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1 Cauchy and Convergent Sequences  

Triangle Inequality:  .

Limit of sequence: .

Component convergence: .

Cauchy: .

Component Cauchiness: .

2 Subsets of  

Complete: A set  is complete if every Cauchy sequence converges to a point in .

 Completeness: A sequence in  is convergent iff it is Cauchy.

Bounded Sequence: ; Bounded Set: .

BWT: Every bounded sequence in  has a convergent subsequence.

Compact:  is compact if every seq in  has a subseq converge to .

HBT:  is compact iff  is closed and bounded.

Separation:  open such that  if , , , .

 Connectedness:  is connected.

Open:  is open if it contains an open ball  for all .

Interior of , denoted , contains  iff  for some , is the largest 

open subset of .

Union of arbitrary open sets is open; intersection of finite open sets is open.

Closed:  is closed if it contains all its limit points.

Closure of , denoted , contains  together with all its limit points, is the smallest 

closed superset of .

Union of finite closed sets is closed; intersection of arbitrary closed sets is closed.

Convex:  is convex if the straight line between any pair of points is contained in the set, i.e., 

.
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3 Function Limits and Continuity  

3.1 Limit  

Limit: .

SCL: .

ST: 

.

3.2 Continuity  

Continuity:  

.

SCC: .

Component-Wise Continuity: .

3.3 Uniform Continuity  

Uniform Continuity: .

Lipschitz: .

3.4 Application of Continuity  

Continuous Function on Compact Domain.  If  is continuous and  is 

compact, then  is uniformly continuous on  and  is compact.

EVT.  If  is continuous and  is compact, then  attains its minimum and 

maximum on , i.e., .

Continuous Function on Connected Domain.  If  is continuous and  is 

connected, then  is connected.

IVT.  If  is continuous and  is connected, then  takes any value between 

any two points  and , i.e., .
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4 Differential Calculus  

4.1 Derivatives  

Directional Derivatives: .

Directional derivative exists iff it exists for all component functions.

Partial Derivatives: 

Partial derivative exists iff it exists for all component functions.

4.2 Differentiability  

Differentiability:  

Differentiability of  is equivalent to differentiability of all component functions .

Differentiability implies continuity.

Alternative definition: .

If  is differentiable at , then the directional derivative exists in all directions and the 

partial derivatives are recorded by the Jacobian matrix 

Sufficient Conditions for Differentiability:  If all partial derivatives exist on an open ball 

centered at  and are continuous at , then  is differentiable at .

Gradient is the vector of partial derivatives, , .

4.3 Various Results  

Chain Rule: If  is differentiable at  and  is differentiable at , then  is 

differentiable at  and .

MVT:  Let  be the path between ,  and . If  is continuous on  

and differentiable on , then there exists  such that .

Linear Approximation:  .

Implicit Function Theorem:  Let  be non-empty and open, and let 

. Suppose there exists  and  with  satisfying 

 and . Then, there exists  such that 

 and a function  such that  for all 

. Moreover, this function  is unique. 

Higher-Order Derivatives: .
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Equality of Mixed Partial Derivatives: if both first order and second order partial 

derivatives exist and are continuous at , then you can freely switch the order around.

Taylor's Theorem: .

First Order: .

Second Order: 

.

4.4 Optimization  

Critical Point: .

If  is a local extremum and the gradient exists, then the gradient is zero at .

Hessian Matrix: The matrix of second-order partial derivatives: .

Second Derivative Test: If  is a critical point and  is the associated quadratic form of 

, then  is local max iff  is negative definite;  is local min iff  is positive definite;  

is saddle if  is indefinite.

Finding Eigenvalues: Calculate  and find all roots.
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5 Integral Calculus  

5.1 Basics  

Box: , Volume: .

Partition: , .

Norm: , .

Riemann Sum: .

L/U Riemann Sum: , .

L/U Riemann Integral: , .

Riemann Integrable: When lower and upper Riemann integrals are equal.

Refinement:  for all .

5.2 Jordan Content and Riemann Integral  

Volume of a box: .

