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1 Euclidean Space  

Abstract

1.1 Definition: Euclidean Space

1.2 Definition: Inner Product

1.3 Proposition: Positive Definiteness, Symmetry, Bilinearity of Inner Product

1.4 Definition: Euclidean Norm

1.5 Proposition: Positive Definiteness, Homogeneous, Tri-Inequality of Euclidean Norm

1.6 Theorem: Cauchy-Schwarz Inequality

1.7 Remark: Pythagorean Theorem in 

1.8 Remark: Equality Condition for CSI

1.9 Theorem: Triangle Inequality

1.10 Remark: Equality Condition for TI

1.11 Proposition: Reverse Triangle Equality

1.1 Definition:  Euclidean space is  with the structure of space imposed by the Euclidean 

inner product and norm.

1.2 Definition:  We define the Euclidean inner product (also called the dot product or scalar 

product) of vectors  and  by

1.3 Proposition:  Let  and . The Euclidean inner product satisfies the 

following properties:

1. Positive definite:  with equality if and only if ,

2. Symmetry: ,

3. Bilinearity: .

1.4 Definition:  The Euclidean norm of a vector  is defined by

1.5 Proposition:  Let  and . The Euclidean norm satisfies the following properties:

1. Positive definite:  with equality if and only if ,
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2. Homogeneous: ,

3. Triangle Inequality: .

1.6 Theorem: (Cauchy-Schwarz Inequality)  For any , .

Proof.  The statement is trivial if  or . Suppose  and define the unit vectors 

For each ,

Adding together the inequalities for all 's gives us

since  by construction.

Repeat this with the component-wise inequality, we get

and

So far, we have shown that , which is the Cauchy-Schwarz Inequality applied to the 

unit vectors  and .

Next, by symmetry and bilinearity of the Euclidean inner product (1.3),

Hence, we have

as desired. 

1.7 Remark:  Recall the Pythagorean Theorem in : . We can generalize this to : 

if  and  are two orthogonal vectors in , Then . 

Proof. By definition,  and  are orthogonal implies . Then



Since the inner product is positive definite, the result follows by taking the positive square root of 

both sides. .

1.8 Remark:  The equality for CSI is attained if and only if  and  are linearly dependent, i.e., 

either one of the vector is zero, or there exists  such that . 

Proof. The zero-vector case is trivial; we shall prove the second case. Suppose  and . 

 : Suppose . Consider the orthogonal decomposition  for some  

that is orthogonal to , i.e., . By the Pythagorean Theorem,

The equality holds iff the last inequality above is an equality, or equivalently . which 

implies  as desired.

 : Let , then . 

1.9 Theorem: (Triangle Inequality) For any two vectors , 

Proof.  

1.10 Remark: The equality for Triangle Inequality is attained if and only if  and  are linearly 

dependent, i.e., either one of the vectors is zero, or  for some . 

Proof. The zero-vector case is trivial; we show the second case. Suppose .

 : In our above proof for triangle inequality, for equality to hold, the third and fourth 

inequality above must become equality. The Cauchy-Schwarz Inequality becomes an equality 

when  for some  (1.7); the absolute value inequality becomes an equality when



Since  for ,  iff . Hence, the equality holds when  for some 

 : Let  for some . Then

as desired.  

1.11 Proposition: (Reverse Triangle Inequality) For : . We prove 

this by showing that the following two inequalities hold:

By Triangle Inequality, , so .

Similarly, , so . 

Therefore,  as required. 
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2 Sequences  

Abstract

2.1 Definition: Infinite Sequence

2.2 Definition: Convergence and Limit of a Sequence

2.3 Proposition: Component-wise Convergence

2.4 Definition: Cauchy Sequence

2.5 Proposition: Component-wise Cauchy

2.6 Definition: Complete Set

2.7 Theorem: Cauchy iff Convergent (in )

2.1 Definition:  An (infinite) sequence of vectors, or points, in , is an infinite, enumerated 

list  where  for all .

2.2 Definition:  A sequence of points  converges to a point  if the following statement is 

true: given , there exists an integer  such that  for all . 

If such a point  exists, then we say that  is convergent and that  is the limit of the 

sequence; we write .

A direct result from the definition is that 

2.3 Proposition:  Let  be a sequence of points in  where each point is of the form 

. Then, the sequence  converges to a point  if and only 

if  for all .

: Suppose  converges to . We want to show that for each  and for all , 

there exists  such that  for all . 

Let  and . By convergence of  to , we konw that there exists  such that 

 for all . By the definition of Euclidean norm, for all ,

Hence, for all , we have  as required.

 : Let  and define . For each , there exists  such that 

 for all  (convergence of component sequence). Define  so that 

 for all  and for all . By the definition of the Euclidean norm,
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for all  as required. 

2.4 Definition:  A sequence  of points in  is Cauchy if given , there exists an integer 

 such that .

2.5 Proposition:  Let  be a sequence of points in  where each point is of the form 

. The sequence  is Cauchy if and only if  is Cauchy for each 

.

Proof. 

: Let . Since  is Cauchy, there exists  such that  for any  

Then, for ,

where . Thus  is desired; each component sequence is indeed Cauchy. 

 : Let . Since  is Cauchy for each , there exists  for each  such that for 

all , . Let . Then for all ,  for all . 

It follows that 

Hence,  is Cauchy. 

2.6 Definition:  A subset  of  is complete if every Cauchy sequence of points in  converges 

to a point in .

