢ such that the free variables in ¢ are assigned and
make ¢ True. For this valuation 6, () will contain all elements of domain D and therefore Q
is domain-dependent.

Since proving domain-independence is equivalent to proving satisfiability, we conclude that this
problem is undecidable. O

1P122 to P126, Chapter 6, of Foundations of Databases, Abiteboul et. al.

http://webdam.inria.fr/Alice/

3. SAFETY AND FINITENESS

3.7. Definition: Given a database signature p = (R1/k1,..., Ry/k,), a set of variable names
{z1,22,...}, and a set of constants {ci, ca, ...}, range-restricted conditions are formulas defined
by the grammar

1V 2, where Fv(p1) = Fv(p2) (Case 2)
©1 A —pa, where Fv(p;) = Fv(ypz) (Case 3)

(%2 = Ri (a:i,l, 000 ,:EiJﬁ.)
| @1 A(z; =x;), where {z;,2;} NFv(p1) # @ (Case 1)
| zi=¢
| p1A P
| Fzi 1
|
|

A range-restricted RC query has the form {(z1,...,z,) | ¢} where {z1,...,2,} = Fv(p) and
that ¢ is a range-restricted condition. A query language for the relational model is relationally
complete if the language is at least as expressive as the range-restricted RC.

3.8. Theorem: Fwvery range-restricted RC query is an RC query and is domain independent.

Proof. Both claims follow by simple inductions on the form of a range restricted condition. O

3.9. Theorem: FEvery domain independent RC query has an equivalent formulation as a range-
restricted RC query.

Proof. Let ¢ be a domain independent query. Restrict every variable in ¢ to the active domain,
then express the active domain using a unary query over the database instance. O

3.10. Note (Complexity):

e Evaluation of every query terminates. Thus, relational calculus is not Turing complete.
e Data complexity in the size of the database, for a fixed query:
— PTIME: solvable by a deterministic TM using a polynomial amount of time.
— LOGSPACE: solvable by a deterministic TM using a log amount of (auxiliary) memory.
— ACy: constant time on polynomially many CPUs in parallel.
e Combined complexity in the size of the query and the database:
— PSPACE: solvable by a deterministic TM using a polynomial amount of space.
— can express NP-hard problems (e.g., SAT).

3.11. To summarize, the query evaluation problem, which finds all answers to a query in a finite
database instance, is much easier than the query satisfiability problem, which determines whether
there is a finite database instance for which the answer is non-empty.

10

3. SAFETY AND FINITENESS

3.12. Definition: A query {(x1,...,2zx) | ¢} subsumes a query {(z1,...,z) | ¥} wrt a
database schema ¥ if

{(@(21), - 0(2x)) | DB, O = 9} € {(¢(21), ..., ¢(x1)) | DB, 0 |= o}
for every database DB such that DB = 3.

3.13. Remark: This is necessary for query simplification and is equivalent to proving

/\ oi | = (Va1,..., 710 = o).
PiEX

This is decidable for a fragments of relational calculus but undecidable in general.

3.14. Note: Since RC is not Turing-complete, there must be computable queries that cannot
be written in RC. We here give some examples:

e Ordering, Arithmetic, String Operations
e Counting, Aggregation
e Reachability, Connectivity (Paths in Graph)

11

Chapter 3

Introduction to SQL

N O Ot s W N

Overview of SQL L 13
SQL Data Definition L 14
Conjunctive Queries e 16
Set Operations e e 19
Nested Queries o o e 20
Agaregation e e e e e 22
Transactions and Database Update 24

12

1. OVERVIEW OF SQL

Section 1. Overview of SQL

1.1. The Structured Query Language (SQL) has several parts:

DDL: for defining, modifying, and deleting relation schemas.

DML: for querying, inserting, deleting, and modifying data in the database.

Integrity (DDL): for specifying integrity constraints that data stored in the db must satisfy.
View Definition (DDL): for defining views.

Transaction Control: for specifying the beginning and end points of transactions.

Embedded SQL and Dynamic SQL: for specifying how SQL statements can be embedded
within general purpose programming languages.

Authorization (DDL): for specifying access rights to relations and views.

13

2

Section 2. SQL Data Definition

0 N O O W N

create table r (
Al D1,
A2 D2,
An Dn,
<integrity constraint 1>,

<integrity constraint k>);

SQL DATA DEFINITION

2.1. (CREATE TABLE) The general form of the create table command is

where r is the name of the relation, each A; is the name of an attribute/column in the schema of
relation r, and D; is the domain of attribute A;; that is, D; specifies the type of attribute A; along
with optional constraints that restrict the set of allowed values for A;. SQL prevents any update
to the database that violates these integrity constraints.

© 0 N O O W N -

e e e
O W NN = O

16

In this code snippet, we see four column varieties of integrity constraints:

create table AUTHOR (

aid integer not null,

name varchar(10) not null,
primary key (aid))

create table PUBLICATION (
pubid integer not null,
title varchar(25) not null,
primary key (pubid))

create table WROTE (

author integer not null,

publication integer not null,

primary key (author, publication),

foreign key (author) references AUTHOR,

foreign key (publication) references PUBLICATION)

e data type constraints for each column/attribute;
e not null constraints;
e primary key constraints;

e foreign key constraints.

We will explain these first.

14

2.2. Example: We start with the following example, which defines three tables in the database:

2. SQL DATA DEFINITION

2.3. (Data Types) The basic data types of SQL:

e integer: 32-bit integer

e smallint: 16-bit integer

e decimal(m,n): fixed decimal

e float: 32-bit IEEE float

e char(n): character string of length n

e varchar (n): variable length string of length at most n
e date: year/month/day

e time: hh:mm:ss.ss

Each type may include a special value called the null value, which indicates an absent value that
may exist but be unknown or that may not exist at all. To prohibiting a column from having null
values, add not null for that column in the create statement.

2.4. (Primary Key, Foreign Key)

e 1 PRIMARY KEY (A1, ..., An)

Attributes A1, ..., A, form the primary key of the relation. These attributes are required to
be nonnull and unique.

e 1 FOREIGN KEY (Ajl, Aj2, .., Ajn) references s

The values of attributes Aj ,A;,,..., A;, for any tuple in the relation must correspond to

values of the primary key attributes of some tuple in relation s.

