
Math 247 Part II: Differential Calculus  

Calculus III (Advanced Version) with Professor Henry Shum  

David Duan, 2019 Winter  

Contents

1 Directional and Partial Derivatives

1.1 Directional Derivatives

1.2 Partial Derivatives

2 Differentiability, Jacobian, Gradient

2.1 Differentiability and Derivative

2.2 Jacobian Matrix as Derivative

2.3 Sufficient Conditions for Differentiability

2.4 Gradient

2.5 Summary: Proving Differentiability

3 Rules for Differentiating Functions

4 Important Results

4.1 Mean Value Theorem

4.2 Linear Approximation

4.3 Implicit Function Theorem

5 Higher Order Derivatives

5.1 Higher Order Derivatives

5.2 Mixed Partial Derivatives

6 Taylor's Theorem

6.1 Single Variable Taylor's Theorem

6.2 Continuously Differentiable Functions

6.3 Multivariate Taylor's Theorem

7 Second Derivative Test

7.1 Single Variable Second Derivative Test 

af://n644
af://n2
af://n3


7.2 Critical Points

7.3 Hessian Matrix and Quadratic Form

7.4 Second Derivative Test

7.5 Summary: Optimization

af://n7


1 Directional and Partial Derivatives  

1.1 Directional Derivatives  

Given a unit vector  and a point , the directional derivative  can be seen as the 

instantaneous rate of change of the function, moving through  in the direction specified by :

Definition 1.1.1  Let  be a set with non-empty interior and let  be a function. 

Given  and  with , the directional derivative of  at  in the direction of 

 is defined as 

if the limit exists.

The directional derivative exists at a point for a non-scalar function  iff the directional 

derivative exists at this point for all its component functions :

Proposition 1.1.2  Let , , and  be a unit vector. Let  be a 

function with components , . Then  exists if and only if  

exists for each . Furthermore, if  exists, then 

We can use Definition 1.1.1 to calculate directional derivatives. Later in Theorem 2.2.1 we will 

see another approach (using Jacobian matrix).

Example 1.1.3  Let  and . Calculate .

Solution.  The unit vector  in the direction of  is . Then

1.2 Partial Derivatives  
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The partial derivative can be seen as a special case of directional derivatives, where the unit 

vector  is chosen from the canonical basis of . Intuitively, this is the derivative of  with 

respect to one of its variables, with the others held constant: 

Definition 1.2.1  Let  be the standard basis of . Let  and . 

Given , the partial derivative of  with respect to  at  is defined as 

Equivalently, this is defined as

As in Proposition 1.1.2, the partial derivative exists at a point for a non-scalar function  iff the 

partial derivative exists at this point for all its component function :

Proposition 1.2.2  Let , , and . If  exists for some 

, then  exists for all  and

Computing partial derivatives is much easier.

Example 1.2.3  Find the partial derivatives  and  for the function  

defined by .

Solution.  Fix one variable and take the derivative as in single-variable case:
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2 Differentiability, Jacobian, Gradient  

2.1 Differentiability and Derivative  

Recall the following definition from Math 147. The left expression is more familiar but the right 

one allows us to generalize it easier. In higher dimensions, the derivative  becomes a linear map 

 (where both are evaluated at a point ).

Definition 2.1.1  Let  be a function. If  is differentiable at , then

A multivariate function is differentiable at a point  if there exists a linear map satisfying the 

following condition. Note that we restrict  because otherwise the derivative may fail to be 

unique. This is necessary for all results related to derivatives and differentiability.

Definition 2.1.2  Let  and . We say that  is differentiable at  if 

there exists a linear map  such that

If such a map  exists, then it is called the derivative of  at . We use the notation  for 

the (unique) derivative of  at , i.e., .

Similar to Proposition 1.1.2 and 1.2.2, the derivative exists at a point for a non-scalar function  

iff the derivative exists at this point for all its component function :

Proposition 2.1.3  Let , , and . Then,  if and only if 

 for each . In other words, differentiability of  is equivalent to 

differentiability of all component functions .

From Math 147, we know that differentiability implies continuity. Later in Section 2.3, we will 

use its contrapositive: a function is not continuous thus not differentiable at a point.

Theorem 2.1.4  Let , , and . If  is differentiable at , then it is 

continuous at . 