Characterization: For all , there exists  such that .

Characterization Function:  if  and  if .

Jordan Content:  has content iff  is integrable on ; .

Content Zero:  can be covered by boxes whose volumes are arbitrarily small.

Graph: The graph of a continuous function has content zero.

Lebesgue: The set of discontinuities has content zero.

If  is bounded and  has content zero, then every bounded and continuous function is 

integrable on .

If  is bounded and has content zero, then every bounded function is integrable and the 

integral evaluates to zero.

 has content iff  has content zero.

af://n155
af://n156
af://n174
af://n197


6 Appendix: Relevant Proofs  

6.1 Topology in Euclidean Space  

6.1.1 Component-Wise Convergence of Sequences  

Proposition  Let  be a sequence of points in  where each point is of the form 

. Then, the sequence  converges to a point  if and 

only if  for all .

 Suppose  converges to . We want to show that for each  and for all , 

there exists  such that  for all .

Let  and . By convergence of  to , we know that there exists  such that 

 for all . By the definition of Euclidean norm, for all ,

Hence, for all , we have  as required.

 : Let  and define . For each , there exists  such that 

 for all  (convergence of component sequence). Define  so that 

 for all  and for all . By the definition of the Euclidean norm,

for all  as required. 

6.1.2 Component-Wise Cauchiness of Sequences  

Proposition  Let  be a sequence of points in  where each point is of the form 

. The sequence  is Cauchy if and only if  is Cauchy for each 

.

 Let . Since  is Cauchy, there exists  such that  for any  

Then, for ,

where . Thus  is desired; each component sequence is indeed Cauchy. 

 : Let . Since  is Cauchy for each , there exists  for each  such that for 

all , . Let . Then for all ,  for 

all . It follows that 
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Hence,  is Cauchy. 

6.1.3 Clopen Sets in  

Proposition  The only subsets of  that are both open and closed are  and .

Proof. We prove by contradiction.

Suppose  is a non-trivial, proper subset which is open and closed. Take  and 

. Since  is open, there is  such that . Also, because , 

there exists  such that . 
1

By the Least Upper Bound Principle of , we may find . Because  is 

closed,  and by definition of , given any , we have . 
2

Next, given , choose . Since  is closed and bounded, it is 

compact. Since  for every , there exists a subsequence  with a limit, call it 

.
3

 We conclude by showing , so that . Then, for every , because there 

is  such that  and  by definition, .
4

 Finally, 

since , we contradict that  is open.

Let . Find  so that for ,  and choose  so that, for 

, , i.e., . Then, for , 

Since  was arbitrary,  as desired. 

6.1.4 A Set Is Open Iff Its Complement Is Closed  

Theorem  A set  is open if and only if its complement, , is closed.

 is open  is closed: Let  be an open subset of  and suppose that  is a limit point of 

. Suppose for contradiction that . Since  is open, there exists an open ball . 

Then, there is no point  such that . No sequence in  can converge to , 

contradicting the assumption that  is a limit point of . Therefore, all limit points of  must be 

in , i.e.,  is closed.

 is not open  is not closed: Suppose  is not open. Then, there must be a point  

such that for every , the open ball  contains a point in . Construct a sequence  

in  such that  for each . Then, , which means that there is 

a limit point of  that is not in . This proves that  is not closed. 

6.1.5 Sequential Characterization of Continuity  
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Theorem  Let  and . For any , the following statements are equivalent:

1.  is continous at .

2.  for every sequence  in  that converges to .

 : By definition of continuity of  at , given , there exists  such that 

 for all  satisfying . By definition of limits,  in  

converges to  means there exists  such that  for all . Then 

 for all  and thus .

 : We show the contrapositive. If  is not continuous at , then there exists  such that for 

every , there is a point  for which  but . For each integer 

, define  and construct a sequence of points  such that  and 

. Then,  but . 

6.1.6 Combining Continuous Functions  

Theorem  Let  and  be any two functions from  to . Suppose there is a point  at 

which  and  are continuous. Then,

1.  is continuous at ,

2.  is continuous at  for any .