2.5. (ALTER TABLE)

e To add an attribute A of type D to an existing relation 7:
1 ALTER TABLE r ADD A D;
e To drop an attribute A from a relation r:

1 ALTER TABLE r DROP A;

2.6. (DROP TABLE, DELETE FROM)

e To remove relation r from an SQL database delete all relevant information:
1 DROP TABLE r;
e To delete all data from 7 but retain the relation:

1 DELETE FROM r;

15

3. CONJUNCTIVE QUERIES

Section 3. Conjunctive Queries

3.1. Motivation: The SELECT block allows formulation of conjunctive 3, A queries of the form
{ <results> | 3 <unused> : (/\ <tables>) A <condition> } .

where <results> specifies values in the resulting tuples and <unused> are variables not used in
<results>. The basic syntax is given as follows:

1 SELECT [DISTINCT] <results>
2 FROM <tables>
3 WHERE <condition>

The role of each clause is as follows:

e The SELECT clause is used to list the attributes desired in the result of a query.
e The FROM clause is a list of relations to be accessed in the evaluation of the query.
e The WHERE clause is a predicate involving attributes of the relation in the FROM clause.

e The DISTINCT keyword can be added after SELECT to force the elimination of duplicates.

3.2. Intuition: The easiest way to understand this operation is to consider the clauses in
operational order: first FROM, then WHERE, finally SELECT:

(1). Generate a Cartesian product of the relations listed in the FROM clause.
(2). Apply the predicates specified in the WHERE clause on the result of Step 1.

(3). For each tuple in the result of Step 2, output the attributes (or results of expressions) specified
in the SELECT clause.

3.3. Example: Retrieve the names of all instructors, along with their department names and
department building name, whose salary is greater than 70k.

1 SELECT name, instructor.dept_name, building
2 FROM instructor, department
3 WHERE instructor.dept_name = department.dept_name AND salary > 70000

A few remarks:

e Since dept_name appears in two tables, we use instructor.dept_name to make clear which
attribute we are referring. In general, the syntax is <table>.<attribute>.

e In contrast, name, building, and salary appear in only one table, so there’s no need to
prepend the relation name.

e SQL allows the use of logical connectives AND, OR, and NOT as well as the comparison operators
<, <=, > >= = <> in the WHERE clause. More on this later.

16

3. CONJUNCTIVE QUERIES

3.4. (AS)
1 old_name AS new_name

The AS clause can appear in both SELECT and FROM clauses, which allows us to rename the attributes
of a result relation and to rename relations. In the following two examples, we demonstrate two
use cases of AS:

e Replace a long relation name with a shortened version for convenience.

e Compare tuples in the same relation.

3.5. Example: For all instructors in the university who have taught some course, find their
names and the course ID of all courses they taught.

1 SELECT T.name, S.course_id
2 FROM instructor AS T, teaches AS S
3 WHERE T.ID = S.ID

3.6. Example: For the names of all instructors whose salary is greater than at least one
instructor in the Biology department.

1 SELECT DISTINCT T.name
2 FROM instructor AS T, instructor AS S
3 WHERE T.salary > S.salary AND S.dept_name = 'Biology';

3.7. Remark: In the above query, 7' and S can be thought of as copies of the relation
instructor, but more precisely, they are declared as aliases for the relation. An identifier, such
as T and S, that is used to rename a relation is referred to as a correlation name in the SQL
standard, but is also commonly referred to as a table alias, correlation variable, or tuple variable.

3.8. Note (String Operations):

e SQL specifies strings by enclosing them in single quotes. A single quote character that is part
of a string can be specified by using two single quote characters.

e Common operations: length, upper/lower case conversion, concatenation, trimming, etc.

e Pattern matching via LIKE: % (percent) matches any substring; _ (underscore) matches any
character; \ (black slash) to escape special characters.

3.9. (ORDER BY)
1 ORDER BY <attribute> [DESC/ASC]

The order by clause causes the tuples in the result of a query to appear in sorted order. Note this
clause has to appear after FROM and WHERE.

17

3. CONJUNCTIVE QUERIES

3.10. (FROM)
1 FROM R1[[AS] n1], ..., Rk[[AS] nk]

e R, are relation names and n; are distinct identifiers.
e The clause represents a conjunction Ry A --- A Ry.

e The clause can appear only as a part of the SELECT block (i.e., cannot appear alone).

3.11. (SELECT)
1 SELECT DISTINCT el [[AS] n1], ..., ek [[AS] nk]

Operates as follows:

(1). Eliminate superfluous attributes and remaining duplicates from answers.
(2). Evaluate expressions e; (here, built-in functions can be applied to values of attributes).

(3). Give names n; to expression values in the answer.

Use SELECT * if you want to retrieve all attributes from the results.

3.12. (WHERE)
1 WHERE <condition>

Additional conditions on tuples that qualify for the answer. We now look at the possible predicates:

e BETWEEN: to simplify the condition v1 <= x AND x >= v2.
e Row constructor: (al, a2) <= (bl, b2) is equivalent to al <= bl AND a2 <= b2.

18

4. SET OPERATIONS
Section 4. Set Operations

4.1. Motivation: So far, we have seen how the SELECT statement allows us to express 3 and
A. In this section, we will express V and — with set operations and rewrite V using negation and 4.

4.2. Note: SQL provides UNION, EXCEPT, and INTERSECT for set operations Q1 UQ2, @1\ Q2,
and ()1 N Q2. Note that operands in a set operation must have union-compatible signatures.

4.3. Example: These set operations automatically eliminates duplicates in the inputs before
performing set difference. To retain duplicates, we must add ALL after each operation, e.g.,

1 (SELECT course_id FROM section WHERE year=2017 AND semester='Fall') -- @1

2 UNION ALL
3 (SELECT course_id FROM section WHERE year=2018 AND semester='Spring') -- (2

4.4. To use a set operation inside a SELECT block, we can use named queries and inline queries.

e Recall that queries denote relations. SQL provides a naming mechanism to assign names to
(results) of queries, which can be used later in place of (base) relations.