2.7 Theorem:  A sequence  in  converges if and only if it is Cauchy.

Proof.  By Proposition 1.3, a sequence converges in  if and only if each component sequence 

converges. We know that a sequence converges in  if and only if it is Cauchy. By Proposition 

1.5, each component sequence is Cauchy if and only if the sequence in  is Cauchy. 
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3 Bounded, Closed, and Open  

Abstract

3.1 Definition: Bounded

3.2 Theorem: Bolzano-Weierstrass Theorem

3.3 Definition: Limit Point, Closure, and Closed Set

3.4 Proposition: Closure is Closed and the Smallest Superset

3.5 Proposition: Closed Intervals are Closed

3.6 Definition: Open Ball, Neighborhood, and Open Set

3.7 Definition: Interior Point and Interior

3.8 Proposition: Interior is the Largest Open Subset

3.9 Proposition: Open Intervals are Open

3.10 Remarks: Remarks on Interior and Closure

3.1 Definition:  A sequence  in  is bounded if there exists a  such that  

for all . A set  is bounded if there exists  such that  for all .

3.2 Theorem: (Bolzano-Weierstrass Theorem)  Every bounded sequence  in  has a 

convergent subsequence .

3.3 Definition:  Let . A point  is a limit point of  if there exists a sequence 

 of points in  that converges to . The closure of , denoted , consists of all 

points in  together with all limit points of . A set  is said to be closed if it coincides 

with its closure, or equivalently, contains all of its limit points.

3.4 Proposition:  For any subset , the closure of  is closed. Moreover, it is the smallest 

closed set that contains .

Proof. The proof has two parts.

Part I. Let  be a limit point of . We must show that . Since  is a limit point of , there 

exists a sequence  in  that converges to . For each ,  is a limit point of  so there 

is a sequence of points in  converging to . Hence, we can find a point  such that 

 for each . By construction, . Then,

Therefore,  is a limit of a sequence in  and must be in . Since every limit point of  is in , 

we conclude that  is closed.
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Part II. We first prove that  contains  by noticing that for any , we can construct a 

sequence  for , which converges to . Hence, every point in  is a limit point of  and 

must be in  by definition.

Suppose  is a closed set that contains . Every limit point  of  is the limit of some sequencee 

in , and this sequence is also a sequence in . Hence,  is a limit point of . Since  is closed, 

, so every point in  is in . In other words,  is the smallest closed set containing . 

3.5 Proposition:  Every closed interval in  is a closed subset of .

Proof.  Let  be a limit point of the given closed interval . To prove that  is closed, we 

must show that , or equivalently, . 

Since  is a limit point, there exists a sequence  of points in  that converges to . 

Suppose to the contrary that . Then either  or . WLOG, suppose . The 

case  is analogous.

Let . By definition of limits, there exists  such that  for all . 

This means that  for all . In particular,  so , 

contradicting our assumption that all elements of the sequence are in . 

3.6 Definition:  We define the open ball of radius  about a point  as the set

A set  is called a neighbourhood of  if there exists  such that .

A set  is open if  is a neighbourhood of each of its points.

3.7 Definition:  A point  is called an interior point of  if all points sufficiently close to  

(including  itself) are also in , that is, there exists an open ball  for some .

The interior of a set  is the set of all interior points of  and is denoted . If  is 

empty, then we say that  has empty interior. Otherwise, it has nonempty interior.

3.8 Proposition:  The interior of  is the largest open subset of . 

Proof.  Let  and  be the largest open subset of . We want to show that .

Fix any . Then there exists an open ball . Since  is an open subset 

of  and  is the largest open subset of , we get , which implies  and . 

Now fix . Since  and it is open, there exists , and by definition,  and 

. Hence, . 

3.9 Proposition:  Every open interval  is open in .

Proof.  For , set . Then for ,  

and , thus . Hence . 



3.10 Remarks:

1. The interior of the closed interval  is the open interval ; the closure of the open 

interval  is the closed interval .

2. The set  is not open. In fact, it has an empty interior.
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4 More on Closed and Open  

Abstract

4.1 Proposition: Clopen Sets in 

4.2 Theorem: Complement of Open and Closed Sets

4.3 Theorem: Arbitrary Union of Open Sets is Open

4.4 Theorem: Finite Intersection of Open Sets is Open

4.5 Theorem: Arbitrary Intersection of Closed Sets is Closed

4.6 Theorem: Finite Union of Closed Sets is Closed

4.1 Proposition:  The only subsets of  that are both open and closed are  and .

Proof. We prove by contradiction. Suppose  is a non-trivial, proper subset which is open 

and closed. Take  and . Because  is open, there exists  such that . 

Also, because , there is  such that . Consequently, by the 

Least Upper Bound Principle of , we may find . Because  is closed, 

 and by definition of , for every , we have .

Next, given , choose . Since  is closed and bounded, it is 

compact. Then, since  for every , there is a subsequence  with a limit, call it . 

We conclude by showing , so that . Then, for every , because there is 

 such that , . Finally, since , we contradict that 

 is open.

Let . Find  so that for ,  and choose  so that, for , 

, i.e., . Then, for , 

Since  was arbitrary,  as desired. 

4.2 Theorem:  A set  is open if and only if its complement, , is 

closed.

Proof.

 is open  is closed: Let  be an open subset of  and suppose that  is a limit point of 

. Suppose for contradiction that . Since  is open, there exists an open ball . 

