
Math 247 Part III: Integral Calculus  

Calculus III (Advanced Version) with Professor Henry Shum  

David Duan, 2019 Winter  

Contents

1 Boxes and Partitions

1.1 Box

1.2 Partition

2 Riemann Integrability

2.1 Riemann Sums and Riemann Integrals 

2.2 Characterization of Riemann Integrability

2.3 Riemann Integrals Over Arbitrary Domains

3 Jordan Content and Riemann Integral

3.1 Jordan Content

3.2 Content and Integrability

3.3 Properties of Riemann Integrals

4 Volumes

4.1 Fubini's Theorem

4.2 Change of Variables

af://n0
af://n181
af://n182
af://n5


1 Boxes and Partitions  

1.1 Box  

Definition 1.1.1  

A box is a set of the form , where  is a closed 

interval for each . 

The volume of a box is .

Example 1.1.2  A box in  is an interval where the volume denotes the width/length. A box in 

 is a rectangle where the volume denotes the area. The volume operator is defined intuitively as 

the product of all side lengths.

1.2 Partition  

Remark 1.2.1  We first consider the  case as a concrete example. Let  be 

a rectangle with  and . Partition the intervals  and :

where  and . 

Define  for  and . Then the box  is partitioned by 

the sub-boxes : 

We can generalize to arbitrary dimensions as follows.

Definition 1.2.2  Let  be a box. 

For each , let  be a partition of the interval , i.e., 

. Then,  is a partition of . 

We define the norm of  and  by , ; that is, the 

norm of a partition is the length of the longest of these subintervals.

Definition 1.2.3  Let  denote the set of all possible partitions of . For a given partition  of 

, the associated indexing set is defined as . Note that 

elements  are multi-indices. For each , define the sub-box
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The box  is partitioned by the sub-boxes , i.e., .
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2 Riemann Integrability  

2.1 Riemann Sums and Riemann Integrals  

Definition 2.1.1  Suppose  is a box. Let  be a partition of  and let  be a 

function. For each , choose a point . Then,  is a 

Riemann sum of  with respect to the partition .

The Riemann sum of  depends on the choices of . Since each sub-box  is compact, if 

 is continuous, then the minimum and maximum values are attained on each sub-box (EVT). 

More generally, if  is bounded (note that continuous implies bounded), then for each  (i.e., 

for each sub-box indexed by ) we can define  and  so 

that  for all .

Definition 2.1.2  Defining the lower/upper Riemann sum of  with respect to  by

It follows that  for any choice of  for . 

Defintion 2.1.3  We define the lower/upper Riemann integral as 

If the lower and upper Riemann integrals are equal, then we say that  is Riemann integrable 

on  and the Riemann integral is

Remark 2.1.4

1. Just as  represents the width of a small strip in a 1D integral,  represents the area of a 

surface element in a 2D integral, or a volume element in higher dimensions.

2. For , the integral over  can be written as

For , , there are several common ways of writting the integral:
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2.2 Characterization of Riemann Integrability  

The volume of a box  is equal to the sum of volumes of all sub-boxes in a partition of :

Lemma 2.2.1.  Let  be a box and let  be a partition of  with indexing set  and sub-

boxes . Then, . 

Proof.  By definition,  and . For each , 

we have . Therefore, 

Definition 2.2.2  Let  and  be two partitions of the box . We say that  is a 

refinement of  if  for all . 

Remark.  Recall  is the partition of , so  means  contains at least all current 

partitions of  and potentially more. Intuitively, we took sub-boxes of  and cut them into 

smaller sub-boxes to form . 

Lemma 2.2.3.  Let  and  be any two partitions of the box . Then, there exists a 

partition  of  that is a common refinement of  and . Moreover, .

Remark.  In particular, we can construct a common refinement of  and  defined by 

. We call this the simple common refinement of  and .

Proposition 2.2.4  Let  be a box and let  be a bounded function. 

1. For any , .

2. For any refinement  of ,  and .

3. For any two partitions  and  of , .
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Remark.  All three have showed up in Math 148. First, for any partition, the lower Riemann sum 

is at most the same as the upper Riemann sum. Next, the refinement has a better approximation 

to the actual sum, i.e., larger lower Riemann sum and smaller upper Riemann sum. Finally, the 

lower Riemann sum is always less than or equal to the upper Riemann sum, no matter what two 

partitions were chosen.

The first major result in integral calculus: the function is Riemann integrable on  iff we can find 

a partition whose upper and lower Riemann sum are arbitrarily small.

Theorem 2.2.5 (Characterization of Riemann Integrability)  Let  be a box and let 

 be a bounded function. Then  is Riemann integrable on  if and only if the following 

condition holds: for all , there exists  such that .

2.3 Riemann Integrals Over Arbitrary Domains  

Definition 2.3.1  Suppose  is a bounded function on a domain  that is not 

necessarily a box. If  is non-empty and bounded, then let  be a box such that . 

Define  by 

We say that  is Riemann integrable on  if  is Riemann integrable on . Moreover, we define 

the Riemann integral of  over  to be

The following proposition shows that the definitions above are reasonable in the sense that they do 

not depend on the choice of the bounding box .

Proposition 2.3.2  Let  be non-empty and bounded, and let  be a bounded 

function such that  for all . If  are boxes and  is Riemann integrable on , 

then  is Riemann integrable on  and
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3 Jordan Content and Riemann Integral  

3.1 Jordan Content  

We want a way to measure the size of a set. First of all, we need the characteristic function to 

tell us whether a certain point is in the set or not. 