WITH T1 [<opt-schema-1>] AS (<query-1-goes-here>),

1
2 e
3 Tn [<opt-schema-n>] AS (<query-n-goes-here>)
4 <query-that-uses-Tl-to-Tn-as-table-names>

o If we only use the query result once, then we can use inline queries in the FROM clause:
1 FROM ..., (<query-here>) AS <id>,

This <id> stands for the result of <query-here> and is mandatory.

4.5. Example: List all publication titles for books or journals.

1 WITH bookorjournal (pubid) AS

2 ((SELECT DISTINCT pubid FROM book) UNION (SELECT DISTINCT pubid FROM journal))
3 SELECT DISTINCT title

4 FROM publication, bookorjournal

5 WHERE publication.pubid = bookorjournal.pubid;

1 SELECT DISTINCT title

2 FROM publication,

3 ((SELECT DISTINCT pubid FROM journal)

4 UNION

5 (SELECT DISTINCT public FROM book)) as journalorbook
6 WHERE publication.public = journalorbook.pubid;

19

5. NESTED QUERIES
Section 5. Nested Queries

5.1. SQL allows conditions in a WHERE clause to be expressed with subqueries, which simplifies
writing queries with negations and can make code more readable. However, this leads to more
complicated semantics (particularly when duplicates are involved) and is very error-prone.

5.2. Note:

e Presence/absence of a single value in a subquery:

1 <attr> IN (<query>); <attr> NOT IN (<query>);
e Relation of a value to some/all values in a subquery:

1 <attr> op SOME (<query>); <attr> op ALL (<query>);
e Emptiness/non-emptiness of a subquery:

1 EXISTS (<query>); NOT EXISTS (<query>);

In the first two cases, <query> must be unary.

5.3. Example: Get titles of all articles.

1 SELECT DISTINCT title
2 FROM publication
3 WHERE pubid IN (SELECT pubid FROM article)

5.4. Example: Find the longest book.

1 SELECT DISTINCT title
2 FROM books
3 WHERE endpage-startpage >= all (SELECT endpage-startpage FROM books)

Note how we used the binary operator — in the WHERE clause and the subquery.

5.5. Example: Find all students who have taken all courses offered by the math department.

SELECT DISTINCT S.ID, S.name

FROM student as S -- renaming the relation

WHERE NOT EXISTS
((SELECT course_id FROM course WHERE dept_name = 'MATH')
EXCEPT
(SELECT T.course_id FROM takes as T WHERE S.ID = T.ID))

o O W N

20

5. NESTED QUERIES

5.6. Remark: Nesting in the WHERE clause is mere syntactic sugar:

1 SELECT r.b 1 SELECT r.b
2 FROM r 2 FROM r, (SELECT DISTINCT b FROM s) as s
3 WHERE r.a in (SELECT b FROM s) 3 WHERE r.a = s.b

5.7. So far, subqueries have been independent from the main query. SQL also allows parametric
subqueries, where the <query> mentions attributes in the main query. The truth of a predicate
defined by a subquery is determined for each substitution (tuple) in the main query: instantiate
all the parameters used, then check for truth value as before.

5.8. Example: Publications of at least two authors.

SELECT =*
FROM wrote AS r
WHERE EXISTS (
SELECT =*
FROM wrote AS s
WHERE r.publication = s.publication AND r.author <> s.author

~N O O W N

);
Equivalently, we can write

SELECT *
FROM wrote AS r
WHERE publication IN (
SELECT publication
FROM wrote AS r
WHERE r.author <> s.author

N O Ok W N

)

Expressing negation is also easy; just add NOT before EXISTS and IN, respectively.

5.9. Since WHERE subqueries are also queries, one can nest repeatedly to form very complex search
conditions. Every nested subquery can use attributes from the enclosing queries as parameters.
However, attributes present in the subqueries only cannot be used to construct the results.

5.10. To summarize, WHERE subqueries enable easy formulation of queries of the form
All z in R such that (a part of) z does not appear in S.

Note that subqueries only stand for WHERE conditions and cannot be used to produce results. You
can use input parameters but these must be bounded in the main query.

21

6. AGGREGATION

Section 6. Aggregation

6.1. Aggregate functions are functions that take a collection (a set or multiset) of values
as input and return a single value. SQL offers five standard built-in aggregate functions: AVG,
MIN, MAX, SUM, COUNT. The input to SUM and AVG must be a collection of numbers, while the other
operators can operate on collections of non-numeric data types, such as strings, as well.

6.2. Example: Find the average salary of instructors in the math department.

1 SELECT AVG(salary) AS avg_salary
2 FROM instructor
3 WHERE dept_name = 'math';

6.3. (GROUP BY) Suppose we would like to apply the aggregate function not only to a
single set of tuples, but also to a group of sets of tuples. We can specify this in SQL using the
GROUP BY clause. The attribute(s) given in the GROUP BY clause are used to form groups. Tuples
with the same value on all attributes in the GROUP BY clause are placed in one group.

1 SELECT x1, ..., xk, aggl [[AS] ni1], ..., aggj [[AS] njl
2 <FROM-WHERE>
3 [GROUP BY x1, ..., xk]

Note that all attributes in the SELECT clause that are not in the scope of an aggregate function
must appear in a GROUP BY clause. These attributes are used for partitioning.

6.4. Example: Find the average salary of instructors in each department.

1 SELECT dept_name, AVG(salary) AS avg_salary
2 FROM instructor
3 GROUP BY dept_name;

6.5. Example: For each publication, count the number of authors.

1 SELECT publication, COUNT(author) FROM wrote GROUP BY publication

6.6. More explicitly, the aggregate functions operate as follows:

(1). Partition the result of <FROM-WHERE> into groups with equal values of GROUP BY attributes.
(2). On each of these partitions, apply the aggregation functions.

(3). For each group, add a tuple with the grouping attribute values and the results of the aggregate
functions to the result.

It is always a good idea to name the results of the aggregate functions in the SELECT clause.

22

6.

6. AGGREGATION

7. (HAVING) The WHERE clause cannot impose conditions on values of aggregates as WHERE

conditions are applied before GROUP BY. SQL introduces a HAVING clause for this purpose, which
is like WHERE, but for aggregate values. The aggregate functions used in the HAVING clause may
be different from those in the SELECT clause, but the grouping is common. As with the case for
SELECT, any attribute that is present in the HAVING clause without being aggregated must appear
in the GROUP BY clause.

