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Part I

Minimum Spanning Trees
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1 MINIMUM SPANNING TREES

We wish to develop algorithms to find minimum spanning trees. Our plan is as follows.

1. Characterize spanning trees and minimum spanning trees.
2. Use such characterizations to derive algorithms (and prove their correctness).
3. Alternatively, prove their correctness using linear programming techniques.

1.1 Spanning Trees.

Definition 1.1. Given graph � = (+ , �), a subgraph ) is a spanning tree of
� if + ()) = + (�) and ) is a tree, i.e., it is connected and acyclic.

Theorem 1.2. Let � = (+ , �) be connected and ) a subgraph of � with + ()) = + .
The following are equivalent (henceforth, TFAE): a

1. ) is a spanning tree of �.
2. ) is minimally connected, i.e., removing any edge from ) disconnects ) .
3. ) is maximally acyclic, i.e., adding any edge to ) creates a cycle in ) .
4. ) is connected and has |+ | − 1 edges.
5. For all D, E ∈ + , there exists a unique D, E-path in ) , denoted )D,E.
aRecall an undirected graph is a tree iff there exists exactly one simple path between each

pair of vertices. Compare this with the last statement.

Definition 1.3. For � = (+ , �) and � ⊆ + , the cut of � induced by � is
defined as X(�) := {4 ∈ � : 4 has one end in � and the other end in + \ �}.

Theorem 1.4. A graph � = (+ , �) is connected iff for all � ⊆ + with ∅ ≠ � ≠ + ,
we have X(�) ≠ ∅. In words, a graph is connected iff for any proper subset of the
vertex set, there is at least one edge leaving/entering it.

Proof. It is easy to see that, if X(�) = ∅ with D ∈ � and E ∉ �, then there is no D, E-path in
� and hence, if ∅ ≠ � ≠ + , � is disconnected. Now suppose � is not connected. Choose
D, E ∈ + such that is no D, E-path in �. Define � := {F ∈ + : there exists a D,F-path in �}.1
Then D ∈ � and E ∉ �, so ∅ ≠ � ≠ + . We claim that X(�) = ∅. Suppose not, then there
exists ?@ ∈ X(�) ⊆ � with ? ∈ � and @ ∉ �. Then adding 4, @ to any path from D to ? gives
a path from D to @, contradicting the fact that @ ∉ �. �

1� is the connected component that contains D. Thus, there cannot be anything entering or leaving �.
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1.2. MINIMUM SPANNING TREES

1.2 Minimum Spanning Trees.

The minimum spanning tree (henceforth, MST) problem is given as follows. Unless
otherwise noted, we assume the graph � is connected throughout this chapter.

Problem (MST). Given a connected graph � = (+ , �) and costs 2 : � → R,a

return a spanning tree ) of � of minimum cost, where the cost of ) is given by

2()) =
∑

4∈� ())
24.

aAlternatively, 2 ∈ R� or 2 ∈ Z� . The cost for edge 4 ∈ � is denoted 24 or 2(4).

The following lemma is used in the proof of Theorem 1.6.

Lemma 1.5. If ) is a spanning tree of � and 4′ is not an edge in ) , then ) + 4′
contains exactly one cycle �. Moreover, if 4 is on the cycle �, then ) − 4 + 4′ is also
a spanning tree of �.

Proof. Since ) is maximally acyclic, adding 4′ is guaranteed to form a cycle �. Now let
)1,)2 be the two components of ) − 4. Suppose 4′ = {D, E} where D ∈ + ()1) and E ∈ + ()2).
Let G ∈ + ()1) and consider some H ∈ + ()1) ∪+ ()2). If H ∈ + ()1), there exists a G, H-path
since )1 is connected. If H ∈ + ()2), since )1 and )2 are each connected, there exists an
G, D-path %1 and a E, H-path %2. Then %1 + DE(= 4′) + %2 forms an G, H-path. In either case,
) − 4 + 4′ is connected. Since it also has = − 1 edges, it is a spanning tree of �. �

Theorem 1.6. Let � = (+ , �), 2 : � → R, and ) a spanning tree of �. TFAE:

1. ) is a MST.
2. Let DE ∈ � \ � ()) be arbitrary. Then for any edge 4 on )D,E, we have 2DE ≥ 24.
3. Let 4 ∈ � ()). If )1,)2 are the two connected components in ) − 4, then 4 is a

minimum cost edge in X()1) = X()2).

Let’s first look at what statement (2) and (3) really mean.

¬2⇒ ¬1: Consider the left figure below, where the subgraph ) in orange is a spanning
tree of the graph. Since 2(E3E) = 3 > 2 = 2(DE), we could remove E3E and add DE to
obtain another spanning tree but with less cost.
¬3 ⇒ ¬1: Consider the right figure below, where the subgraph ) is orange is an MST
of the graph and )1,)2 are the components induced by removing 4 from ) . The purple
edges are those in X()1) = X()2). If any of them has a smaller cost than 4, then we could
remove 4 and add that edge, which yields another spanning tree but with less cost.

3



1.2. MINIMUM SPANNING TREES

Figure 1.1: Left: ¬2⇒ ¬1. Right: ¬3⇒ ¬1.

Proof.

¬2 =⇒ ¬1: Suppose there exist DE ∈ � \ � ()) and 4 ∈ )DE such that 24 > 2DE. By Lemma
1.5, ) ′ := ) + DE − 4 is a spanning tree of � with less cost than ) , so ) is not a MST.

¬3 =⇒ ¬2: Let 4 ∈ � ()) and )1,)2 be two connected components of ) − 4. Suppose 4 is
not the minimum cost edge in X� ()1), i.e., there exist some edge DE where D ∈ )1, E ∈ )2,
and that 24 > 2DE. Since D and E are in different components of ) − 4, DE ∉ � ()).2 Also,
since D and E are disconnected by removing 4, edge 4 must be on the path )D,E. We have
found the desired edges 4 ∈ )D,E and DE ∉ � ()) with 24 > 2DE, the negation of Statement 2.