Then, there is no point  such that . No sequence in  can converge to , 

contradicting the assumption that  is a limit point of . Therefore, all limit points of  must 

be in , i.e.,  is closed.
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 is not open  is not closed: Suppose  is not open. Then, there must be a point  

such that for every , the open ball  contains a point in . Construct a sequence  

in  such that  for each . Then, , which means that there is a 

limit point of  that is not in . This proves that  is not closed. 

4.3 Theorem:  The union of an arbitrary collection of open sets is open.

Proof. Suppose  is open for each  in an arbitrary indexing set . Let  be a point in . 

If  is empty, it is trivially open. Suppose  is not empty. To show that  is open, we must 

prove that there exists  such that . If , then  for some . By 

assumption,  is open so there exists  such that . Since , it follows that 

. 

4.4 Theorem:  The intersection of a finite collection of open sets is open.

Proof. Suppose  is open for  and let . If  is empty, then it is trivially open. 

Suppose  is not empty. We want to show that . Let . Then,  for all , 

so for each  there exists some  such that . Let . Then we have 

 for all . Hence, there exists  and . Now suppose that . Then 

again there exists  such that . Since , . Hence,  and  is 

an open set. 

4.5 Theorem:  The intersection of an arbitrary collection of closed sets is closed.

Proof. Suppose  is closed for each  in an arbitrary indexing set . Let . If  is 

empty, then it is trivially closed. Suppose  is not empty. Let  be a limit point of . We want to 

show that .

Since  is a limit point of , there exists a sequence  of points in  that converges to . 

Since , each  must be in  for all . We are given that  is closed for every , so 

 must be in  for every . Therefore, , i.e.,  is closed. 

4.6 Theorem:  The union of a finite collection of closed sets is closed.

Proof. We prove the case when there are two sets. The rest can be proved by induction. Suppose 

 and  are two closed subsets of  that are not both empty (  is trivially empty if both 

are empty sets). Let  be any limit point of the set . We need to show that .

Since  is a limit point of , there exists a sequence  of points in  that converges 

to . Either  or  (or both) must contain infinitely many elements of the sequence. WLOG, 

suppose  contains infinitely many elements of .

Then, we can construct a sequence  with (some of) these elements:  for all . 

The subsequence must also converge to . Since  is closed, the limit point . Hence, 

, which proves that  is closed. 



5 Compact Sets  

Abstract

5.1 Definition: (Sequential) Compactness

5.2 Proposition: Cube is Compact

5.3 Proposition: Closed Subset of Compact Set is Compact

5.4 Theorem: Heine-Borel Theorem

5.5 Remark: Finite subset of  is Compact

5.6 Definition: Open Cover and Finite (Open) Subcover

5.7 Definition: Topology Compactness

5.8 Theorem: Equivalence of Definitions of Compactness

5.1 Definition:  Let  be a subset of . We say that  is compact if every sequence of points 

in  has a subsequence that converges to a point in .

5.2 Proposition:  The cube  is a compact subset of  for any  with .

Proof. Let  be a sequence of points in . We can write  for 

each . Since  is bounded, by BWT, we can find a subsequence  that converges to a 

limit . To show that , by component-wise convergence, 

for . Since for each  and for all ,  and  is a closed 

subset of , we deduce that  for each . Therefore,  and  is compact. 

5.3 Proposition: If  is a compact subset of  and  is a closed subset of , then  is 

compact.

Proof. Suppose  is a sequence in . To prove that  is compact, we must show that there is 

a subsequence  that converges to a point in .

Since the sequence is in  and  is compact, there must exist a convergent subsequence with 

. By definition,  is a limit point of . Since  is closed, , proving that  

is compact. 

5.4 Theorem: (Heine-Borel Theorem) A subset of  is compact if and only if it is closed and 

bounded.

Proof. 

 : Suppose  is closed and bounded. By boundedness, there exists  such that 

 for every , so  is contained in the cube , which is a compact subset of  

(5.2). By assumption,  is a closed subset of a compact subset of  and thus compact (5.3).
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 : Let  be a compact subset of . First, we show that  is closed. Suppose  is a limit point 

of . Then there exists a sequence of points in  such that . Since  is compact, 

there exists a subsequence of this sequence that converges to a point in . But every subsequence 

of a convergent sequence must converge to the limit of the sequence. Hence .

We show  is bounded by contradiction. Suppose that  is not bounded. Then, we can construct 

a sequence  such that  for each . Since  is compact, there exists a 

subsequence  that converges; denote the limit . Choose  in the definition 

of convergence. There exists an integer  such that  for all . By the Reverse 

Triangle Inequality,

But for any point , there exists an integer  such that . For sufficiently large , 

we will have  and, by construction, . This contradicts the statement 

above, proving that  must be bounded. 

5.5 Remark:  So far, we could prove compactness in two ways, either by using the definition of 

sequential compactness directly (5.1), or showing the set is closed and bounded (5.4). We will use 

both to prove that every finite subset of  is compact.

Sequential compactness: Let  be a finite set and  be a sequence. Because  is 

finite and the sequence is infinite, there exists  and infinitely many indices  such 

that . Then  is a constant subsequence converging to . By definition,  is 

compact.

HBT: Let  be a finite subset and  be a sequence of  with limit . Set 

. Because  is convergent, it is Cauchy, so there exists  such 

that for , . We conclude that  for all  because  is minimal. So, 

. Now, fix  and set . Then,  for any  and 

we have shown that  is closed and bounded. By HBT,  is compact. 

Next, we cover an alternative definition of compact, used commonly in topology.