Definition 3.1.1  The characteristic function of  is the function  where

Remark.  Note that we have already met , the Dirichlet function:

A bounded set  has content (or "Jordan measurable") if  is Riemann integrable.

Definition 3.1.2  If the characteristic function  of a non-empty, bounded set  is 

integrable on , then we say that  has (Jordan) content. If  has content, then its volume is 

the integral of the characteristic function:

If  has content and , then we say  has content zero. Note that this is different from 

not having content! 

Remark.  It is sometimes said that  is Jordan measurable. The measure of a set, usually denoted 

, is a way of quantifying its size. In fact, the Jordan content does not satisfy the definition of 

a measure, as Jordan measurable sets do not form a -algebra. 

The following proposition gives us the condition for content zero: the set has content zero iff we 

can cover it with a finite set of boxes whose total volume is arbitrarily small.

Proposition 3.1.3  Let  be a non-empty and bounded set. Then  has content zero if and 

only if the following condition holds: for all , there exists a finite set of boxes 

 such that  and .

Corollary 3.1.4  Let  be non-empty and bounded.

1. If  has content zero and , then  has content zero.

2. If  and  both have content zero, then  has content zero.

Example 3.1.5

1. Singleton  have content zero: we can cover it up with an arbitrarily small box.

af://n80
af://n81


2.  has content: the characteristic function is differentiable on this interval.

3.  does not have content: the irrationals are dense in reals, so the characteristic 

function is discontinuous (thus never differentiable) anywhere.

4.  does not have content: same as (3), the rationals are dense in reals.

Proposition 3.1.6  Let . Then the graph  has content 

zero.

Proof.  Since  is compact and  is continuous on ,  is uniformly continuous on . Let 

, there exists  such that . Let  be a 

partition of the interval  with  Then the graph of  can be expressed as

where  and . Then, 

3.2 Content and Integrability  

If the set of discontinuities has content zero then the function is integrable on this set.

Theorem 3.2.1 (Lebesgue's Theorem)  Let  be a box and  be non-empty. 

Suppose  is bounded and  if . Let  be the set of points at which  is 

discontinuous. If  has content zero, the  is integrable on .

Corollary 3.2.2  Let  be nonempty and bounded and have a boundary  

with content zero. Then, every function  that is bounded and continuous is integrable on 

.

Intuition.  Extend  to box . Discontinuities must be confined to boundary as  is 

continuous on . Given boundary content zero, we can apply Lebesgue's Theroem.

Proposition 3.2.3  Let  be non-empty and bounded and has content zero. Then every 

function  that is bounded is integrable and .

Intuition.  Extend  to a box . Since  has content zero,  is integrable and there exists a 

partition to make  and  arbitrarily small. It follows from Theorem 2.2.5 that  is 

integrable on  and hence on  (2.3.1). Since  is arbitrary,  

Proposition 3.2.4  Let  be non-empty and bounded, then  has content if and only if its 

boundary has content zero.
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3.3 Properties of Riemann Integrals  

Theorem 3.3.1  Let  be non-empty and bounded, and let  be integrable on .

1. For any , the function  is integrable on  and

2. If  for all , then .

3. The function  is integrable on  and .

4. If  has content, then 

where  and  are respectively lower and upper bounds of  on . 

Proposition 3.3.2  Let  be non-empty and bounded sets that satisfy . If 

 is bounded and integrable on  and on , then  is integrable on  and

af://n123
af://n140


4 Volumes  

4.1 Fubini's Theorem  

Definition 4.1.1 Integrals of the form  are called iterated integrals.

Theorem 4.1.2  Let  be a box with  and . Let  be 

bounded and integrable on . If for each , the function  is integrable on , then 

 is integrable on  and .

Corollary 4.1.3  If in addition to the hypothesis of Theorem 4.1.1, the function  is 

integrable on  for every , then  is integrable on  and 

Corollary 4.1.4  Let , where  and  

satisfy  for all . For all functions , 

Theroem 4.1.5  Let  and  be boxes and let  be bounded and 

integrable on . If for each , the function  is integrable on , then  is 

integrable on  and 

Corollary 4.1.6  Let  be a compact set that has content and let 

, where  is continuous and non-negative. 

Then,

Remark 4.1.7  Given an integration problem (area/volume), here is the general procedure to 

solve:

1. Sketch the graph. This helps you determine the order of integration.

2. Setting up bounds. With help from (1), you should be able to pick a relatively easier order 

of integration.

3. Solving the integral.
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4. Verify the solution. Does the answer make sense? If your set  is enclosed in a box with 

volume  but you answered that  has a volume greater than , you should double check 

your step (2) and (3).

4.2 Change of Variables  

Theorem 4.2.1  Let  be non-empty and open and let  be non-empty, compact and 

have content. Let  be a transformation that is an injection on , where  is either 

empty or has content zero. If  for all , then  has content. Furthermore, 

if  is bounded and integrable on , then 

Example 4.2.2  Consider the one-dimensional case.  Suppose  and  on . Let 

. Then

We have two cases.

 on :  and . Thus .

 on :  and . Thus 

Thus, Theorem 4.2.1 is a generalization to the change of variables technique we saw before.
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