Here is an equivalent definition for differentiability (not tested but very helpful). If the "error 

function" is continuous and evaluates to zero at , then the function is differentiable at . Note 

that this theorem gives an easy proof for Theorem 2.1.4, as  can be expressed as a sum of 

continuous functions.
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Theorem 2.1.5  Let , , and . The function  is differentiable at  if 

and only if there is a linear map  and a function  that is continuous at  and 

satisfies , such that .

2.2 Jacobian Matrix as Derivative  

If the function is differentiable at , then all of its directional derivatives (and thus all the partial 

derivatives) exist at  and the linear map  is given by the Jacobian matrix.

Theorem 2.2.1  Let , , and . Suppose  is differentiable at  and let 

 be the derivative of  at . Then:

1. For every unit vector , the directional derivative of  at  in the direction  exists and 

is .

2. All partial derivatives , , , exists.

3. The  matrix representing  in the standard basis is called the Jacobian matrix:

When  is differentiable at , the Jacobian matrix defines a linear map , which is the best 

(pointwise) linear approximation of the function  near . This linear map is thus the 

generalization of the usual notion of derivative, and is called the derivative or the differential of  

at . It is common to treat  as the Jacobian matrix , rather than the linear 

transformation  represented by the Jacobian matrix.

We now use Theroem 2.2.1 (1) to compute directional derivatives. Note that  for a scalar 

function is a row vector and the unit vector  is a column vector (elements separated by commas). 

Example 2.2.2  Let  and . Calculate .

Solution.  We first calculate the Jacobian matrix: . The unit vector 

 in the direction of  is . Then by Theroem 2.2.1 (1), 
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2.3 Sufficient Conditions for Differentiability  

The following theorem gives sufficient (but not necessary, i.e., a function not satisfying it can still 

be differentiable, but a function satisfying it is definitely differentiable) conditions for 

differentiability: if all partials exist on an open ball centered at  and are continuous at , then 

the function must be differentiable.

Theroem 2.3.1  Let , , and . Let  be such that . If all 

partial derivatives , , , exists on  and are continuous at , then  is 

differentiable at .

We now make two very important remarks. 

Remark 2.3.2

1. All partial derivatives of  exists at  does not guarantee the differentiability of  at . For 

example, consider  defined on  is not differentiable at , because the 

function is not continuous at .

2. Theorem 2.3.1 gives sufficient but not necessary conditions for differentiability. For example, 

consider the function  defined by 

The partial derivatives exist but are not continuous at . Nevertheless,  exists 

and is the zero map.

2.4 Gradient  

The gradient is a multi-variable generalization of the derivative of a scalar function.

Definition 2.4.1  The gradient of a function  at  is the column vector
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i.e., the vector of partial derivatives. 

There is an obvious connection between gradient and Jacobian.

Remark 2.4.2

1. Let  be a scalar-valued function. The gradient is a column vector whereas the Jacobian is a 

row vector. Thus, the gradient is equal to the transpose of the Jacobian: 

2. It is common to extend Definition 2.4.1 to vector-valued functions; the gradient of a 

function is always the transpose of the Jacobian.

The following theorem (remark: not tested) motivates the famous Gradient Descent algorithm. In 

words, the gradient points in the direction of steepest ascent. This is the key intuition for the 

gradient.

Theroem 2.4.3  Let , , . If  is differentiable at , then:

1. The vector  is orthogonal to the tangent hyperplane of the 

hypersurface  at the point .

2. If , then the directional derivative  is maximized over all unit vectors  

at  and minimized at .

We sometimes use the differential operator  (often called nabla or del) as a vector.

Remark 2.4.4  We can view the differential operator  as a vector and make 

use of things like dot product (this is used in Section 6, Taylor's Theorem):

1. 

2. For : 

2.5 Summary: Proving Differentiability  

There are three ways of proving a function is differentiable.

1. By Definition 2.1.2, if we could find a linear map (or the Jacobian matrix) satisfying 

, then the function is differentiable.

2. By Theorem 2.3.1, if we could find an open ball near the given point where all partial 

derivatives exist and are continuous at the point, then the function is differentiable.
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3. By Theorem 3.1.1 and 3.1.2, arbitrary linear combinations and compositions of 

differentiable functions are differentiable.
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3 Rules for Differentiating Functions  

As in single-variable case, we have the following rules for differentiating functions. We include 

the proof for Theorem 3.1.2 as it is testable on the final exam.