3 =⇒ 1: Let ) satisfy (3) and )∗ be a MST with largest : := |� ()) ∩ � ()∗) | 3. If : = = − 1,
) = )∗ and we are done. Otherwise, there exists some 4 ∈ � ()) \ � ()∗). Let )1,)2 be the
connected components of ) − 4. Since )∗ is connected, there exists 4∗ ∈ � ()∗) ∩ X()1).4
Since 4 ∉ � ()∗), 4∗ ≠ 4. By (3), 4 is the minimum cost edge in X()1), i.e., 24 ≤ 24∗ . Then
) ′ := )∗ − 4∗ + 4 is also a spanning tree (Lemma 1.5) and 2() ′) = 2()∗) − 24∗ + 24 ≤ 2()∗).
Thus, 2() ′) is also a MST. But then |� ()) ∩ � () ′) | > |� ()) ∩ � ()∗) |,5 contradiction. �

2Otherwise, we have a cycle in ) which contains 4 and DE.
3Variable : here denotes the number of edges in )∗ coinciding with ) .
4By Theorem 1.4, if X) ∗ ()1) := � ()∗) ∩ X()1) = ∅, then )∗ is disconnected. Contradiction.
5) ′ is a MST containing one more edge from � ()) (namely 4) than )∗.
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1.3. KRUSKAL’S ALGORITHM

1.3 Kruskal’s Algorithm for Minimum Spanning Trees.

Algorithm 1: Kruskal’s Algorithm

input: � = (+ , �) connected, costs 2 : � → R

output: �, a minimum spanning tree of �
main:

1: Initialize � = (+ ,∅), i.e., a forest of isolated vertices
2: while � is not a spanning tree of � do
3: 4 = cheapest edge whose endpoints are in different connected components of �
4: Add 4 to �
5: return �

Lemma 1.7. The subgraph � returned by the algorithm is a spanning tree.

Proof. First, note that 4 at step 3 always exists, as otherwise � is connected and + (�) = +
so � is a spanning tree. Now every time step 4 gets executed, the number of connected
components of � reduces by 1, and � is acyclic. Thus, the while loop terminates in $ (=)
iterations with a connected, acyclic graph, i.e., a spanning tree. �

Proposition 1.8. The subgraph � returned by the algorithm is an MST.

Proof. Suppose the returned � is not a MST. Then there exists some DE ∈ � \ � (�) and
4 ∈ �D,E with 2D,E < 24. When 48 = DE is tested at line 4 of the implementation, �D,E still
does not exist. Then DE would have been added to �. �

It is easy to show that Kruskal’s runs in polynomial time of = = |+ | and < = |� |. 6

Algorithm 2: Kruskal’s Algorithm, implementation

input: � = (+ , �) connected, costs 2 : � → R

output: �, a minimum spanning tree of �
main:

1: Initialize � = (+ ,∅) ⊲ $ (1)
2: Sort the edges so that 21 ≤ · · · ≤ 2<. ⊲ $ (< log<)
3: for 8 = 1, . . . ,< do ⊲ $ (<) iterations
4: if endpoints D, E of 48 are in different connected components of � then ⊲ $ (=)
5: Add 48 to �
6: return � ⊲ Overall: $ (< log<) +$ (<=) ⊆ $ (<=)

6A nice visualization of Kruskal’s algorithm on wikipedia.
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1.4. CORRECTNESS OF KRUSKAL’S WITH LP

1.4 Proof of Correctness with Linear Programming.

We want to do a second proof of correctness using linear programming because:

1. It shows a nice techniques that can be used in other settings.
2. These techniques can lead to "good" approaches for more challenging problems.

An Integer Program Formulation

Let G4 ∈ {0, 1} be a variable that indicates whether edge 4 is in the MST. Recall MSTs are
acyclic and have = − 1 edges. Thus, we have

• Objective function: min
∑
4∈� 24G4 (= 2)G).

• Constraint 1, we use exactly = − 1 edges from � : G(�) = ∑
4∈� G4 = = − 1.

• Constraint 2, the graph needs to be acyclic: G(�) ≤ =− ^(�) for all � ⊆ �(see below).
• Constraint 3, indicator variables: G ∈ {0, 1}� .

Acyclic Constraint

Consider � ⊆ � . How many edges from � can a spanning tree use?

Claim. Let ^(�) be the number of connected components of (+ , �). Then a span-
ning tree can contain at most = − ^(�) edges of �.

Proof. For any component � of (+ , �), we can use at most =� − 1 = |+ (�) | − 1 edges
without creating a cycle. Suppose there are ^(�) components, �1, . . . ,�^(�) . Then we can
use at most =�1 − 1 + · · · + =�^ (� ) − 1 = (=�1 + · · · + =�^ (� ) ) − ^(�) = = − ^(�) edges. �

Remark. Consider � = {4}. Then ^(�) = = − 1 and G(�) ≤ = − ^(�) becomes G4 ≤ 1. Thus,
we have an implicit upper bound constraint that G4 ≤ 1 for all 4 ∈ � . As a result, we can
modify Constraint 3 to G ≥ 0, G ∈ Z� as the G ≤ 1 condition is implied by Constraint 2.

To summarize, this is the integer program we get for the MST problem:

min 2)G

B.C. G(�) = = − 1
G(�) ≤ = − ^(�) ∀� ⊆ �
G ≥ 0, G ∈ Z�

Note that any spanning tree ) corresponds to a feasible solution to this IP. We will next
consider the LP relaxation of this IP and show that the spanning tree produced by Kruskal’s
is optimal for the primal-dual pair using complementary slackness conditions. This proves
that Kruskal’s algorithm produces MSTs.
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1.4. CORRECTNESS OF KRUSKAL’S WITH LP

The LP Relaxation and Its Dual

The LP relaxation of the IP above is given by

(PST) : min 2)G

B.C. G(�) = = − 1 (H� )
G(�) ≤ = − ^(�) ∀� ⊂ � (H�)
G ≥ 0

Note we made two changes:

1. We dropped the integer constraint G ∈ Z� .
2. We dropped the case of � = � in Constraint 2 as it is implied by Constraint 1.

The dual of (PST) is (DST) given by

(DST) : max
∑
�⊆� [(= − ^(�))H�]

B.C.
∑
� :4∈� H� ≤ 24 ∀4 ∈ �

H� ≤ 0 ∀� ⊂ �

Since the input is connected and the feasibility region is bounded, the Fundamental The-
orem of LPs tells us that there is always an optimal solution. Our goal is to show that the
solution returned by Kruskal’s algorithm is optimal for PST and DST.

Proof of Correctness using LP

Ordered the set of edges so that 241 ≤ · · · ≤ 24< . Consider �8 = {41, . . . , 48}, which are
the edges considered by Kruskal in the first 8 iterations of the for loop. Define the dual
variables for each � ⊆ � as follows:

• H̄�8 = 248 − 248+1 ≤ 0, for all 8 = 1, . . . ,< − 1.
• H̄�< = H� = 24< .
• H̄� = 0 for all other �.

Lemma 1.9. H̄ is feasible for DST and satisfies all dual constraints (except the sign
ones) at equality, that is,

∑
� :48∈� H̄� = 248 for 8 ∈ [<].