If , then

3.  is continous at ,

4.  is continous at  provided that .

Proof.  We will prove (1) by showing the sequential characterization of continuity is satisfied.

Let  be a sequence converging to . By SCC, , . 

By Limit Rules, . 

By SCC,  is continuous at . 

Theorem  Let  and . Suppose we have two functions  and . If 

 is a continous at a point  and  is continous at the point , then the composition 

function  is continous at .

Proof.  We will show that the sequential characterization of continuity is satisfied. Let  be a 

sequence of points in  that converges to . By sequential continuity of , we have a sequence 

 of points in  that converges to . By sequential continuity of , 

. Hence,  is sequentially continuous at .  

6.1.7 Image of Continuous Function on Compact Domain Is Compact  

Theorem  Suppose  is a compact subset of and let  is a continuous function on . 

Then the image set  is compact.
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Proof. We want to show that an arbitrary sequence  in  has a subsequence that 

converges to a point in . 

If , then there exists  such that . Thus, we can construct a sequence 

 in . Because  is compact, there must exist a subsequence  that converges to a 

point . By sequential continuity, . Hence,  

is a subsequence of  that converges to a point in .  

6.1.8 Extreme Value Theorem  

Theorem  Let  be a non-empty compact subset of  and let  be a continuous 

function. Then,  attains its minimum and maximum values on , i.e., there exists  such 

that  for all .

Proof.  Since  is compact and  is continuous,  is compact and thus closed and bounded.

Suppose  and non-empty, the Least Upper Bound Principle says the supremum 

 exists (i.e., it is finite). By the definition of the supremum, we can find a sequence 

 in  such that  for all . This sequence converges to . We 

know that  is closed, meaning that  must be in , which in turn implies that there exists 

 such that .

We can show the existence of  in a mirror argument.  

6.2 Differential Calculus  

6.2.1 Rules for Differentiating Functions  

Theorem  Let , . If  are two functions that are differentiable at , 

then:

1. Addition: ,

2. Scalar Multplication:  for any ,

3. Product Rule: , and

4. Quotient Rule:  given .

Proof.  Apply the Chain Rule to the suitable composite functions. 

Addition:  Let  be defined by . Define  by . 

Note that . By the Chain Rule, . Writing the 

derivatives as Jacobian matrices,

Thus    
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Scalar Multiplication:  Fix . Let  defined by  and  defined by 

. Note that . By the Chain Rule, . Since  

is a one-variable scalar function, we know  (Math147). It follows that 

 as desired.  

Product Rule: Let  be defined by . Define  by 

. Note that . By the Chain Rule, . Writing the derivatives 

as Jacobian matrices,

Thus, . 

Quotient Rule:  Let  be defined by . Define  by 

. Note that . By the Chain Rule, . Suppose 

. Writing the derivatives as Jacobian matrices,

Thus,  if . 

6.2.2 Local Extremum is Critical Point  

Theorem  Let , , . If  is a local minimum or local maximum of  and 

 exists, then  is a critical point of .

Proof.  Since  and  exists, we must have

for each component . Suppose  is a local maximum. Then there exists  such 

that  for all . Fix . For any  satisfying ,

Similarly, for  satisfying , 

Here,  for each . A similar argument shows that  if  is a local 

minimum. 
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6.3 Integral Calculus  

6.3.1 Volumes of Partitions  

Lemma  Let  be a box and let  be a partition of  with indexing set  and sub-boxes 

. Then, . 

Proof.  By definition,  and . For each 

, we have . Therefore, 

6.3.2 Graphs with Content Zero  

Proposition  Let . Then the graph  has content 

zero.

Proof.  Since  is compact and  is continuous on ,  is uniformly continuous on . Let 

, there exists  such that . Let  be a 

partition of the interval  with  Then the graph of  can be expressed as

where  and . Then, 
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7 Problem Solving Techniques  

7.1 Topology in Euclidean Space  

7.1.1 Proving a Set Is ...  

... Bounded: By definition, find its bound.