5.6 Definition:  Suppose  is an open subset of  for each  in a (possibly infinite) indexing 

set . If  is a subset of  and , then we say that  is an open cover of . 

If there exists a finite subset  of  such that , then  is a 

finite (open) subcover of .

5.7 Definition:  A set  is compact if every open cover of  has a finite subcover.

5.8 Theorem:  Let . Show that  satisfies the topological definition of compact if and 

only if  is closed and bounded.

Proof. We prove in three steps.



If every open cover of  has a finite subcover, then  is bounded: Consider the set of open balls 

. Since the union of all such balls is , this is an open cover of  for any . If 

there exists a finite subcover , then , where 

. Then  is a bound for the norm of points in , i.e.,  is bounded.

If every open cover of  has a finite subcover, then  is closed: Let . For each integer , 

define the open set . Note that  so that  is 

an open cover of .

By assumption, there exists a finite subcover . Let . 

Then, . Choose any  such that . Then, the open ball  is disjoint from 

. Hence, . This prove that  is open.

If  is closed and bounded, then every open cover of  must have a finite subcover: If  is 

bounded, then there exists  such thata . Since a cube is compact (5.2), we 

know that every open cover of  has a finite subcover.

Let  where  is an indexing set, be an open cover of . Note that in general,  

is not an open cover of the cube .

Since  is closed, its complement must be open. Then,  must be an open cover of 

 (note that ). Therefore, there must be a finite set of indices  

such that  is a finite subcover of .

Since , we must have . By definition,  so 

. Therefore, we have found a finite subcover  of  from the 

arbitrary open cover , as required. 
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6 Compact and Connected  

Abstract

6.1 Definition: Separation and Connectedness

6.2 Remark: Remarks

6.3 Proposition:  is Connected

6.4 Proposition:  is Connected

6.1 Definition:  Let  be a non-empty subset of . A separation of  is a pair  of open 

sets that satisfy the following conditions:

1. ,

2. ,

3. ,

4. .

If there exists a separation of , we say that  is disconnected. Otherwise, we say  is 

connected.

6.2 Remarks:

1. We do not use the terms connected or disconnected to describe .

2. In the above definition, we required  and  to be open sets, but we do not rely on the 

openness. Observe if  and  (both closed as they are complements of open sets) satisfy 

the four properties above, then  (open sets) satisfy the original definition.

6.3 Proposition:   is connected.

Suppose for a contradiction that we could find a separation  of . By definition,

1. ,

2. ,

3. ,

4. ,

5.  and  are open.

Since , (3) implies . Hence,  and  are complements of each other. But the 

complement of an open set is closed (4.2), so  and  are each closed and open. Recall the only 

subsets of  satisfy this property is  and  (4.1). We know that  and . 

Contradiction. Thus, there can be no such separation and  is connected. 
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6.3 Proposition:  The closed interval  is connected.

Proof. Suppose for contradiction that there is a separation  of . WLOG, suppose that 

. Define the set . Since  is open, there exists  such that 

 so . Hence,  so  is non-empty.

By definition of a separation, there must be a point in  that is not in  so  for any . 

By the Least Upper Bound Principle, the supremum  must exist. Since  and 

, we know that either  or .

Suppose . Since  is open, there exists  such that . Then, 

 so , contradicting the definition of .

Suppose instead that . Since  is open, there exists  such that . Since 

, there exists  such that  and . Then , so by the definition of 

separation, . For any , there interval  is not contained in  so  is an upper bound 

of . Since , this contradicts  being the supremum of .

Hence, in both cases we have a contradiction and therefore we conclude that no separation  

of  exists. Thus,  is connected. 
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7 Limits of Functions  

Abstract

7.1 Definition: Accumulation Point and Isolated Point

7.2 Definition: Limit of a Function

7.3 Definition: Pointwise Continuity 

7.4 Example: Proving Pointwise Continuity

7.5 Proposition: Continuous iff Limit Equals Actual Value

7.6 Proposition: Isolated Points are Continuous

7.7 Theorem: Sequential Characterization of Limits

7.8 Theorem Sequential Characterization of Continuity

7.9 Proposition: Component-wise Continuity

7.10 Example: Proving Limit DNE

7.1 Definition:  Let . We say that  is an accumulation point of  if it is a limit point 

of . The set of all accumulation points of  is denoted as . If , then we call  an 

isolated point of .

7.2 Definition:  Let  and let . The point  is called the limit of  at 

 if for all , there exists , such that

In this case, we write . 

7.3 Definition:  Let . We say the function  is continuous at  if for all 

, there exists , such that 

If  is continuous at every point , then we say that  is continuous on  or simply say that 

it is continuous. Otherwise, we say  is discontinuous at .

7.4 Example:  Show that  defined by  is continuous on its domain .

Proof. Fix . To show that  is continuous , we must show that, given , there exists 

some  such that  for all  with .

For any , 
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We are seeking an upper bound for  valid for all  close to . Suppose . 

Then , which implies that . So,

Let . Then,

Hence,  is continous at every point . 

7.5 Proposition:  Let  and let . For any point , the function  is 

continous at  if and only if .

Proof. Let . 

 : By definition of continuity at , given , there exists  such that  for 

all  satisfying . In particular, for all  satisfying , we have that 

. This satisfies the definition of  being the limit of the function  at the point 

 which we express as .

 : Suppose . Given , there exists  such that  for all 

 satisfying . Since  if and only if , and  for 

all , the condition for continuity of  at  is satisfied:  for all  satisfying 

. 