Proof. Since 248 ≤ 248+1 for all 8 and H̄� = 0 for all other �, {H̄�8 }<−1
8=1 ∪ {H̄�}all other � satisfy

the sign constraint H� ≤ 0,∀� ⊂ � . (H� is free so we don’t care.) For the second part, fix
4: . Since �8 contains {41, . . . , 48}, 4: is contained in {�: , �:+1, . . . , �<}. Then∑

� :4:∈�
H� = H�: + H�:+1 + · · · + H�< = 24: −XXX24:+1 +XXX24:+1 −XXX24:+2 + · · · + −HH24< +HH24< = 24: .

as desired. �
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1.4. CORRECTNESS OF KRUSKAL’S WITH LP

Lemma 1.10. )8 := (+ , �8 ∩ � ())) is a maximally acyclic subgraph of �8 := (+ , �8)
for 8 ∈ [<].

Proof. Suppose for a contradiction that ∃4 9 ∈ �8 \ � ()8) such that )8 + 4 9 is acyclic. Note
that 9 ≤ 8, so that � ()9−1) ⊆ � ()8). Then if )8 + 4 9 is acyclic, )9−1 + 4 9 must be acyclic as well.
Recall that in Kruskal’s algorithm we ordered the set of edges first then iterate through
them in that order, adding an edge to ) as long as ) remains acyclic. In particular, ): is the
forest computed by Kruskal’s algorithm at the end of the :-th iteration for every : . The
above implies that Kruskal’s algorithm would have added 4 9 in to ) on the 9-th iteration,
which is a contradiction because 4 9 ∉ � ()8) and hence 4 9 ∉ � ()9 ) as � ()9 ) ⊆ � ()8). �

Let Ḡ be the characteristic vector of tree ) constructed by Kruskal’s algorithm. Note that
Ḡ(() = ∑

4∈( Ḡ4 = |� ()) ∩ ( | for every ( ⊆ � .

Lemma 1.11. Ḡ(�8) = = − ^(�8) for every 8 < |� |.

Proof. Let �1, . . . ,�^(�8) be the connected components of (+ , �8). Since )8 := (+ , � ()) ∩ �8)
is a maximally acyclic subgraph of �8 := (+ , �8), the graph (+ (� 9 ), � ()8) ∩ � (� 9 )) is a
spanning tree of � 9 , so |� ()8) ∩ � (� 9 ) | = |+ (� 9 ) | − 1. Thus,

Ḡ(� 9 ) = |� ()) ∩ � (� 9 ) | ≥ |� ()8) ∩ � (� 9 ) | = |+ (� 9 ) | − 1.

On the other hand, since ) is a tree and therefore Ḡ is a feasible solution of PST, we have
that Ḡ(� (� 9 )) ≤ = − ^(� (� 9 )), where ^(� (� 9 )) = = − |+ (� 9 ) | + 1 since � 9 is connected. 7

Thus, Ḡ(� (� 9 )) ≤ = − (= − |+ (� 9 ) | + 1) = |+ (� 9 ) | − 1. Combined with the equation above,
we have Ḡ(� 9 ) = |+ (� 9 ) | − 1, which implies that

∀8 < |� | : Ḡ(�8) =
^(�8)∑
9=1

Ḡ(� 9 ) =
^(�8)∑
9=1

( |+ (� 9 ) | − 1) = = − ^(�8).

�

Proposition 1.12. Ḡ and H̄ satisfy the CS conditions for PST and DST, which in turn
shows that the tree ) returned by Kruskal’s algorithm is a MST.

Proof.

• "For every � ⊆ � , either Ḡ(�) = = − ^(�) or H̄� = 0": Let � ⊆ � . If � = � , then
Ḡ(�) = =− 1. If � = �8 for some 8 < <, then Ḡ(�8) = =− ^(�8). For any other �, H̄� = 0.

• "For every 4 ∈ � , either
∑
� :4∈� H̄� = 24 or Ḡ4 = 0": see Lemma 1.9. �

7Suppose = = |+ (�) | = 20 and |+ (� 9 ) | = 5. Then the graph (+ , � (� 9 )) contains 20 − 5 + 1 components
because each vertex in + \+ (� 9 ) is an isolated vertex and thus a component and � 9 is a component.
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1.5. MAXIMUM COST FOREST

1.5 Maximum Cost Forest.

Roughly speaking, an algorithm is greedy if at each step it always chooses the locally op-
timal solution. It is not hard to tell that not all problems can be solved with this approach.
So when does greedy work?

Maximum Cost Forest (MCF)

Given � = (+ , �), a forest is a subgraph (+ , �) with � ⊆ � that is acyclic. We will refer to
a forest by its set of edges.

Problem (Maximum Cost Forest). Given � = (+ , �) and 2 : � → R, find a
forest � maximizing 2(�) :=

∑
4∈� 24.

Algorithm for MCF

Given � = (+ , �) and 2 : � → R, suppose we want to construct a MCF for �. Intuitively,
we can ignore the set of edges that have non-positive costs, because adding those edges
will not give us a better solution. Define �+ := {4 ∈ � : 24 > 0} and �− := {4 ∈ � : 24 ≤ 0}.

Lemma 1.13. Let �∗ be the MCF of �+ := (+ , �+). Then �∗ is also a MCF of �.

Proof. Clearly �∗ is a forest of �. Let � be a MCF of �. Then∑
4∈�

24 =
∑

4∈�∩�+
24 +

∑
4∈�∩�−

24 ≤
∑

4∈�∩�+
24 ≤

∑
4∈�∗∩�+

24,

where the last inequality follows since � ∩ �+ is a forest of �+ and �∗ is a MCF of �+. �

From now on, we may assume 24 > 0 for all 4 ∈ � . Now let � = (+ , �) have connected
components defined by the vertex set (+1, . . . ,+?) for some ? ≥ 1. We define W(�) to be a
uniquely defined minimal set of edges that need to be added to � to make it connected.
The following algorithm computes a MCF of �:

Algorithm 2 Maximum Cost Forest
input: � = (+ , �), costs 2 : � → R+
output: �, a MCF of � wrt 2
main:

1: Let �′← (+ , �′) be the graph with vertex set + and �′ = � ∪ W(�).
2: Let 2′4 ← −24 (< 0) for all 4 ∈ � , 2′4 ← " > 0 for all 4 ∈ W(�).
3: Find MST ) of �′ (e.g., with Kruskal’s) wrt 2′.
4: Return � ← ) \ W(�)

9



1.5. MAXIMUM COST FOREST

In words, minimally connect the components; negate all costs for edges in the original
graph and assign a positive weight for the newly-added edges; find an MST for the new
graph; return the subset of edges that were in the original graph.

