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1 Counting  

1.1 Formal Power Series  

Let  be a sequence of rational numbers (in this course, we mainly deal with integer 

coefficients). Then  is called a formal power series. We 

say that  is the coefficient of  in  is write . Note that each  must be a 

finite number for  to be a FPS.

1.1.1 Ring of FPS  

We can add and multipliy formal power series:

1.1.2 Inverse of FPS  

Let  and  be formal power series. We say that  is the inverse of  if  

We denote this by  or .

Theroem  Let  be a formal power series. Then  has an inverse if and only if it has a 

non-zero constant term, i.e., .

1.1.3 Composition of FPS  

The composition of a formal power series  and  is defined by

Unlike polynomials, however, this operations is not always defined:

Theorem  Let  and  be formal power series. Then the composition  is a formal 

power series if the constant term of  is equal to zero.

1.1.4 Coefficients  

Let  be any formal power series, then
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1.2 Generating Series  

Let  be a set of configurations with a weight function  the generating series for  

with respect to  is defined by  

One way to look at the weight function is that the weight function  assigns each element  

to a non-negative integer . The coefficients  of  counts how many times an  

appears in the image set.

1.2.1 Generating Series and FPS  

By collecting like-powers of  in , we get

where  denotes the number of elements in  with weight . In other words, the coefficient of  

in  counts the number of elements of weight  in .

1.2.2 Sum Lemma and Product Lemma  

If  and , then .

Let  and  be sets of configurations with weight functions  and  respectively. If 

 for each , then .

More generally, if  are sets, then  denotes the set of all -tuples 

 where  for all . Now suppose that  is a weight function for  and that  is 

a weight function for . If  for each -tuples , 

then .

1.2.3 Geometric Series  

1.2.4 Negative Binomial Theroem  
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2 Compositions and Strings  

2.1 Compositions of An Integer  

2.1.1 Definition  

Let . A composition of  with  parts is an ordered list  where  for all 

, is called a part of the composition, and . There is one composition of  

the empty composition, which is a composition with  parts.

2.1.2 Problem Solving  

To answer the question of the form how many compositions of  has XXX properties?:

1. Find the set  of all compositions that satisfy these properties.

2. Find the generating series for  with respect to .

3. Extract .
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2.2 Binary Strings  

2.2.1 Definition  

A binary string is a string of 's and 's; its length, denoted by , is the number of 

occurrences of  and  in the string. The empty string, denoted by , has length .

2.2.2 Operations  

There are three operations to generating new strings based on existing ones:

1. Union: 

2. Concatenation: 

3. Kleene Star:  is empty or more words from  put together.

2.2.3 Unambiguous Expressions  

We say that the expression  is ambiguous if there exists distinct pairs  and  in 

 with ; otherwise, we say that  is an unambiguous expression.

Theorem: Characterization of Umambiguous Expressions  

1. If  and  are finite sets, then  is unambiguous if and only if .

2. If , then  is unambiguous.

3. If  and disjoint, then  is unambiguous.

2.2.4 Sum and Product Rules for Strings  

Theorem  Let ,  be sets of binary strings.

1. If the expression  is unambiguous, then .

2. If the expression  is unambiguous, then .

2.2.5 Recursive Decompositions of Binary Strings  

We can also give a recursive decomposition to a set of binary strings, in which a set is 

decomposed in terms of itself. For example, we can decompose  as , 

which lead to the expression  as expected.
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3 Recurrences  

Let  where the coefficients  satisfy the recurrence

If  then there exists a polynomial  with  such that 

The recurrence is called a homogeneous equation as the RHS equals zero; the polynomial

is called the characteristic polynomial of the recurrence.

Now suppose  satisfies . If the characteristic polynomial of this recurrence has root  

with multiplicity  for , then the general solution to equation (1) is

where  is a polynomial in  with degree less than , and these polynomials are determined 

by the .

Given recurrence and initial conditions, determine general solution.

1. Write out the characteristic polynomial.

2. Factor it into the form .

3. Determine the roots and associated multiplicity: .

4. Plug in these values into the general solution formula of .

5. Plug in initial conditions and solve the system of equations.

6. Plug in the solutions and obtain the general formula.

Given a close-form expression, determine recurrence and initial conditions.

1. Recognize all  (anything of the form  for some ).

2. Write out the characteristic polynomial .

3. Multiply out the expression.

4. Write out the homogeneous recurrence.

5. Plug in  and solve for initial conditions.
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