6.8. Example: List all publications with more than one author.

SwWw NN -

SELECT publication, COUNT(author) as acnt
FROM wrote

GROUP BY publication

HAVING COUNT (author) > 1

6.9. Note: The meaning of a query containing aggregation, GROUP BY, or HAVING clauses is
defined by the following sequence of operations:

(1).
(2).
(3)-

FEvaluate FROM first to get a relation.
If WHERE is present, apply the conditions on the relation from FROM.

Tuples satisfying the WHERE predicate(s) are then placed into groups by the GROUP BY clause
if it is present. Otherwise, the entire set of tuples satisfy the WHERE predicate(s) is treated as
being in one group.

. The HAVING clause, if present, is applied to each group; the groups that do not satisfy the

HAVING clause predicate(s) are removed.

. The SELECT clause uses the remaining groups to generate tuples of the result of the query,

applying the aggregate functions to get a single result tuple for each group.

23

7. TRANSACTIONS AND DATABASE UPDATE

Section 7. Transactions and Database Update

7.1. There are three kinds of table updates:

e INSERT, for inserting a single constant tuple or each tuple in the result of a query;
e DELETE, for removing all tuples satisfying a condition;

e UPDATE, for updating in-place all tuples satisfying a condition.

7.2. (INSERT) Add a tuple (ey,...,ck) to table T' (¢; matches the type for attribute A;):
1 INSERT INTO T[(Al, ..., Ak)] VALUES (cl, ..., ck)
To insert multiple tuples computed by query @ to table T

1 INSERT INTO T (Q)

7.3. Example: A simple insert:
1 INSERT INTO author (aid, name) VALUES (4, 'yyk')
Add Tim as an author, with a new unique identification:

1 INSERT INTO author
2 (SELECT max(aid) + 1, 'TIM' -- subquery returns maz(aid)+1 and 'TIM'
3 FROM author)

7.4. (DELETE) Deletion all tuples that match <condition>.

1 DELETE FROM T WHERE <condition>

7.5. Example: Delete all authors who have not written anything.

1 DELETE FROM author
2 WHERE NOT EXISTS
3 (SELECT * FROM wrote WHERE author = aid)

7.6. (UPDATE) Search in table T for all tuples that match <condition>, then update their
values specified by <assignments>.

1 UPDATE T
2 SET <assignments>
3 WHERE <condition>

24

7. TRANSACTIONS AND DATABASE UPDATE

7.7. Example: Update anyone named Sue to be named Susan instead.

1 UPDATE author
2 SET name = 'Susan'
3 WHERE aid in (SELECT aid FROM author WHERE name = 'Sue')

7.8. A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is executed. To
signal an end of the transaction,

e COMMIT commits the current transaction, i.e., it makes the updates performed by the trans-
action become permanent in the database. After the transaction is committed, a new trans-
action is automatically started.

e ROLLBACK discards changes, i.e., it undoes all the updates performed by the SQL statements in
the transaction. Thus, the database state is restored to what it was before the first statement
of the transaction was executed.

Once a transaction has executed COMMIT, its effects can no longer be undone by ROLLBACK. The
database system guarantees that in the event of some failure, such as a error in one of the SQL
statements, a power outage, or a system crash, a transaction’s effects will be rolled by if it has not
yet executed COMMIT.

By either committing the actions of a transaction after all its steps are completed, or rolling back
all its actions in case the transaction could not complete all its actions successfully, the database
provides an abstraction of a transaction as being atomic, that is, indivisible. Either all the effects
of the transaction are reflected in the database or none are (after rollback).

25

Chapter 4

More on SQL

N O Ot s W N

General Integrity Constraints e e 27
VIGWS . . o o e e e 28
On Multiset Semantics e e 29
Null Values o o e e 30
Ordering and Limits« . . . 0 o e 31
Triggers o e e e e e 32
Authorization oL 34

26

1. GENERAL INTEGRITY CONSTRAINTS

Section 1. General Integrity Constraints

1.1. (CHECK) When applied to a relation declaration, the clause CHECK(<condition>)
specifies a predicate that must be satisfied by every tuple in the relation. A common use of this is
to ensure that attribute values satisfy specified conditions. It may appear on its own, or as part of
the declaration of an attribute.

1.2. Example: Put CHECK on its own vs as part of the declaration of an attribute:

1 CREATE TABLE emp (1 CREATE TABLE emp (

2 ssn INTEGER NOT NULL, 2 ssn INTEGER NOT NULL,

3 name CHAR(20), 3 name CHAR(20),

4 salary DEC(8, 2), 4 salary DEC(8, 2) CHECK (salary > 0),
5 PRIMARY KEY (ssn), 5 PRIMARY KEY (ssn)

6 6

CHECK (salary > 0))

1.3. (Assertion) An assertion is a predicate expressing a condition that we wish the database
always to satisfy. When an assertion is created, the system tests for its validity. If valid, any future
modification to the database is allowed only if it does not cause the assertion to be violated. If any
condition fails during a transaction, a rollback will be triggered.

1 CREATE ASSERTION <assertion—-name>
2 CHECK (<condition>)

1.4. Example: No pair of publications have the same pubid.
Vp,t1,ts : (pub,id(p, t1) A pub_id(p, tg) = 11 = t2).

CREATE ASSERTION unique-pubid
CHECK (
NOT EXISTS (
SELECT * FROM publication AS pl, publication AS p2
WHERE pl.pubid = p2.pubid AND pl.title != p2.title))

g W N e

1.5. Example: Every author value in a wrote tuple occurs as an aid value of some tuple in
the author table.

1 CREATE ASSERTION author-foreign-key

2 CHECK (

3 NOT EXISTS (

4 SELECT * FROM wrote AS w

5 WHERE NOT EXISTS (

6 SELECT * FROM author AS a WHERE a.aid = w.author)))

27

2. VIEWS

Section 2. Views

2.1. (Views) SQL allows a wvirtual relation to be defined by a query which conceptually
contains the result of the query. This virtual relation, called a view, is not precomputed and
stored but instead is computed by executing the query whenever the virtual relation is used. The
following statement creates a view named v that stores the results from <query>:

1 CREATE VIEW v AS <query>;

View names may appear in a query any place where a relation name may appear. In particular,
one view may be used in the expression defining another view.