... Complete: By definition, show that every Cauchy sequence converges.

... Compact: By definition, show that every sequence has a convergent subsequence; Use 

HBT, show the set is closed and bounded; Use continuity, show its pre-image is compact and 

the function is continuous.

... Connected: By contradiction, suppose there exists a separation and prove false; Use 

continuity, show its pre-image is connected and the function is connected.

... Disconnected: By definition, find a separation.

... Open: By definition, there exists an open ball around every point; By Theorem, show its 

complement is closed.

... Closed: By definition, show any sequence (if converges) must converge back to the set; By 

Theorem, show its complement is open.

7.1.2 Proving a Limit Does Not Exist  

Prove a function  defined by  does not have a limit at the origin.

Solution.  By sequential characterization of limits, if  has a limit at the origin, then there exists 

 such that  for all  that converges to the origin. Since  

is unique if exists, it is sufficient to find two sequences  and  of points in  

that both converges to  and have the property that .

Construct  and . Then . However,

Since  but , by sequential characterization 

of limits,  does not have a limit at the origin. 

Remark.  In general, given , always choose  as it usually makes 

. Next, choose  such that , which makes the 

denominator a constant multiple of the numerator and the limit is then non-zero.

7.1.3 Proving a Limit Does Exist  
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Determine whether a function  defined by  has a limit at the origin.

Remark.  Unless the question explicitly tells you that the limit exists / does not exist, always start 

with the equation . Since , we get ;  does not have an 

integer solution, so we know the limit exists. Since the limit is unique when exists, using the 

sequence  we see that the limit should be zero (by SCL). We now proceed to apply the 

Squeeze Theorem for a formal proof.

Solution.  We want to apply the Squeeze Theorem. For all , we have 

 Since ,  so . Thus, for all 

, we have . By inspection, . It follows from 

the Squeeze Theroem that  has a limit at the origin, which is . 

7.2 Differential Calculus  

7.2.1 Prove a Function Is Differentiable  

1. By definition,  is differentiable at  if 

2. If all partials exist on an open ball centered at  and are continuous at , then  is 

differentiable at .

3. Any arbitrary linear combination or composition of differentiable functions is differentiable.

7.2.2 Prove a Function Is Not Differentiable  

By definition, show that 

7.2.3 Find the Linear Approximation to a Differentiable Function  

Compute .

7.2.4 Find a Taylor Polynomial of Low Order for a Given Function  

.

7.2.5 Find Local Extrema and Apply the Second Derivative Test  

Critical points occur when the gradient is zero or one of the partial derivatives doesn't exist. In this 

course we mainly deal with the first case. Thus, find all partial derivatives and set them to zero.
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To apply the partial derivative test at a critical point , compute  (by computing all second-

order partial derivatives) and find its eigenvalues (by computing the roots for ). If all 

eigenvalues are positive, this is a local minimum; if all eigenvalues are negative, this is a local 

maximum; otherwise, the second derivative test failed.

7.3 Integral Calculus  

7.3.1 Determine Whether a Set Has Content  

By definition, a set  has content if the characteristic function  is integrable on .

7.3.2 Show a Set Has Content Zero  

For all , there exists a finite set of boxes  such that  

and .

If  has content zero and , then  has content zero; if  and  both have content zero, 

then  has content zero.

The boundary of a set with content has content zero.

The graph of a continuously differentiable function has content zero.

7.3.3 Determine Whether a Function Is Integrable  

By definition, if lower Riemann integral matches upper Riemann integral.

Lebesgue: the set of discontinuities has content zero.

If the set is bounded and the boundary has content zero, then bounded and continuous 

functions are integrable.

If the set is bounded and has content zero, then bounded functions are integrable (and the 

integral evaluates to zero).

Linear combinations of integrable functions are integrable.
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1. In words, we have found a ball with radius  that is contained inside  and another ball with larger radius that is not 

contained inside . ↩

2. In words,  is the largest radius where  still holds and any radius larger than  will contain points from 

. ↩

3. By compactness. ↩

4. Any open ball around  contains points from . ↩
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