Correctness Proof

Intuition. Observe we connected � minimally to obtain �′ and assigned positive costs
to new edges W(�) and negative costs to old edges � . A MST ) of �′ then consists of
all edges in W(�) and the most expensive edges in � wrt the original cost. Thus, we can
return ) \ W(�) and obtain a MCF of �.

Proposition 1.14. The procedure above produces an MCF (wrt original costs 2).

Proof. Let � and ) be defined as in the algorithm. Note that � is a forest since it is a subset
of edges of a tree. Also note that any spanning tree of �′ must contain all edges in W(�).
Now let �∗ be a MCF of � wrt 2 and let )∗ be any spanning tree of �′ containing �∗. Our
goal is to show that � returned by the algorithm has the same cost as �∗.

First, observe∑
4∈)∗

2′4 =
∑

4∈()∗∩W(�))
2′4 +

∑
4∈()∗∩�)

2′4 � (�′) = � (�) ¤∪ W(�)

= " |W(�) | +
∑
4∈�∗

2′4 +
∑

4∈()∗∩�)\�∗
2′4︸          ︷︷          ︸

<0

≤ " |W(�) | +
∑
4∈�∗

2′4. 4 ∈ � =⇒ 2′4 < 0

Since �∗ is a maximum cost forest in �, we have∑
4∈�∗

24 ≥
∑
4∈�

24 ⇐⇒
∑
4∈�∗

2′4 ≤
∑
4∈�

2′4

⇐⇒ " |W(�) | +
∑
4∈�∗

2′4 ≤ " |W(�) | +
∑
4∈�

2′4 =
∑

4∈W(�)
2′4 +

∑
4∈�

2′4 =
∑
4∈)

2′4.

Together, they imply that
∑
4∈)∗

2′4 ≤
∑
4∈)

2′4. But since ) is a MST of �′ wrt 2′, we then have∑
4∈)∗

2′4 ≥
∑
4∈)

2′4. Together, we have ∑
4∈�∗

24 =
∑
4∈�

24

which concludes the proof. �
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1.5. MAXIMUM COST FOREST

A More Direct Approach

In fact, we can modify Kruskal to obtain a direct algorithm for MCF:

Algorithm 3: Kruskal’s Algorithm, for Maximum Cost Forest

input: � = (+ , �), costs 2 : � → R

output: �, a maximum cost forest of �
main:

1: Initialize � = (+ ,∅), i.e., a forest of isolated vertices
2: while ∃4 ∈ � : 24 > 0 and whose endpoints are in different components of � do
3: 4 ← highest cost such edge
4: Add 4 to �
5: return �

In words, we keep adding the most expensive edge to the forest as long as it does not
create any cycle. It should easy to convince yourself (after understanding Kruskal’s al-
gorithm and its proofs) that if � is connected, we obtain a maximum cost spanning tree;
otherwise, the algorithm returns a forest consists of maximum cost spanning trees.

Reducing MCF to MST

Suppose � = (+ , �) is connected. If you have the above algorithm (for MCF) as a black
box, you can solve the MST problem with the following procedure:

1. Take 2′4 = −(24 −") > 0 for all 4 ∈ �
2. Compute the MCF wrt 2′.

In words, transform the cost vector to become positive and then compute an MCF wrt the
new cost. The result is then an MST wrt the original cost (note � is connected).

Proposition 1.15. The procedure above produces a MST (wrt original costs 2).

Proof. By definition of 2′, each MST of � wrt −2′ is also a MST wrt to 2 with their weights
shifted by a constant (= − 1) · " . Thus, it suffices to show that the procedure produces a
maximum spanning tree of � wrt 2′.

Consider the forest � returned by the procedure. Since all edges have positive costs wrt
2′, any subgraph of � that is not maximally acyclic cannot be optimal. Thus, � must be a
spanning tree of �. Since all spanning trees are forests, � must be a maximum spanning
tree, as otherwise it cannot be a MCF. �

11



1.A. EXTRA COMMENTS

1.A Extra Comments.

Derivation of the Dual MST LP

Consider the following LP:

(PST) : min 2)G

B.C. G(�) = = − 1 (H� )
G(�) ≤ = − ^(�) ∀� ⊂ � (H�)
G ≥ 0

Some easy stuff first:

• The primal is minimization, so the dual is maximization.
• The constraint corresponding to H� is an equality, so H� is free (and thus omitted).
• The constraint corresponding to H� is of the ≤ type, so H� ≤ 0 for all � ⊂ � .
• All primal variables are ≥ 0, so all dual constraints are of the ≤ type.

The primal sign constraint G ≥ 0 can be expanded as G4 ≥ 0,∀4 ∈ � , each of which
introduces a dual constraint of the ≤ type. We know the RHS of each constraint is 24.

For the LHS, imagine the primal LP in matrix form and take the transpose. Recall

G(�) =
∑
4∈�

G4 =
∑

4∈(�\�)
0 +

∑
4∈�

G4

where G4 = 1 if 4 is included in the tree and 0 otherwise. If we abuse the notation a bit
and let "4 ∈? �" denotes an indicator variable (analogy: "e in F" in Python where e is an
element and F is a set), we can rewrite this as

G(�) =
∑
4∈?�

G4 (4 ∈? �) = G41 (41 ∈? �) + G42 (42 ∈? �) + · · · .

Thus, the rows of the form G(�) ≤ = − ^(�) are essentially characteristic vectors, i.e., 1 if
4 ∈ � and 0 otherwise:


41 ∈? �1 42 ∈? �1 43 ∈? �1 44 ∈? �1 · · ·

...
41 ∈? �A 42 ∈? �A 43 ∈? �A 44 ∈? �A · · ·




G1

G2

G3

G4
...


≤


= − ^(�1)

...
= − ^(�A)


When you instead sum across the 4-th column of the matrix for the dual, there is a con-
tribution of 1 per row iff 4 ∈ � where � is the edge set associated with that row. For

12



1.A. EXTRA COMMENTS

example, the 1st, 3rd, and 4th row/entry contributes to the sum of the first column:

41 ∈ �1

41 ∉ �2

41 ∈ �3

41 ∈ �4

41 ∉ �5


=⇒ 1H1 + 0H2 + 1H3 + 1H4 + 0H5 =

∑
� :4∈�

H� ≤ 241 .

Thus, these constraints are of the form

∀4 ∈ � :
∑
� :4∈�

H� ≤ 24.