7.6 Proposition:  Let  and let . If  is an isolated point of , then  is 

continuous at .

Proof.  If  is an isolated point of , then  and there can be no sequence in  that 

converges to . Hence, there exists  such that . In other words, for any 

, . Now, given any , for any  satisfying , we have 

, so the definition of continuity at  is satisfied.

7.7 Theorem: (Sequential Characterization of Limits) Let  and . For any 

points  and , the following are equivalent:

1. .

2.  for every sequence  in  that converges to .

Proof. 

 : Suppose . Given any , there exists  such that  for all 

 with . Let  be any sequence in  that converges to . Then, there 

exists  such that  for all . Therefore,  for all , so 



 as required.

 : We prove the contrapositive. If , then there exists  such that for every 

, there is a point  for which  but . For each integer , 

define  and construct a sequence of points  in  such that  and 

. Then,  but  

7.8 Theorem: (Sequential Characterization of Continuity) Let  and . For any 

point , the following statements are equivalent:

1.  is continous at .

2.  for every sequence  in  that converges to .

Proof. 

 : By definition of continuity of  at , given , there exists  such that  

for all  satisfying . By definition of limits,  in  converges to  means there 

exists  such that  for all . Then  for all  and thus 

.

 : We show the contrapositive. If  is not continuous at , then there exists  such that for 

every , there is a point  for which  but . For each integer 

, define  and construct a sequence of points  such that  and 

. Then,  but . 

7.9 Proposition:  Let  and let  for . The function 

 is continuous at a point  if and only if  is continuous at  for 

.

Proof. This follows from sequential characterization of continuity (7.8) and component-wise 

convergence of a sequence (2.3). 

7.10 Example:  Prove that the function  defined by  does not have 

a limit at .

Proof. By sequential characterization of limits, we need to show that there is no  such that 

 for every sequence  in  that converges to . Since the limit of a 

sequence is unique if it exists, it is sufficient to find two sequence  and of points in 

 that both converge to  and have the property that 

Let  and . Then  Observe



We conclude that  does not have a limit at . 
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8 More About Limits and Continuity  

Abstract

8.1 Theorem: Squeeze Theorem

8.2 Theorem Combining Limits

8.3 Theorem Combining Continuous Functions

8.4 Definition: Multi-Index, Monomial, and Polynomial

8.5 Proposition: Polynomials and Rational Functions are Continuous on 

8.6 Theorem: Composition of Continuous Functions is Continuous

8.7 Proposition: Euclidean Norm is Continuous

8.8 Definition: Image and Pre-Image

8.9 Theorem: Imge is Open/Closed Implies Pre-Image is Open/Closed 

8.10 Definition: Alternative Definition of Openness

8.11 Theorem: Equivalence of Two Definitions of Openness

8.12 Definition: Alternative Definition of Continuity (Definition in Typological Space)

8.13 Theorem: Equivalence of Two Definitions of Continuity

8.1 Theorem: (Squeeze Theorem) Let  and . Suppose  are three real-

valued functions satisfying  for all . If , 

then .

8.2 Theorem:   Let  and  be any two functions from  to . Suppose there is a point 

 and points  such that  and . Then

1. ,

2.  for any .

If , we then write  and , we have

3. ,

4.  provided .

Proof. We have seen identical proofs in Math 147. 

8.3 Theorem:  Let  and  be any two functions from  to . Suppose there is a point 

 at which  and  are continuous. Then,

1.  is continuous at ,
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2.  is continuous at  for any .

If , then

3.  is continous at ,

4.  is continous at  provided that .

Proof. We have seen identical proofs in Math 147.   

8.4 Definition:  

We use the notation  for a multi-index. Here,  for each . 

For any , we define the monomial .

A polynomial  can be written as  where  is a finite set of 

multi-indices and  is the coefficient for the  monomial.

8.5 Proposition:  Every polynomial  is continuous on .

Proof.  First, note that any constant function is trivially continuous. Also, the function  is 

continous on  because for any point  and any ,  if . 

Then  is continuous, and, by induction,  must be continous for every 

positive integer . 

Similarly,  is continous for any multi-index  as it is a product of continous functions. 

Combined with linearity of continuity, we conclude that every polynomial  must be 

continuous.

As a corollary, any rational function , where  and  are polynomials, is continuous 

at every point  for which  by (8.3.4). 

8.6 Theorem:  Let  and . Suppose we have two functions  and . 

If  is a continous at a point  and  is continous at the point , then the composition 

function  is continous at .

Proof.  We will show that the sequential characterization of continuity is satisfied. Let  be 

a sequence of points in  that converges to . By sequential continuity of , we have a sequence 

 of points in  that converges to . By sequential continuity of , 

. Hence,  is sequentially continuous at .  

8.7 Proposition:  The Euclidean norm function  defined by  is 

continuous.

Proof.  Let  be an arbitrary point in . The norm function  is continuous at  if given any 

, there exists  such that  for any  satisfying .



First, note that the norm function satisfies the Reverse Triangle Inequality:

Applying this to the point , we have that . Given any , let . 

Then  whenever . This shows that  is continuous at any point 

 as required. 

8.8 Definition:  For any function  from  to  and any sets  and , 

1. The image of  as the set , 

2. The pre-image of  as the set .

8.9 Theorem:  Suppose  is continous and let  Then:

1.  is open if  is open, and

2.  is closed if  is closed.

Proof. 