2.2. (Materialized Views) Certain DBMS allow view relations to be stored, but ensure that
if the actual relations used in the view definition change, the view is kept up-to-date. Such views
are called materialized views. The process of keeping the materialized view up-to-date is called

materialized view maintenance, which can be done eagerly, lazily, or periodically, depending
on the DBMS design.

2.3. (Updatable) Modifications are generally not permitted on view relations, except in
limited cases. In general, an SQL view is said to be updatable if the following conditions are all
satisfied by the query defining the view:

e The FROM clause has only one database relation.

e The SELECT clause contains only attribute names of the relation and does not have any
expressions, aggregates, or DISTINCT specification.

e Any attribute not listed in the SELECT clause can be set to null, i.e., it does not have a NOT
NULL constraint and is not part of a primary key.

e The query does not have a GROUP BY or HAVING clause.

e In addition, if a CHECK clause is present, then the update must satisfy the condition.

28

3. ON MULTISET SEMANTICS

Section 3. On Multiset Semantics

3.1. SQL has a more general multiset or bag semantics that allows duplicates, in contrast to
the simpler set semantics of RC. More explicitly, each R/k € p (table R with arity k in the schema
p) has an extra (hidden) column that represents a count of the number of occurrences of a tuple
in any extension of R. No direct access to the repetition counts is possible, but you can infer this
by inspecting the relation itself.

3.2. A multiset semantics is assumed for existential quantification in the RC query. An additional
kind of condition “{-}” removes duplicates. Let us update the definitions from Chapter 2.

3.3. Definition: Given a database signature p = (R1/k1, ..., Rn/kn), a set of variable names
{z1,x2,...}, and a set of constants {cy, ¢, ...}, range-restricted conditions are formulas defined
by the grammar

® Ri (%, Tik,)
o1 A\ (x; = ;) , where {z;,z;} NFv(p1) # @ (Case 1)
€Tr; — Cj
©1 A P2

|

|

|

| 3z 01
| @1V 2, where Fv(p1) = Fv(pa) (Case 2)

| 1 A -2, where Fv(p1) = Fv(ps2) (Case 3)

| {¢} (the duplicate elimination operator)

A range-restricted RC query has the form {(z1,...,z,) | ¢} where {z1,...,2,} = Fv(p) and
that ¢ is a range-restricted condition.

3.4. Definition: A formula ¢ over a signature p = (Ri/k1,...Rp/k,) is true m times
wrt database instance DB = (D,=,Ry,...,R,) and valuation 6 : {z1,29,...} — D, written
DB, §,m |= ¢, as given by the following:

DB,0,0 = R; (zi1,...,Tik,) if (0(xin),...,0(zik,),m) ¢ Ry, for any m >0
DB, 0, m):RZ (xi,l,...,.%i’ki) if (H(miyl),...,ﬁ(xi,ki),m) eR;
DB,0,m = ¢ A (z; = zj) if DB,0,m = ¢A0(x;) =0(z;)
DB, 9, 1): (37@ ~ Cj) if 6 (.Z‘Z) =Cj
DB,0,mi-ma2 =@ A if DB,0,m; = ADB,6,my =
DB,0,> cpmy FE 3z - if DB,f[z:=v],m,|=¢
DB,0,mi +ma =V if DB,0,m; =9 ADB,0,mg =
DB, 0, max (0,m; —mo) F oA - if DB,0,m; =9 ADB,0,ms = ¢
DB,0,1 = {¢} if DB,0,m=¢
The answers to a query {(z1,...,xy,) | ¢} over DB is given as follows, when {x1,...,z,} = Fv(y):

{(0(x1),...,0(xn),m)| m>0ADB,d,m | ¢}

29

4. NULL VALUES
Section 4. Null Values

4.1. The keyword null indicates an absence of value.

e Arithmetic: The result of an arithmetic expression evaluates to null if any input is null.
e Comparison: SQL introduces UNKNOWN to represent any comparison involving a null value.
— In particular, NULL = NULL evaluates to UNKNOWN.
e Logic operations. Let U denote UNKNOWN.
— AND: TAU=U; FNU=F;UANU=U.
—-OR:TVvU=T, FVU=F;,UvU=U.
— NOT: =U =U.
e Predicates: IS NULL, IS NOT NULL, IS UNKNOWN.

4.2. Remark: When a query uses the select distinct clause, duplicate tuples must be eliminated.
For this purpose, when comparing values of corresponding attributes from two tuples, the values are
treated as identical if either both are non-null and equal in value, or both are null. The approach
of treating tuples as identical if they have the same values for all attributes, even if some of the
values are null, is also used for the set operations union, intersection, and except.

4.3. Example: List all author ids and names for which their homepage is unknown.

1 SELECT aid, name
2 FROM author
3 WHERE uri IS NULL;

30

5. ORDERING AND LIMITS

Section 5. Ordering and Limits

5.1. No particular ordering on the rows of a table can be assumed when queries are written. No
particular ordering of rows of an intermediate result in the query can be assumed either. However,
it is possible to order the final result of a query with an ORDER BY clause at the end of the query.

1 ORDER BY el [Dirill, ..., ek [Dirk]

Dir is either ASC (default) or DESC.

5.2. Example: List all authors in the database in ascending order of their name.

1 SELECT DISTINCT x*
2 FROM author
3 ORDER BY name;

5.3. The number of results of a query can be limited by appending a LIMIT clause to a query.
1 <query> LIMIT el [OFFSET e2];

Here, e;’s are numeric expressions. Note this semantics is non-deterministic:

e As many of the first e; answers to a query that exist for any total order to which the results
of <query> can be extended, if there is no OFFSET given.

e As many of the next e; answers to a query that exist following the first es answers for any
total order to which the results of <query> can be extended, if OFFSET is given.

Semantics becomes deterministic only when <query> has an ORDER BY clause inducing a total order.

5.4. Example: List at most the first two entries of a sorted list of authors by name.

SELECT DISTINCT x*
FROM author

ORDER BY name
LIMIT 2

W N -

List at most the next two entries following the second entry of a sorted list of authors by name.