Theorem 3.1.1 (Chain Rule)  Let , , , . Suppose  

and . If  is differentiable at  and  is differentiable at , then the composition 

 defined by  is differentiable at  and the derivative is 

. 

Theorem 3.1.2  Let , . If  are two functions that are differentiable at 

, then:

1. Addition: ,

2. Scalar Multplication:  for any ,

3. Product Rule: , and

4. Quotient Rule:  given .

Proof.  Apply the Chain Rule to the suitable composite functions. 

Addition:  Let  be defined by . Define  by . 

Note that . By the Chain Rule, . Writing the derivatives 

as Jacobian matrices,

Thus    

Scalar Multiplication:  Fix . Let  defined by  and  defined by 

. Note that . By the Chain Rule, . Since  is a 

one-variable scalar function, we know  (Math147). It follows that 

 as desired.  

Product Rule: Let  be defined by . Define  by . 

Note that . By the Chain Rule, . Writing the derivatives as 

Jacobian matrices,

Thus, . 
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Quotient Rule:  Let  be defined by . Define  by . 

Note that . By the Chain Rule, . Suppose . Writing 

the derivatives as Jacobian matrices,

Thus,  if . 
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4 Important Results  

4.1 Mean Value Theorem  

Recall MVT for single variable from Math 147. MVT states that

1. There exists a point in the chosen interval where the slope of the tangent is the same as the 

slope of the straight line joining the end-points of that interval.

2. There exists a point in the chosen interval where the instantaneous rate of change of the 

function is equal to the average rate of change over the entire interval.

3. There exists a point in the chosen interval over which the function is continuous and 

differentiable (but no further information on its position). 

Remark 4.1.1 (MVT in )  Suppose  is a function that satisfies both of the following:

1.  is continuous on the closed interval .

2.  is differentiable on the open interval .

Then there exists  such that .

We now generalize MVT to . There is a nice correspondence between each statement in 4.1.1 

vs. 4.1.2: first, we want the path between  and  to be in the interior of the domain where the 

derivative is defined; next, we want  to be differentiable on the path and continuous on the 

closure of the path; finally, we state the existence of  on the path. 

Theorem 4.1.2 (MVT in )  Let ,  and define . 

Suppose  and . If  is continuous on  and differentiable on , then there 

exists  such that .

Using MVT, we can get the following conclusions:

1. If the Jacobian is the zero map for all , then the function is constant on .

2. If two functions have the same Jacobian matrix, then they differ by only a constant.

4.2 Linear Approximation  

Definition 4.2.1  Recall (from Theorem 2.1.5, alternative definition of differentiability) that if a 

function  is differentiable at , then , where the 

function  is continuous at  and satisfies . Then, if  is small,  

should be small, i.e., . Thus, we could use , called the linear 

approximation to  at , to approximate the value of  at  near .

We do a few examples on how to use this to approximate the value of a function at a given point.
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Example 4.2.1  Find the linear approximation to the function  defined by 

 at the point .

Solution.  First, we compute the Jacobian: . Then

Example 4.2.2  Find the linear approximation to the function  defined by 

 at the point .

Solution.  By the Fundamental Theorem of Calculus,  and . Then

4.3 Implicit Function Theorem  

The implicit function theorem gives sufficient conditions on a function  so that the equation 

 can be solved for  in terms of  (or vice versa) locally near a base point  that 

satisfies the same equation .

Theorem 4.3.1  Let  be non-empty and open, and let . Suppose there 

exists  and  with  satisfying  and . Then, 

there exists  such that  and a function  such that 

 for all . Moreover, this function  is unique. 
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5 Higher Order Derivatives  

5.1 Higher Order Derivatives  

Consider  and . 

We have already defined the first order partial derivatives  for  and . 

The function  is called a first order derivative function.

We can define second order partial derivative functions as follows: for , 

for points where this partial derivative exists.

We can inductively define higher order partial derivatives:

where  for each . 

It is common to use the following notation:

1. ,

2. , ,

3.  (order reversed!),

4. ,

5. .

5.2 Mixed Partial Derivatives  

When can we exchange the order of partial derivatives? The following theorem gives us sufficient 

but not necessary conditions of mixed partial derivatives: if both first-order and second-order 

partials exist and are continuous at , then you can exchange the order of second-order partials. 