Next, expand Constraint 2 as

G(�1) ≤ = − ^(�1) (H�1)
· · ·

G(�ℓ) ≤ = − ^(�ℓ) (H�ℓ )
G(�) = = − 1 (H� )

Recall the dual objective function is min 11H1 + · · · + 1<H<. In this case, we have

max

(∑
�⊂�
(= − ^(�))H�

)
+ (= − ^(�))H�

We can merge the second term into the summation. Thus, the dual objective becomes

max
∑
�⊆�
(= − ^(�))H�

Altogether, the dual LP is given by

(DST) : max
∑
�⊆� (= − ^(�))H�

B.C.
∑
� :4∈� H� ≤ 24 ∀4 ∈ �

H� ≤ 0 ∀� ⊂ �

An Alternative LP for MST

(P′ST) : min 2)G

B.C. G(�) = = − 1
G(� (()) ≤ |( | − 1 ∀∅ ( ( ( +
G ≥ 0

The equivalence between P′ST and PST is explored in A1Q5.
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1.B. PRACTICE PROBLEMS

1.B Practice Problems.

Claim. Let � be an undirected connected weighted graph with at least one cycle.
Let � be a cycle of � and let 4 be an edge that has strictly greater cost than all other
edges in the cycle. Show that 4 does not belong to any MST of �.

Proof. Suppose there exists a MST ) of � containing 4. Let )1,)2 be subtrees obtained by
deleting 4 from ) . Then ) ∩ X(+ ()1)) = {4}. Note that every cut has even intersection
with every cycle, so there exists another edge 5 ∈ X(+ ()1)) ∩ �, 5 ≠ 4. Since 5 ∉ ) and
2( 5 ) < 2(4), we can replace 4 with 5 to get a smaller spanning tree. Contradiction. �

Claim. Prove that for any weighted undirected graph such that the weights are
distinct, the MST is unique.

Proof. Let )1,)2 be distinct MST. Let 4 = {D, E} be the cheapest edge that belongs to only
one of the two spanning trees (it exists since they are distinct). We may assume that
4 ∈ � ()1). Now consider )2 ∪ {4}. It contains a cycle � which contains 4. If any edge 5

of that cycle has cost strictly greater than 4, then )2 ∪ {4} \ { 5 } is a tree with cost 2()2) +
24 − 2 5 < 2()2), contradicting the fact that )2 is an MST. Thus, all edge 5 of � \ {4} satisfies
2 5 < 24 (since the weights are distinct). Since there must be an edge 5 ∈ � \ {4} such that
5 ∉ � ()1), this contradicts the choice of 4. �

Claim. Show that the following algorithm finds an MST of a connected graph � in
polytime: Start with � = �. At each step, find a max-cost edge 4 such that � \ 4 is
connected and delete it from �. If no such edge exists, then stop and return �.

Proof. Since the graph is connected, the algorithm clearly computes a spanning tree, since
it deletes edges until the graph is minimally connected. Let � = {41, 42, . . .} be such that
2(48) ≥ 2(48+1) for all 8. Let �0 = � and for 8 ≥ 1, let �8 := �8−1 − 48 is 48 is not a cut edge in
�8−1, otherwise �8 = �8−1. By induction, it is sufficient to argue that (+ , �8) contains some
MST of (+ , �8−1) for all 8 ≥ 1.

Suppose this is not true. Then there is some 8 such that �8 = �8−1 − 48 and every MST
of (+ , �8−1) contains 48. Let ) be some MST of (+ , �8−1). Since 48 is not a cut edge of
�8−1, there exists an edge 5 such that ) ∪ 5 contains a cycle that also contains 48. Note
that 2( 5 ) ≤ 2(48) by the ordering of the edges. Thus, ) ∪ { 5 } \ {48} is a spanning tree in
(+ , �8−1) with cost at most 2()). Contradiction. �
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Part II

Matroids
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2 MATROID THEORY

In this chapter, we will define and study matroids and focus on how greedy algorithms
work on matroids. Our plan is as follows.

1. Identify the underlying structure for MCF and its algorithm. Abstract the ideas.
2. Define matroids and develop algorithms and characterizations of matroids:

(a) Independent set definition.
(b) Augmentation property.
(c) Circuit characterization.
(d) Basis characterization.

Revisit: Maximum Cost Forest

Let us refer to a forest by its edges. Let I ⊆ 2� be the set of all possible forests (2� denotes
the power set of �). We can write the algorithm in a more generic form.

Algorithm 4: Kruskal’s Algorithm, for Maximum Cost Forest, Generic Form

input: � = (+ , �) connected, costs 2 : � → R

output: �, (the edge set of) a maximum cost forest of �
main:

1: � ← ∅
2: while ∃4 ∈ � : � ∪ {4} ∈ Iand 24 > 0 do
3: Choose such 4 with largest 24
4: � ← � ∪ {4}
5: return �

Observe the set of forests I satisfies the following properties:

1. ∅ ∈ I: the empty set is a trivial forest.
2. If � ∈ Iand �′ ⊆ �, then �′ ∈ I: any subset of a forest is acyclic and thus a forest.
3. Fix � ⊆ � and consider the subgraph �′ = (+ , �). Label its connected components
�1, . . . ,�: . Every inclusion-wise maximal element of I, that is, a maximally acyclic
subgraph (i.e., a forest) of �′, contains exactly |+ (�8) | − 1 edges from each �8. There-
fore, they all have the same cardinality.

It turns out that these are precisely the properties we need that make the greedy algo-
rithms work. Let us introduce the notion of matroid, which is a structure that abstracts
and generalizes the notion of linear independence in vector spaces.
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2.1. MATROID

2.1 Matroid.

Independent Set Definition

There are many equivalent ways to define a (finite) matroid. We will start with the one
using independent sets. Let 2( denote the power set of (.

Definition 2.1. Let ( be a (finite) ground set and I ⊆ 2(. If I satisfies

(M1) ∅ ∈ I;
(M2) if � ∈ I and � ⊆ �, then � ∈ I,

then the pair ((, I) is called an independence system, the elements � ∈ Iare
called independent sets, and the elements of 2( \Iare said to be dependent.
Minimal dependent sets are called circuits; maximal independent sets are
called bases.

Definition 2.2. Let ((, I) be an independence system. For � ⊆ (, the maxi-
mal independent subsets of � are called the bases of �.

Definition 2.3. If ((, I) satisfies M1 and M2 and additionally satisfies

(M3) for all � ⊆ (, every inclusion-wise maximal element of I contained in �,
i.e., the bases of �, has the same cardinality,

then the pair M = ((, I) is called a matroid.