(1) Suppose  is continuous and let  be open. If the pre-image set  is empty, 

then it is trivially open. Otherwise, let . By construction,  for some . Since  is 

open, there exists  such that . By continuity of , there exists  such that 

 for any  with . Hence, . This means 

, so  is open.

(2) If  is closed, then its complement  is open. By (1),  is open. Since  

and the complement of an open set is closed, we conclude that  is closed. 

8.10 Definition:  We say that a subset  of a subset  is open in  if there exists an open 

set  such that .

8.11 Theorem:  Let . Show that the following two statements are equivalent, and 

hence, that both characterize a set  that is open in :

1. There exists an open set  such that .

2. For every , there exists  such that .

Proof.

 : Note . Since  is open and each  is also in , there exists  

that . Thus, .

 : For each , define  such that . Let . Since an 

arbitrary union of open sets is open (4.3),  is open. By construction,  and we are given 

, thus .



To show , suppose . Now  implies that  for some . Given 

 and , we deduce that . Hence, . Combined with the previous 

result, we have shown that  for some open set  as required. 

8.12 Definition:  Here is an alternative definition of continuity in a topological space: Given any 

open subset , the pre-image  is open in .

8.13 Theoerm:  Let  and . Prove the two definitions of continuity are 

equivalent:

1.  is continuous on .

2. Given any open set , the pre-image  is open in .

 : Suppose  is continuous on  and let  be open. If the pre-image  is empty, 

it is trivially open. Otherwise, let . By construction,  for some . Since  is open, 

there exists  such that . By continuity of , there exists  such that 

 for any  with . Hence, . This means 

, i.e., there exists an open ball for each  whose intersection with  is 

a subset of . It follows (8.11) that  is open in .

 : Let  and define . Fix . By (2), the open ball  is open in  

implies the pre-image  is open in . Note that . By (8.11), there exists  

such that . Equivalently, for all ,

Thus,  is continuous on . 
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9 Continuous Functions and Compactness  

Abstract

9.1 Theoerm: Continuity Preserves Compactness

9.2 Theorem: Extreme Value Theoerm 

9.1 Theorem:  Suppose  is a compact subset of and let  is a continuous function 

on . Then the image set  is compact.

Proof. We want to show that an arbitrary sequence  in  has a subsequence that 

converges to a point in . 

If , then there exists  such that . Thus, we can construct a sequence 

 in . Because  is compact, there must exist a subsequence  that converges to a 

point . By sequential continuity, . Hence,  is a 

subsequence of  that converges to a point in .  

9.2 Theorem: (Extreme Value Theorem) Let  be a non-empty compact subset of  and let 

 be a continuous function. Then,  attains its minimum and maximum values on , i.e., 

there exists  such that  for all .

Proof.  Since  is compact and  is continuous,  is compact (9.1) and thus closed and 

bounded (HBT). 

Suppose  and non-empty, the Least Upper Bound Principle says the supremum 

 exists (i.e., it is finite). By the definition of the supremum, we can find a sequence 

 in  such that  for all . This sequence converges to . We know 

that  is closed, meaning that  must be in , which in turn implies that there exists 

 such that .

We can show the existence of  in a mirror argument.  
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10 Continuous Functions and Connectedness  

Abstract

10.1 Theorem: Continuity Preserves Connectedness

10.2 Theorem: Intermediate Value Theorem

10.3 Proposition: Continuous Function Maps Closed Interval to Closed Interval

10.4 Definition: Path and Path-Connectedness

10.5 Theorem: Path-Connectedness Implies Connectedness

10.6 Example: Antipodal Points

10.7 Definition: Graph of a Function

10.8 Theorem: Function on Closed Interval is Continuous iff Graph Path-Connected

10.9 Proposition: Topologist's Sine Curve is Connected but Not Path-Connected

10.10 Theorem: (Non-Empty) Union of Path-Connected Sets is Path-Connected

10.11 Theorem: Continuity Preserves Path-Connectedness

10.12 Theorem: Open and Connected Sets are Path-Connected

10.1 Theorem:  Let and  be continuous. If  is non-empty and connected, 

then its image  is connected.

Proof. We prove the contrapositive: if  is not connected, then  is not connected (or  could 

be empty). Suppose  is disconnected, then there exists open sets  such that  is 

a separation of . By definition of a separation, , , , and 

. 

By (8.11), the pre-image of  is open in  and the pre-image of  is open in . Thus, there exist 

open sets  such that  and . We claim that  is a 

separation of . Since , there exists  such that . Then 

. Similarly, . 

Also, .

Finally, suppose for contradiction that . Then there exists  such 

that . That is, , contradicting  is a separation. Hence, 

. 

This completes the proof that  is a separation of  and  is not connected. 

10.2 Theorem: (Intermediate Value Theorem) Let  be a non-empty and connected set 

and let  be a continuous function. Let  be two distinct points. WLOG, assume 

that . Then for any  satisfying , there exists a point  such that 
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.

Proof.  We prove its contrapositive. Suppose there exists . Define  and 

,  and  both open. We claim that  is a separation of :

1. : 

2. : 

3. :  and 

4. :  by construction

Since  is disconnected, we know (10.1) that either  is not continuous or  is not connected. 

Therefore, IVT holds. 

10.3 Proposition:  Continuous functions map closed intervals to closed intervals.

Proof.  By EVT, there exists  and  in the interval  for which 

 for all . This implies that the image set . 

WLOG, suppose . By IVT, any  has a pre-image in . Hence, 

. Hence,  as required. 