Theorem 5.2.1  Let , , , and  for some . Suppose that for 

some  that partial derivatives  exists on . If  and  are 

continuous at , then .
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6 Taylor's Theorem  

6.1 Single Variable Taylor's Theorem  

We can use Taylor series to approximate the value of a function  evaluated at  near :

Theorem 6.1.1  Let  be an interval and let . If the function  is -times 

differentiable on  for some integer , then for any  with , there exists  between  

and  such that

6.2 Continuously Differentiable Functions  

Let  denotes the set of continuous functions from  to . 

If  is open, then  denotes the set of functions from  to  with all partial 

derivatives of order up to and including  being continuous on .

If  is not open and has non-empty interior, then  denotes the set of functions from 

 to  with all partial derivatives of order up to and including  being continuous on  and 

extendable to continuous functions on .

We sometimes shorten the notation to  and say the function  is of class  

(on ). Note that, if , then  is the -times continuously differentiable real-valeud 

functions.

For continuously differentiable functions, we get this nice corollary from Theorem 5.2.1, which 

states that we can freely switch the order of partials:

Corollary 6.2.1  Let  be nonempty and open. Suppose  for some integer 

. For any partial derivative of order , the order in which partial derivatives are 

token does not matter.

6.3 Multivariate Taylor's Theorem  

We generalize Taylor's theorem to higher dimensions. Read Remark 2.4.4 for notations.

Theorem 6.2.2  Let  be an open and convex set and let  for some integer . 

Suppose  and define . Then, there exists  such that
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where

We can write Taylor's Theorem in a different way using the notation:

The result of Taylor's Theorem becomes (very similar to the single variable case):

Explicit example for :

Here is an alternative approach to Taylor's Theorem with less hypotheses. Theorem 6.2.2 requires 

convexity as we are looking for a path, but here we only need an open ball and continuous 

differentiability.

Definition 6.2.3  Let  be open (but not necessarily convex) and let  for some 

integer . Suppose . We define the Taylor polynomial of order  for  at  as

and the Taylor remainder of order  for  at  as

Theorem 6.2.4  Let  be open and  for some integer . For any , the 

Taylor remainder of order  satisfies

We now do an example of first and second order Taylor polynomial.



Example 6.2.5  Compute the first and second order Taylor polynomial for the function 

 about the point .

Solution.  Here are the explicit formula for first and second order Taylor polynomial.

First, . Next, we compute all first and second order partial derivatives:

Then, the first order Taylor polynomial is

The second order Taylor polynomial is

Equivalently, we could use gradient and Hessian to compute Taylor polynomials (see remark above 

Theorem 7.4.2 on quadratic forms):

af://n248


7 Second Derivative Test  

7.1 Single Variable Second Derivative Test  

Recall the following from Math 147:

Theroem 7.1.1  If the function  is twice differentiable at , then the graph of  is concave 

upward at  if  and concave downward if .

Definition 7.1.2  Points on the graph of  where the concavity changes from up-to-down or 

down-to-up are called the inflection points of the graph.

Theorem 7.1.3  If  exists and  changes sign at , then the point  is an 

inflection point of the graph of . If  exists at the inflection point, then .

The Second Derivative Test relates the concepts of critical points, extreme values, and concavity 

to give a very useful tool for determining whether a critical point on the graph of a function is a 

local minimum or maximum.

Theorem 7.1.4  Suppose that  is a critical point at which , that  exists in a 

neighborhood of , and that  exists. Then  has a local minimum at  if  and a local 

minimum at  if . If , the test is no informative.

7.2 Critical Points  

We now define relevant terms in higher dimensions.

Definition 7.2.1  Let , , . We say that  is a:

1. critical point (or stationary point) of  if .

2. local maximum of  if there exists  such that  for all .

3. local minimum of  if there exists  such that  for all .

4. saddle point of  is  is a critical point of  and for any , there exists points 

 such that .

If  is a local extremum and the gradient exists, then the gradient is zero at .

Theorem 7.2.2  Let , , . If  is a local minimum or local maximum of  

and  exists, then  is a critical point of .

Proof.  Since  and  exists, we must have
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for each component . Suppose  is a local maximum. Then there exists  such 

that  for all . Fix . For any  satisfying ,

Similarly, for  satisfying , 

Here,  for each . A similar argument shows that  if  is a local 

minimum. 