SELECT DISTINCT x*
FROM author

ORDER BY name
LIMIT 2 OFFSET 3

W N -

31

Section 6. Triggers

6.1.

6. TRIGGERS

A trigger is a statement that the system executes automatically as a side effect of a
modification to the database. To define a tigger, we must:

e specify when a trigger to be executed, which has two parts:

— an event that causes the trigger to be checked, and
— a condition that must be satisfied for trigger execution to proceed;

e specify the actions when the trigger executes.

CRE
AFT

END

ATE TRIGGER <trigger-name>
ER <event> ON <table-or-view>
[REFERENCING OLD AS <corelation-old>]
[REFERENCING NEW AS <corelation-new>]
FOR EACH ROW
[WHEN <condition>]
BEGIN ATOMIC
<DML-action-1>;

<DML-action—n>;

Here, <event> can be INSERT, DELETE, or UPDATE ON <attribute>.

© 0 N O O W N -

L el e
DS W N e, O

managed. Deferring all to COMMIT time always works but may impact performance.

6.2. Example: To main the number of credits earned by each student:

CREATE TRIGGER credits_earned
AFTER UPDATE OF takes ON grade

REFERENCING NEW ROW AS nrow
REFERENCING OLD ROW AS orow
FOR EACH ROW
WHEN nrow.grade <> 'F' AND nrow.grade IS NOT NULL
AND (orow.grade = 'F' OR orow.grade IS NULL)
BEGIN ATOMIC
UPDATE student
SET tot_cred = tot_cred +
(SELECT credits FROM course
WHERE course.course_id = nrow.course_id)
WHERE student.id = nrow.id;
END;

6.3. Triggers in SQL implements event/condition/action (ECA) rules and make the SQL
DML Turing-complete. Note that the timing of integrity constraint checking must be carefully

32

6. TRIGGERS

6.4. Special syntax exists for common rules related to foreign key constraints:

FOREIGN KEY (<from-attribute-list>)
REFERENCES <table> [(<to-attribute-list>)]
[ON DELETE <action>]
[ON UPDATE <action> 1]

W N -

where <action> can be:

e RESTRICT: produce an error;
e CASCADE: propagate the delete;
e SET NULL: set to “unknown”.

6.5. Example:

1 CREATE TABLE wrote (

2 author INTEGER NOT NULL,

3 publication INTEGER NOT NULL,

4 PRIMARY KEY (author, publication),

5 FOREIGN KEY (author) REFERENCES author

6 ON DELETE CASCADE,

7 FOREIGN KEY (publication) REFERENCES publication)

33

7. AUTHORIZATION

Section 7. Authorization

7.1. The SQL DML includes a data control language (DCL) to manage access rights to
database objects by users and groups. Each user may be authorized of all, none, or a combination
of the following privileges on a specified parts of a database, such as a relation or a view: read,
insert, update, and delete.

When a user submits a query or an update, the SQL implementation first checks if the query or
update is authorized, based on the authorizations that the user has been granted. If the query or
update is not authorized, it is rejected. In addition to authorizations on data, users may also be
granted authorizations on the database schema, allowing them, for example, to create, modify, or
drop relations.

The ultimate form of authority is that given to the database administrator. The database admin-
istrator may authorize new users, restructure the database, and so on. This form of authorization
is analogous to that of a superuser, administrator, or operator for an operating system.

Here’s the simplified syntax:

GRANT <role> TO <user>

GRANT <what> ON <object> TO <user-or-role>
REVOKE <role> FROM <user>

REVOKE <what> ON <object> FROM <user-or-role>

SswWw N

where <what> ON <object> can be

e For databases: CONNECT.
e For tables or views: ALTER, REFERENCES, SELECT, INSERT, DELETE, or UPDATE

To create new roles, use
1 CREATE ROLE <role>.

The role DBADM is a superuser.

7.2. Example: Create the pat role and grant ability to access the payroll database to pat.

1 CREATE ROLE pat;
2 GRANT CONNECT ON payroll TO pat;

Grant ability to query table employee to pat:
1 GRANT SELECT ON employee TO pat;
Add yyk to the payroll project team:

1 GRANT pat TO yyk;

34

Chapter 5

The Entity-Relationship Data Model

1 The Entity-Relationship Model oo
2 Integrity Constraints L
3 Extensions to E-R Modeling L e
4 Design Methodology e
5 ER Diagrams to Relational Schemata o
6 Mapping Extended Features L e

35

1. THE ENTITY-RELATIONSHIP MODEL

Section 1. The Entity-Relationship Model

1.1. A conceptual data model serves as a first step in formally capturing the metadata
form information systems. Informal requirements for the underlying information are mapped to
such a model. In designing a database schema, we must ensure that we avoid two major pitfalls:
redundancy and incompleteness.

1.2. The entity-relationship (E-R) data model was developed to facilitate database design
by allowing specification of an enterprise schema that represents the overall logical structure of a
database. The E-R model employs three basic concepts: entities, relationships, and attributes.

o Entity:

— An entity is a distinguishable thing.
— An entity set is a set of entities of the same variety.
— An entity set is represented in an E-R diagram by a rectangle.
e Attribute:
— An attribute describes properties of entities.
— The domain of an attribute is the set of permitted values for this attribute.
— An attribute set is represented in an E-R diagram by a ellipse.
e Relationship:
— A relationship is an association among several entities.
— A relationship set is a set of relationships of the same type.
— An relationship set is represented in an E-R diagram by a rhombuses.
e Role:
— A role is the function of an entity set in a relationship set.
— A role name is an explicit indication of a role.

— Role labels are needed when an entity set has multiple functions in a relationship set.

1.3. Example:

HomeTeam

Team Match Location
Visitor

TeamName @@

36

2. INTEGRITY CONSTRAINTS

Section 2. Integrity Constraints

2.1. There are four varieties of integrity constraints in an ER model that are commonly expressed
with graphical annotations:
(1). primary keys;
(2). binary relationship types;
(3). existence dependencies;
(4). general cardinality constraints.

2.2. (Primary Keys) A primary key is a selection of attributes for an entity set for which
facts serve as the means of reference to its entities. Primary keys are labeled with underlines.