Three Examples

Ex.1: Let Ibe the set of all forests. Then (� (�), I) is called the graphic/forest matroid. ♦

Ex.2: Let ( = {1, . . . , =}, A ∈ {0, . . . , =}, and I be the set of all subsets of ( with at most A
elements. Then*A= = ((, I) is called the uniform matroid of rank A. Observe:

1. |∅| = 0 ≤ A =⇒ ∅ ∈ I. OK.
2. (� ∈ I) ∧ (� ⊆ �) =⇒ |� | ≤ |�| ≤ A =⇒ � ∈ I. OK.
3. For all � ⊆ (, every basis of I contained in � must have size min( |�|, A). OK. ♦

Ex.3. Let # be an < × = matrix and ( = {1, . . . , =} (column indices). Define I := {� ⊆ ( :
columns indexed by � are linearly independent}. Then ((, I) is called a linear matroid.

1. ∅ ∈ I: yes, ∅ is linearly independent. OK.
2. Any subset of a linear independent set is linearly independent. OK.
3. Follows from linear algebra; bases of vector space translate to bases of � ⊆ (. OK. ♦
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2.2. MAX WEIGHT INDEPENDENCE SET

2.2 Maximum Weight Independent Set Problem (for Independence Systems).

Consider the following generic optimization problem.

Problem (Maximum Weight Independent Set). Given an independence system
M = ((, I) and weights 2 : ( → R+, find � ∈ Imaximizing 2(�) :=

∑
4∈� 24.

We can solve this using a generic greedy algorithm given below.

Algorithm 5: Generic greedy algorithm

input: independence system M = ((, I), costs 2 : ( → R+

output: � ∈ Imaximizing 2(�) :=
∑
4∈� 24.

main:
1: � ← ∅
2: while ∃4 ∈ ( : � ∪ {4} ∈ Iand 24 > 0 do
3: Choose such 4 with largest 24
4: � ← � ∪ {4}
5: return �

Optimality Proof

This greedy algorithm does not always yield the optimal solution. In fact, it finds the
optimal solution if and only if M = ((, I) is a matroid.

Theorem 2.4 (Rado, Edmonds). The greedy algorithm finds the maximum weight
independent set when M is a matroid.

Proof. A later result implies this proof. See Theorem 2.9. �

Theorem 2.5 (Rado, Edmonds). Let M = ((, I) be an independence system.
Then the greedy algorithm finds an optimal independent set for all a 2 : ( → R+ iff
M is a matroid.

aIf M is not a matroid, the greedy might still find an optimal solutions for some 2, but
there always exists some 2′ for which the greedy algorithm fails to find the optimal solution.

Proof. =⇒: We show the contrapositive. Suppose M is not a matroid. Then M does not
satisfy M3. Let � ⊆ ( such that �1, �2 are two bases of � with |�1 | < |�2 |. Define

24 =


1 + Y 4 ∈ �1

1 4 ∈ �2

0 otherwise
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2.2. MAX WEIGHT INDEPENDENCE SET

In this case, the greedy algorithm outputs �1 with total weight∑
4∈�1

24 = (1 + Y) |�1 |,

as each step elements in �1 have the highest weight and �1 is inclusion-wise maximal.
Note that �2 is another candidate with total weight∑

4∈�2

24 = |�2 |.

So if we choose Y small enough where

Y <
|�2 |
|�1 |
− 1,

then �1 is not a maximum weighted independent set, which proves the contrapositive.

⇐=: Follows immediately from Theorem 2.4. �

Example. For a more explicit example for the =⇒ direction, consider |�1 | = 2 and |�2 | = 3.
Then Y < 3/2 − 1 = 0.5. Thus, if we have 24 = 1.4 < 1.5 = 1 + Y for 4 ∈ �1 and 24 = 1
for 4 ∈ �2, the greedy algorithm outputs �1 with a total weight of 1.4 + 1.4 = 2.8 which is
inferior to �2 with a total weight of 1 + 1 + 1 = 3. ♦

Rank

For an independence system ((, I), we use A (�) and d(�) to denote the size of the largest
and smallest basis of � ⊆ (, respectively.

Definition 2.6. Let M = ((, I) be an independence system. For � ⊆ (, we
define the rank of �, denoted A (�), as

A (�) := max{|� | : � ⊆ �, � ∈ I}.

Additionally, we define d(�), sometimes called the low rank of �, as

d(�) := min{|� | : � is a basis of �}

The following statement follows directly from the definition of matroid:

Proposition 2.7. M = ((, I) is a matroid iff d(�) = A (�) for all � ⊆ (.

Proof. Omitted. �
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2.2. MAX WEIGHT INDEPENDENCE SET

Rank Quotient

Definition 2.8. Let M = ((, I) be an independence system. The rank quo-
tient of M, denoted @((, I), is defined as

@((, I) := min
�⊆(

d(�)
A (�) .

Note that we always have @((, I) ≤ 1 and M is a matroid iff @((, I) = 1.

The following theorem implies that if M is a matroid, then the greedy algorithm finds an
optimal solution (which proves Theorem 2.4).

Theorem 2.9 (Jenkins). Let ((, I) be an independence system. Let GR((, I) be
the total weight of the independent set found by the greedy algorithm and OPT((, I)
be the optimal solution weight. Then

GR((, I) ≥ @((, I) ·OPT((, I).

In particular, when ((, I) is a matroid, GR((, I) = OPT((, I).

Proof. Let ( = {41, . . . , 4<} with 241 ≥ · · · ≥ 24< and let ( 9 = {41, . . . , 4 9 } for all 9 = 1, . . . ,<.
Let � be the solution obtained by the greedy algorithm and let f be the optimal solution.
Note that �,f ∈ Iand �,f ⊆ (.

Define � 9 = � ∩ ( 9 and f9 = f ∩ ( 9 . Let �0 = ∅ = f0. Then

2(�) =
∑
4 9∈�

24 9

=

<∑
9=1

( |� 9 | − |� 9−1 |︸          ︷︷          ︸
★

)24 9 ★ = 1 if 4 9 ∈ � and 0 otherwise

=

<−1∑
9=1

|� 9 | (24 9 − 24 9+1) + 24< |�< | algebra

=

<∑
9=1

|� 9 | (24 9 − 24 9+1︸      ︷︷      ︸
Δ 9≥0

), algebra

= · · ·

where 24<+1 = 0.