7.3 Hessian Matrix and Quadratic Form  

Just as we recorded all first-order partial derivatives in the Jacobian matrix, we here record all 

second-order partial derivatives in the Hessian matrix.

Definition 7.3.1  We define the Hessian matrix  of  at  by  where 

The Hessian matrix is also denoted by .

Recall from linear algebra, we could use associated quadratic forms to classify matrices:

Definition 7.3.2  A function  is a quadratic form if there exists a real symmetric 

 matrix  such that  for all .

 Let  be a quadratic form. Then  is:

1. positive definite if  for all ,

2. negative definite if  for all ,

3. positive semidefinite if  for all ,

4. negative semidefinite if  for all ,

5. indefinite if  for some  and  for some .

We can also write equivalent definitions applied to the matrix . For example,  is positive 

definite if  for all .

Here is a key result from linear algebra: the Spectral Theorem of Real Symmetric Matrices says 

symmetric real matrices have real eigenvalues and are diagonalizable.
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Theorem 7.3.3  If  is symmetric, then the eigenvalues  are all real and 

there is an orthonormal matrix  such that , where . 

Define , we have . Hence, we can classify quadratics 

based on the eigenvalues of . 

Proposition 7.3.4  Let  be a quadratic form with associated matrix . Then, 

 is

1. positive definite if and only if the eigenvalues of  are all positive,

2. negative definite if and only if the eigenvalues of  are all negative,

3. indefinite if some of the eigenvalues of  are positive and some are negative,

4. positive semidefinite if and only if all eigenvalues of  are non-negative,

5. negative semidefinite if and only if all eigenvalues of  are non-positive.

7.4 Second Derivative Test  

The following lemma is not essential but still helpful to understand why Second Derivative Test 

works; it gives a funny bound (before, we are generally bounding positive values from above and 

negative values from below, but here we are finding a lower bound for a positive  and an upper 

bound for a negative ) to the possible values of .

Lemma 7.4.1  Let  be a quadratic form.

1. If  is positive definite, then there exists  such that  for all .

2. If  is negative definite, then there exists  such that  for all .

Here is the intuition for second derivative test. Let  be an open set and . 

Suppose  is a critical point of . By Alterative Taylor's Theorem,

where the remainder goes to zero as  and  is bounded from above/below. Thus, inside an 

open ball  with sufficiently small radius,  is always greater/less than . Thus, we 

could use the quadratic form to determine if  is a local minimum, local maximum, or saddle. 

Theorem 7.4.2  Let  be open and let . Suppose  is a critical point of  

and let  be the quadratic form associated with the Hessian matrix of  at . Then,

1.  is a local maximum of  if  is negative definite,
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2.  is a local minimum of  if  is positive definite,

3.  is a saddle point of  if  is indefinite.

To use the second derivative test to determine whether a critical point is a local maximum, local 

minimum, or saddle point, first compute the Hessian matrix at the given point, then find all 

eigenvalues and apply the theorem above.

Example 7.4.3  The function  on the domain  has one 

critical point . The Hessian matrix at  is . The eigenvalues are  (repeated), 

all positive. By the second derivative test,  is a local minimum. 

Here is a quick recap on eigenvalues.

Remark 7.4.4  Given a matrix , we want to find the values of  which satisfy the 

characteristic equation of the matrix , namely the values for which , where  

is the appropriate identity matrix. First, form the matrix , which is equal to  with  

subtracted from each entry on the main diagonal. Then, calculate  and find all of its 

roots. Crucially, the Hessian matrix is symmetric (following from Theorem 5.2.1, mixed partial 

derivatives), so by Theorem 7.3.3 (Spectral Theorem for Real Symmetric Matrices), all of its 

eigenvalues are guaranteed to be positive. Thus, the roots to the characteristic equation are all 

real.

7.5 Summary: Optimization  

Lagrange Multiplier Theorem is not tested, so all we have is the second derivative test, which can 

be used to find local extrema of a given function on an open domain. By Definition 7.2.1, critical 

points occur when the gradient is zero. To classify the critical point, we apply the second 

derivative test (see Example 7.4.3). Finally, we can use EVT to justify existence of global 

extrema when needed.
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