2.3. Example: FirstName, Initial, and LastName together serve as the primary key for
Employee. It’s important to note that a primary key may consists of more than one attributes.

2.4. (Binary Relationships) The idea of “one” is represented by an arrow.

e Many-to-Many (IN:N): An entity in one entity set can be related to any number of entities
in the other and the converse also holds.

O-<¢ -0

e Many-to-One (N:1): Each entity in one entity set can be related to at most one entity in the
other entity set, but no such limit exists for the converse.

O—<¢ -0

e One-to-Many (1:N): Inverse of many-to-one.

O-<¢« O

e One-to-One (1:1): Each entity in one entity set can be related to at most one entity in the
other, and the same holds for the converse.

O— O« 0O

Note that none of these binary relationship types imply any mandatory participation of entities.

37

2. INTEGRITY CONSTRAINTS

2.5. Sometimes, the existence of an entity depends on the existence of another entity. If z is
existence dependent on y, we call y a dominant entity and =z a subordinary entity. The
subordinate entity are surrounded by double boundaries (rectangle inside rectangle).

2.6. A weak entity set is an entity set containing subordinate entities. The set that a weak
entity set is subordinate to is called the identifying or owner entity set. The relationship
associating the weak entity set and the identifying entity set is the identifying relationship.
Identifying relationships are labeled with double boundaries.

A discriminator is a selection of attributes for a weak entity set for which facts serve as the means
of distinguishing subordinate entities for any given dominant entity. The discriminators (attributes

of a weak entity set) are labeled via dashed underlines.

A weak entity set must be in a (IV:1) relationship with at least one distinct entity set.

Identifying
Relationship

2.7. Example: Transactions are existence dependent on accounts. Moreover, this is a many-
to-one relationship, i.e., each account may be associated with many transactions.

2.8. A general cardinality constraint determines lower and upper bounds on the number of
relationships of a given relationship set in which a component entity must participate. An upper
bound of NN indicates that no upper bound exists. This is labeled via component edge labelling:

OO — e
(Lu)

38

3. EXTENSIONS TO E-R MODELING

Section 3. Extensions to E-R Modeling

3.1. (Structured Attributes) Each attribute in ERM can be characterized by types:

e Composite Attributes: So far, the attributes are atomic or simple as they have no con-
stituent parts. Composite attributes, on the other hand, can be divided into subparts. As
an example, an address may be split into street, city, province, and postal code.

e Multi-Valued Attributes: A multi-valued attribute denotes a finite set of similar facts.
For example, a person may have 0 to N phone numbers. When appropriate, upper and lower
bounds may be placed on the number of values in a multi-valued attribute.

e Derived attributes: The value for this type of attributes can be derived from the value of
other related attributes. For example, age may be derived from date0fBirth.

3.2. (Aggregation) A relationship set can be viewed as a higher-level entities. In the following
example, each course account is allocated for a student enrolment (the big rectangle) in the course.

Student @ Course

3.3. A specialization is an integrity constraint asserting that the entities of one entity set
are also entities of another entity set. In the following example, the arrow indicates that graduate
students are students who have a supervisor and a number of degrees (these two attributes are not

possessed on general students).
StudentNumber

1)) SupervisedB 0.

Professor

39

3. EXTENSIONS TO E-R MODELING

3.4. (Generalization) A generalization is an integrity constraint asserting that entities of
one entity ste are also entities of at least one of two or more other entity sets. A total general-
ization is one where each higher-level entity must belong to a lower-level entity set. Otherwise,
the generalization is partial. The following example says a vehicle is also either a car or a truck.

PassengerCount

MakeAndModel

MaxSpeed

MakeAndModel

3.5. (Disjointness) Two entity sets participating in a generalization are assumed to be
disjoint by default. This can be overridden by a graphical annotation on the generalization. In
the following example, the OVERLAPS indicates that there are entities that can be both a car and

a truck, such as a utility vehicle.
MakeAndModel

OVERLAPS

MaxSpeed

40

4. DESIGN METHODOLOGY

Section 4. Design Methodology

4.1. An ER diagram for an information system is usually obtained from two sources:

(1). from parts of ER diagrams for existing information systems, or
(2). from informal requirements for the information systems obtained by requirements elicitation.
Issues emerge when authoring an ER diagram from informal requirements:
e attribute vs entity set;
e entity set vs relationship set;
e arity of relationship set;
e use of extended features;

e methodological considerations.

4.2. (Attributes vs Entity Sets) Rule of thumb:

e Is it a separate object?

e Do we maintain information about it?

e Can several of its kind belong to a single entity?

e Does it make sense to delete such an object?

e Can it be missing from some of the entity set’s entities?

e Can it be shared by different entities?

An affirmative answer to any of the above suggests going with the entity set.

4.3. Remark: We can represent a relationship on n entity sets with n binary relationships.

Figure 5.1: Credit: Ven

41

4. DESIGN METHODOLOGY

4.4. A simple methodology:

(1). Recognize entity sets.

(2). Recognize relationship sets and participating entity sets.

(3). Recognize attributes of entity and relationship sets.

(4). Define relationship types and existence dependencies.

(5). Define general cardinality constraints, keys and discriminators.

For each step, update the ER diagram and maintain a log of assumptions motivating the choices,
and of restrictions imposed by the choices.

42

5. ER DIAGRAMS TO RELATIONAL SCHEMATA

Section 5. ER Diagrams to Relational Schemata

5.1. We now wish to obtain a logical design for a relational database from a conceptual design.

e Each entity set maps to a new table.
e Each attribute maps to a new table column.

e Each relationship maps to either new table columns for existing tables or a new table.

5.2. Each entity set maps to a new table and each attribute maps to a new table column.

e A strong entity set E with attributes aq,...,a, translates to a table E with attributes
ai,-..,a,. BEach entity maps to a row in the table and the primary key of the entity set maps
to the primary key of the table.

e A weak entity set E with attributes aq,...,a, translates to a table E with attributes
A1y, Qp,b1,... by, where b;’s are the primary key for the owner identity set. In other
words, the columns of a table corresponding to a weak entity set should include:

— attributes of the weak entity set.
— attributes of the identifying relationship set, and
— primary key attributes of entity set for dominating entities.