At step 9 , the greedy algorithm computes a maximal independent subset of ( 9 , so � 9 is a
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2.2. MAX WEIGHT INDEPENDENCE SET

basis of ( 9 . By definition, |� 9 | ≥ d(( 9 ). Define Δ 9 := 24 9 − 24 9+1 . Then

2(�) = · · · =
<∑
9=1

|� 9 |Δ 9 cont’d from last page

≥
<∑
9=1

d(( 9 )Δ 9 |� 9 | ≥ d(( 9 )

≥
<∑
9=1

@((, I)A (( 9 )Δ 9 definition of @((, I)

≥ @((, I)
<∑
9=1

|f9 |Δ 9 f9 = (f ∩ ( 9 ) ⊆ ( 9

= @((, I)2(f),

i.e., GR((, I) ≥ @((, I) ·OPT((, I) as desired. �

Remark. It is easy to see that the greedy algorithm terminates in polynomial time assum-
ing that we can test independence efficiently. ♦

Remark. This is an approximation algorithm. See the last chapter for more information. ♦
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2.3. AUGMENTATION PROPERTY OF MATROIDS

2.3 Augmentation Property of Matroids.

Augmentation Property

Given two independent sets of different sizes, we can find an element from the larger set
such that including it in the smaller set does not violates its independence constraint.

Theorem 2.10. Let M = ((, I) be an independent system. Then M is a matroid iff
it satisfies M3’: ∀- ,. ∈ I such that |- | > |. |, ∃G ∈ - \. : . ∪ {G} ∈ I.

Proof. M3: ∀� ⊆ (, every basis of � has the same cardinality. We show that M3⇐⇒M3‘.

M3 =⇒ M3’: Let - ,. ∈ I such that |- | > |. |. Consider � := - ∪ . . . is clearly not a
basis of � since - is an independent subset of � with greater cardinality. Thus, . is not
inclusion-wise maximal and we can choose some element of � to augment it. But our
only choice is from - \. , yielding the desired result.

M3’ =⇒M3: Fix a basis � of �. If any other basis �′ of � is smaller, we can add an element
to �′ from � ⊆ � and remain independent. If any other basis �′′ of � is larger, than our
original basis � could have been augmented with an element of �′′ \ �. Both contradict
the definition of bases (as all bases must have the same size). �

Example: How to use M3’

Let � = (+ , �),, ⊆ + a stable set.1 For each E ∈ , , we define :E ∈ Z+ as an upper bound
of number of edges from any � ⊆ � that E may incident to.

Claim. (� , I) given by I := {� ⊆ � : |X(E) ∩ � | ≤ :E for all E ∈ ,} is a matroid.

Proof. M1 and M2 hold (easy). Suppose - ,. ⊆ � , - ,. ∈ I, and |- | > |. |. Consider the
set of vertices that have used up its allocation in . : ,. = {E ∈ , : |X(E) ∩. | = :E}. By the
hand-shaking lemma, 2|- | = ∑

E∈+ |- ∩ X(E) |. We can split the RHS as:

2|- | =
∑
E∈,.
|- ∩ X(E) | +

∑
E∈,\,.

|- ∩ X(E) | +
∑
E∉,

|- ∩ X(E) |

2|. | =
∑
E∈,.
|. ∩ X(E) | +

∑
E∈,\,.

|. ∩ X(E) | +
∑
E∉,

|. ∩ X(E) |

By construction, for each E ∈ ,. , |. ∩ X(E) | = :E ≥ |- ∩ X(E) |. But |- | > |. |, which means
there must be some G ∈ - \. satisfying G ∈ X(E) for some E ∉ ,. , such that . ∪ {G} ∈ I.
By M3’, this is a matroid. �

1A stable set refers to a set of vertices no two of which are adjacent. We sometimes call it "independent
set" in graph theory but this term is already used in matroid theory.
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2.4. CIRCUIT CHARACTERIZATION

2.4 Circuit Characterization of Matroids.

Alternatively, one may describe a matroid by indicating the set of circuits of M, denoted
C, since a set � ⊆ ( is independent iff it does not contain any of the circuits as a subset:

� ∈ I ⇐⇒ �� ∈ C : � ⊆ �.

Suppose you are given a set of circuits C ⊆ 2(. How can you tell whether C induces a
matroid? We start with the following result. For intuition, consider the graphic matroid
and recall that adding any 4 ∈ � to a forest � introduces at most 1 cycle.

Proposition 2.11. Let M = ((, I) be a matroid. Then for all � ∈ I, for all 4 ∈ (,
� ∪ {4} contains at most one circuit.

Proof. Let � be a minimal (smallest) counterexample. Then there exists some 4 such that
� ∪ {4} contains two distinct circuits �1,�2. We must have 4 ∈ �1 ∩ �2 as otherwise
� already contains a circuit. By the minimality of �, � ∪ {4} = �1 ∪ �2. Moreover, by
minimality of circuits, neither of them can be a subset of the other. Thus, we can choose
41 ∈ �1 \�2 and 42 ∈ �2 \�1.

Consider �′ := (�1 ∪�2) \ {41, 42}. If �′ has a circuit �, then � ≠ �1,�2 as we deleted an
element from both circuits. On the other hand, � − 41 + 4 contains �2 and � since 41 ≠ �2

and � + 4 ⊇ �′. Then � was not a minimal counterexample as we could’ve taken � − 41.
Thus, �′ is independent. In addition, � is a basis of�1∪�2 as it is maximally independent.
But so is �′, as adding neither 41 or 42 results in a circuit. Thus, � and �′ are bases with
|�′| < |�|, contradicting M3. �

Theorem 2.12. Let C ⊆ 2(. Then C is a set of circuits of a matroid iff

(C1) ∅ ∉ C

(C2) If �1,�2 ∈ C, �1 ⊆ �2, then �1 = �2.
(C3) If �1,�2 ∈ C, �1 ≠ �2, 4 ∈ �1 ∩�2, then ∃� ∈ C s.t. � ⊆ (�1 ∪�2) \ {4}.

Proof. =⇒ C1 and C2 are clear. Suppose C3 is violated. Then � := (�1 ∪�2) \ {4} ∈ I. In
particular, � ∪ {4} has 2 distinct circuits, contradicting the previous theorem.

⇐= Define I := {� ⊆ ( : �� ∈ C,� ⊆ �}. M1 and M2 follows by definition. Suppose M3
is false. We can choose �1, �2 bases of � ⊆ ( such that |�1 | < |�2 |, maximizing |�1 ∩ �2 |.
Since �1 is a basis, we can pick 4 ∈ �1 \ �2. Then �2 ∪ {4} contains a unique circuit �.