10.4 Definition:  Let . For any two distinct points , we say that there is a path 

from  to  in  if there exists a continuous function  such that  and ; 

a path is the image of such a function . 

If for every  (with ) there is a path from  to  in , then we say the set  is path-

connected.

10.5 Theorem:  Every path-connected set is connected.

Proof. Suppose for contradiction that  is path-connected but not connected. If it is not 

connected, then there are open sets  and  such that , , , and 

.

Let  and . If  is path-connected, then there exists a continuous function 

 such that  and . Let .

We claim that  is a separation of , and hence, that  is disconnected. By construction, 

 and . Since  and , we have that . Lastly, 

. Hence,  is a separation of .

To obtain a contradiction, note that  is connected (6.3) and  is continuous on , so 

 must be connected (10.1). 



10.6 Example:  Use IVT to show that at any given time, there is a point on the surface of the 

Earth that has the same temperature as its antipodal point. Specifically, model the Earth as the 

ball  and assume that the temperature  is continuous on . Show that 

there is a point  on the surface  for which . You may assume 

that the surface of the Earth is path-connected.

Proof. Let  be any point. If , then we are done. Otherwise, without loss of 

generality, suppose that . Since  is path-connected, there exists a continuous 

function  such that  and .

Define the function  by . Note that  is continuous as it is a 

sum of compositions of continuous functions. By construction,  and 

. By IVT< there exists  such that . Then,  

satisfies  as required. 

10.7 Definition:  Given an interval  and a function , the graph of  is defined as 

10.8 Theorem:  Let  be an interval and let  be a function. Then  is continuous 

if and only if the graph is path-connected in .

Proof.  We denote  as the graph of .

 : Suppose  is continuous. To prove that  is path-connected, we must show there is a path 

in  between any two distinct points in . Let  and  be distinct. 

WLOG, suppose > Define  by 

. Note that  and . Note 

that  and  are continuous because it is the composition of , which is assumed continuous. 

By component-wise continuity (7.9),  is continuous. Hence, we have found a path from 

 to  in .

 : Suppose  is path-connected and let  be arbitrary. We show that  is continuous at 

 by contradiction. Suppose  is not continuous at . Then there exists  such that for each 

integer , we can define  such that  and . Note that 

.

By path-connectedness of , there exists a continuous function  such that 

 and . 

Since  is continuous,  is continuous (7.9). By IVT, for any , there exists  such 

that . Hence, for each integer , there exists  such that . Note that 

we cannot be sure that , however  is compact, so there must be a subsequence 

 that converges to a limit, .

Since  is continuous, 



By sequential continuity of , 

To ensure that , we must have  for all . Thus,

This contradicts the property that  for each . Therefore,  must be 

continuous if its graph is path-connected. 

10.9 Proposition:  Show the set , known as the Topologist's 

Sine Curve, is connected but not path-connected.

Proof. 

 is connected: First, note that  is continuous on  as it is a composition of 

continuous functions  and . Then its graph  is path connected (10.8) and thus 

connected (10.5).

Next, we want to show that  is a limit point of the topologist's sine curve. Fix . Since 

the graph of  oscillates between  and  infinitely many times for  and  is 

continuous, there exists  such that  (IVT) and . Thus, 

there always exists  and  is a limit point as claimed. 

Back to the main proof. Suppose to the contrary, that  is not connected. By definition, we can 

write  as a disjoint union of non-empty open sets  and . WLOG, suppose . Since 

 is a limit point of  and  is open, there exists  such that  so  

cannot be empty. But then  is a separation for , which is a contradiction as 

 is connected. Hence, such a separation cannot exist and  is connected. 

 is not path-connected: By (10.8), it is enough to show that the function  defined by

is not continuous on . We will show that  is not continuous at .

Let . Since  oscillates rapidly near , for all , there exist  

such that . Let , we have . Hence, for 

 satisfying , . This proves that  is not continuous at 

 as required. 



10.10 Theorem:  Let  and  be non-empty and path-connected subsets of . If , 

then  is path-connected.

Proof.  Let  and  be non-empty and path-connected subsets of  where . Let  

and  be distinct points. To show  is path-connected, we want to show we can find a 

path between  and . 

Since , there exists . Since  and  are path-connected, there exists 

 where  and , and  where  and . 

Define  as follows:

Observe  and , and  is continuous both pieces are continuous and 

 when . The proof is complete.  

10.11 Theorem:  Let  be non-empty and path-connected and let  be 

continuous. Then  is path-connected.

Proof. To show  is path connected, we want to show there exists a path between two distinct 

points  arbitrary. By definition, there exists  where  and . Since  

is path-connected, there exists a continuous function  where  and . 

Consider , . Then  and 

 Moreover, since  and  are continuous, the composition  is continuous. 

The proof is complete. 

10.12 Theorem:  If  is open and connected, then it is path-connected.

Proof. Let  and define  to be the set of points in  that can be connected to  by a path in 

. We want to show . We do this by showing that  and  must be open, and 

would be a separation of  if .

Since  is open, for any , there exists  such that . Any point 

 can be connected by a straight line segment to  (11.3) and this line segment is 

contained in . Since there is a path from  to  in  and a path from  to  in , we deduce 

that . So, , which proves that  is open.

Suppose . Then there exists  such that no path exists in  from  to . Since  is 

open, there exists  such that . Given any , we know that  because 

if  could be connected to  by a path in , then so could . Hence,  is open.

By construction, , , and . If , then  would be 

separation for , contradicting to the assumption that  is connected. Hence,  is path-connected. 