5.3. Example: In the design below, Account is a strong entity and Transaction is a weak
entity. Translating Account is easy. For Transaction, we need its three attributes plus the primary
key of its owner entity set, AccNum. Note that TransNum and AccNum together make up the primary
key for Transaction.

Account
AccNum | Balance

Transaction

@ @ TransNum | AccNum | Date | Amount

In addition, we have the following constraint on Transaction:

1 FOREIGN KEY (AccNum) REFERENCES Account;

43

5. ER DIAGRAMS TO RELATIONAL SCHEMATA

5.4. Each relationship maps to either new table columns for existing tables or a new table.

o If the relationship set is an identifying relationship set for a weak entity, no action needed.

e If we can deduce the general cardinality constraint (1,1) for a component entity set E, then
add the following columns to table E:
— attributes of the relationship set, and

— primary key attributes of remaining component entity sets.

e Otherwise, relationship set R translates to a new table R.

— Let R denote the relationship set, aq, . .., a, be the set of attributes formed by the union
of primary keys of each entity sets participating in R, and by, ..., b, be the descriptive
attributes. Then R is represented by the relation schema with columns

(a1, any U b1, .. bm).

— The primary key of table R is determined as follows:
« If we can deduce the cardinality constraint (0, 1) for a component entity set F, then
take the primary key attributes for F.
* Otherwise, the primary key is the union of primary key attributes of each component
entity of relationship R.

5.5. Example: In the design below, Team and Location are strong entity sets and their
translations are straightforward. We translate Match into its own table, with primary keys from
its components: TeamName and LocName. Note that we combined role names and component entity
set names to form more descriptive attribute names.

HomeTeam .
R Team Location
Team Location
Visitor VAN ‘ LocName ‘ Address ‘
Match

@ ‘ HomeTeamName ‘ VisitorTeamName ‘LocName ‘Score ‘
T I

In addition, we have the following foreign key constraints on Match:

1 FOREIGN KEY (HomeTeamName) REFERENCES Team;
2 FOREIGN KEY (VisitorTeamName) REFERENCES Team;
3 FOREIGN KEY (LocName) REFERENCES Location;

44

6. MAPPING EXTENDED FEATURES
Section 6. Mapping Extended Features

6.1. (Aggregation) Always map a relationship set R that is aggregated to a new table R.
To represent a relationship involving the aggregation of R, treat the aggregation like an entity set
whose primary key is the primary key of the table for R.

6.2. Example: Pay attention to what’s in EnrolledIn and CourseAccount.

Student @ Course Student Course Account
StudentNum CourseNum Userld

@ EnrolledIn
@Account ‘ StudentNum ‘CourseNum ‘
< '
CourseAccount

‘ UserId‘ StudentNum ‘CourseNum ‘ExpirationDate

In addition, we have the following foreign key constraints:

—-— In EnrolledIn:

FOREIGN KEY (StudentNum) REFERENCES Student;

FOREIGN KEY (CourseNUm) REFERENCES Course;

-— In CourseAccount:

FOREIGN KEY (UserId) REFERENCES Account;

FOREIGN KEY (StudentNum, CourseNum) REFERENCES EnrolledIn;

D O W N

6.3. (Specialization) Treat an entity set which is a specialization of one or more other entity
sets as a weak entity set with an empty discriminator set and that is existence dependent on each
of the other entity sets.

6.4. Example: We omit the foreign key constraints.

StudentNumber

StudentName

Student
‘ StudentNumber ‘ StudentName ‘

Graduate

he ‘ StudentNumber ‘ ProfessorName ‘

Degree

Professor

ProfessorName

‘ StudentNumber ‘ Degree ‘

Professor

ProfessorName

45

6. MAPPING EXTENDED FEATURES

6.5. (Generalization) Treat a generalization of n entity sets as n specializations and add
additional constraints for converge and, if required, for disjointedness.

6.6. Example: We omit the foreign key constraints.

Vehicle
‘ LicenceNum ‘ MakeAndModel‘ Price ‘

<~
Truck

‘ LicenceNum ‘ Tonnage ‘ AxelCount ‘

Car

‘ LiccnceNum‘ MaxSpeed ‘PasscngerCount

PassengerCount

6.7. (Using Views) Sometimes, an entity set can be mapped to a view instead of a table,
which would increase efficiency and transparency. Here are two cases where this is allowed:

e An entity set E that is a specialization of one parent entity set and that satisfies the following
conditions qualifies:
(1). only typing attributes are declared on F,
(2). no foreign key constraints reference E, and
(3). all entity sets that are specializations of E are also mapped to views.
Two more remarks:
— Need to add a new two-valued typing attribute is —F together with E’s existing typing
attributes to the parent entity set to enable a view definition for the mapping of E.

— Multiple typing attributes can be replaced with a single typing attribute when underlying
entity sets are disjoint.

e An entity set E that is a generalization of two or more other child entity sets and that has
no foreign key constraints that reference E qualifies. Also need to ensure all attributes on E
are defined on each child entity set to enable a view definition for the mapping of E.

6.8. Example: Using the same design as above, we have

Truck
‘ LicenceNum ‘ MakeAndModel ‘Price ‘Tonnage

AxelCount ‘

Car
| LicenceNum | MakeAndModel ‘Price |MaxSpeed ‘PassengerCoun[‘

1 CREATE VIEW Vehicle AS (
2 (SELECT LicenceNUm, MakeAndModel, Price FROM Truck) UNION
3 (SELECT LicenseNum, MakeAndModel, Price FROM Car))

46

	Introduction
	Motivation
	Database Management Systems
	Database Languages

	The Relational Model
	Relational Databases
	Integrity Constraints
	Safety and Finiteness

	Introduction to SQL
	Overview of SQL
	SQL Data Definition
	Conjunctive Queries
	Set Operations
	Nested Queries
	Aggregation
	Transactions and Database Update

	More on SQL
	General Integrity Constraints
	Views
	On Multiset Semantics
	Null Values
	Ordering and Limits
	Triggers
	Authorization

	The Entity-Relationship Data Model
	The Entity-Relationship Model
	Integrity Constraints
	Extensions to E-R Modeling
	Design Methodology
	ER Diagrams to Relational Schemata
	Mapping Extended Features