11 Convex Sets and Uniform Continuity  

Abstract

11.1 Definition: Convex Curve in Euclidean Space

11.2 Definition: Convex Set in Euclidean Space

11.3 Remark: Open Balls are Convex

11.4 Definition: Uniform Continuity

11.5 Remark: Pointwise Continuity vs. Uniform Continuity

11.6 Example:  Proof for Uniform Continuity

11.7 Example:  (Dis)Proof a Uniform Continuity

11.8 Theorem: Image of Continuous Function on Compact Set is Uniform Continuous

11.9 Definition: Lipschitz Function

11.10 Remark: Intuition Behind Lipschitz

11.11 Remark: Bounded First Derivative iff Lipschitz

11.12 Proposition: Lipschitz Implies Uniform Continuity

11.13 Remark: Image of Uniformly Continuous Function on Compact Set  Lipschitz

11.14 Definition: Matrix Norm

11.15 Proposition: Linear Maps are Uniformly Continuous

11.1 Definition:  In a Euclidean space, a convex curve is a curve which lies completely on one 

side of each and every one of its tangent lines. Recall for a twice-differentiable function , the 

graph of  is convex (or concave upward) if  and concave (or concave downward) if 

. For example, the graph for  is convex on its domain  as ; the 

graph for  is concave on its domain  as .

11.2 Definition:  In a Euclidean space, a convex region is a region where, for every pair of 

points within the region, every point on the straight line segment that joins that pair of points is 

also within the region. The boundary of a convex set is always a convex curve. 

More precisely, let  be a non-empty subset of . We say that  is convex if for all points 

 and for all , the point  is in .

Using induction, we can show that, if  is a convex set and  are any points in it, then 

 where all  and  is also in .

11.3 Example:  We can show that every open ball  is convex. Suppose . 

Then  and . For any , 
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Thus, . 

11.4 Definition: We say that a function  is uniform continuous if given , 

there exists  such that  for every  satisfying .

11.5 Remark:  For a function to be (pointwise) continuous at , we choose  after fixing the 

point  and . For uniform continuity, the same  must work for all points . Hence, the 

"uniform". In particular, uniform continuity implies pointwise continuity. 

Next, we review the  proof we used in Math 147 (11.5, 11.6). Since nobody likes this, we 

introduce two other techniques for recognizing uniform continuity without hunting for 's: via 

continuity and compactness (11.7) and Lipschitz functions (11.8).

11.6 Example:  Consider  on the domain  for some real numbers . We 

show that  is uniformly continuous on . Let . For any , we have that 

Since , either  or  (or both). Let  and define . Note 

that this  does not depend on  or . We now have that

11.7 Example:  Consider  on the domain of . We show that  is not uniformly 

continuous here. Suppose to the contrary that it is. Then for every , there exists a  for which

In particular, there exists a  for . Let  (notice ). Then

for every . This is a clear contradiction, since we can choose  arbitrarily large. Hence,  

is not uniformly continuous on .   

11.8 Theorem:  Let  be a continuous function from  to . If  is compact, then  is 

uniformly continuous on .



Proof.  Suppose for contradiction that  is not uniformly continuous. This means that there 

exists some  such that for all , there are points  and  in  satisfying  and 

. (You should be very familiar of the negation of the definition.)

Define a sequence of  values, , and choose points  and  such that 

By compactness of , there must be a subsequence  that converges to a point . 

We now show that the sequence  (using the same  as for the subsequence ) also 

converges to . Fix  and choose . Then for , 

In other words,  so both subsequences converge to the same point .  

Since  is continuous on , in particular at each  and , by sequential characterization of 

continuity, 

because both subsequences in  converge to . By linearity, 

This contradicts our hypothesis that we can always find  and  in  satisfying  and 

, no matter what  is given. Hence, if  is compact and  is continuous on , 

then  is uniformly continuous on .  

11.9 Definition:  A function  from  to  is called a Lipschitz function if 

Any constant  for which this condition is satisfied is called a Lipschitz constant for . The 

smallest  for which this condition holds is called the (best) Lipschitz constant.

11.10 Remark:  Intuitively, a Lipschitz continuous function is limited in how fast it can change: 

there exists a real number such that, for every pair of points on the graph of this function, the 

absolute value of the slope of the line connecting them is not greater than this real number.

11.11 Remark:  For an everywhere differentiable function  is Lipschitz continuous 

(with ) if and only if it has bounded first derivative.

11.12 Theorem:  Every Lipschitz function is uniformly continuous.



Proof.  Suppose that  is a Lipschitz function with Lipschitz constant . Given , let . 

Then  

11.13 Remark:  We have seen that the image of a continuous function on a compact domain is 

uniformly continuous. However, a uniformly continuous function on a compact domain is NOT 

necessarily Lipschitz. Consider the function

Since  is continuous on  and  is compact (closed and bounded so compact by HBT), we 

know  is uniformly continuous on . However,  is not Lipschitz. Suppose it is and let  

be its (best) Lipschitz constant. Then we would have

Take  and . We have

Contradiction.  

11.14 Definition:  In the Euclidean norm, we have for all , 

The smallest number  satisfying the inequality is called the matrix-norm of , which is 

denoted by 

To show  exists, with help from CSI):

Summing up from  to  yields the desired result. 

11.15 Proposition:  Linear maps are uniformly continuous.

Proof. By linearity of , we get , where   is the matrix-norm of  

defined above. Taking  independent of , we can show that  is uniformly continuous. 