Let 5 ∈ � \ �1. Then �3 := (�2 ∪ {4}) \ { 5 } ∈ I since we removed the unique circuit. But
then |�3 ∩ �1 | > |�2 ∩ �1 |, contradicting the choice of �1 and �2. �
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2.5. BASIS CHARACTERIZATION

2.5 Basis Characterization of Matroids.

Another way one could describe a matroid is to give the set of bases of M, denoted B,
since a set � ⊆ ( is independent iff it is a subset of some basis � in B:

� ∈ I ⇐⇒ ∃� ∈ B : � ⊆ �.

Now suppose you are given a set of circuits B ⊆ 2(. The following theorem tells us
whether B induces a matroid. (B2 (and B2’) is known as the basis exchange property.)

Theorem 2.13. Let B ⊆ 2(. Then B is the set of bases of a matroid ((, I) iff

(B1) B≠ ∅;
(B2) ∀�1, �2 ∈ B, G ∈ �1 \ �2 : ∃H ∈ �2 \ �1 : (�1 \ {G}) ∪ {H}) ∈ B.

Proof.

(=⇒) By M1, I is not empty. Thus, there exists a maximal independent set implying B1.
For bases �1, �2 and G ∈ �1 \ �2, we have that �1 \ {G} is independent. By the augmenta-
tion property, there is some H ∈ �2 \ �1 such that (�1 \ {G}) ∪ {H} is independent. Since it
matches the size of �1 and �2, it is also a basis.

(⇐=) Let B satisfy B1 and B2. We claim that all elements of B have the same cardinality.
Suppose otherwise. Let �1, �2 ∈ B with |�1 | > |�2 | such that |�1 ∩ �2 | is maximum. Let
G ∈ �1 \ �2. By B2, there exists some H ∈ �2 \ �1 with (�1 \ {G}) ∪ {H} ∈ B, contradicting
the maximality of |�1 ∩ �2 |. Thus, all elements of Bhave the same size.

Now let F := {� ⊆ ( : ∃� ∈ B, � ⊆ �} be the union of all subsets of some � ⊆ B. Then
((, F) is an independence system with the family of bases B. To show that ((, F) satisfies
M3, let - ,. ∈ Fwith |- | > |. |. Let - ⊆ �1 and . ⊆ �2, with �1, �2 ∈ B chosen such that
|�1 ∩ �2 | is maximum. If �2 ∩ (- \. ) ≠ ∅, we are done because we can augment . . (M3’)

We claim that the other case, �2 ∩ (- \. ) = ∅, is impossible. Suppose �2 ∩ (- \. ) = ∅.
Then we get

|�1 ∩ �2 | + |. \ �1 | + |(�2 \ �1) \. | = |�2 | = |�1 | ≥ |�1 ∩ �2 | + |- \. |.

But |- \. | > |. \ - | ≥ |. \ �1 |, which implies (�2 \ �1) \. ≠ ∅. Choose H ∈ (�2 \ �1) \. .
By B2, there exists an G ∈ �1 \ �2 with (�2 \ {H}) ∪ {G} ∈ B, contradicting the maximality
of |�1 ∩ �2 |. �

Another form of the basis exchange property is given below.
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2.5. BASIS CHARACTERIZATION

Theorem 2.14. Let B ⊆ 2(. Then B is the set of bases of a matroid ((, I) iff

(B1) B≠ ∅;
(B2’) ∀�1, �2 ∈ B, H ∈ �2 \ �1 : ∃G ∈ �1 \ �2 : (�1 \ {G}) ∪ {H}) ∈ B.

Proof.

(=⇒) By M1, I is not empty. Thus, there exists a maximal independent set implying B1.
For B2, let �1, �2 ∈ B and H ∈ B2 \ �1 and consider �1 ∪ {H}. Since �1 is a basis, �1 ∪ {H}
contains a unique circuit � and H ∈ �. Then � ∩ �1 is not empty, as otherwise � = {H}
which contradicts �2 ∈ I. Since H ∈ �2, we have that G ≠ H. Then (�1 \ {G}) ∪ {H} has no
circuit. Thus, (�1 \ {G}) ∪ {H} ∈ I. Since it has the same size as �1, it must also be a basis.
Thus, (�1 \ {G}) ∪ {H} ∈ B as desired.

(⇐=) Let I ⊆ 2( where � ∈ I iff � ⊆ � for some � ∈ B. Note B1 implies M1, and M2 holds
by definition of I. It suffices to show that M3’ holds.

Let �1, �2 ∈ I be a counterexample, i.e., |�1 | > |�2 | but for all 4 ∈ �1 \ �2, �2 ∪ {4} ∉ I.
Assume �1, �2 are chosen so that |�1 ∩ �2 | is maximum. By definition of I, there exists
�1, �2 ∈ B such that �1 ⊆ �1 and �2 ⊆ �2. Assume �1, �2 are chosen so that |�1 \ (�2 ∪ �1) |
is minimum.

If �2 \ �1 is empty (i.e., �2 ⊆ �1), then for any 4 ∈ �1 \ �2, �2 ∪ {4} ⊆ �1. Thus, �2 ∪ {4} is
independent. Contradiction. Thus, �2 \ �1 is not empty. Let H ∈ �2 \ �1.

By B2’, there exists G ∈ �1 \ �2 such that �′1 := (�1 \ {G}) ∪ {H} ∈ B. If G ∈ �1 \ (�2 ∪ �1),
then G ∉ �1, so �1 ⊆ �′1 and

|�′1 − (�2 ∪ �1) | < |�1 − (�2 ∪ �1) |,

contradicting our choice of �1. Thus, we may assume G ∈ �1 \ �2. Let �′1 := (�1 \ {G}) ∪ {H}.
Then |�′1 | = |�1 | and �′1 is independent as �′1 ⊆ �′1. Since |�′1 ∩ �2 | > |�1 ∩ �2 |, there exists
4 ∈ �′1 \ �2 such that �2{4} is independent. Since �′1 \ �2 ⊆ �1 \ �2, we get 4 ∈ �1 \ �2. This
contradicts our initial assumption. �

25



2.A. EXAMPLES OF MATROIDS - INTUITION

2.A Examples of Matroids - Intuition.

If you are hopelessly confused by matroids as I was, try the following detailed example.

Graphic Matroid (Forest Matroid)

Given a graph � = (+ , �):
• The ground set is the set of edges � .
• We look at sets of edges � ⊆ � .
• A set � ⊆ � is independent if the graph (+ , �) does not contain any cycles.
• Minimal dependent sets, i.e., the circuits, correspond to the cycles of the graph.
• Maximal independent sets of � ⊆ � , i.e., bases of �, correspond to spanning forests

of the subgraph (+ , �).
Verify the axioms and characterizations:

• M1: (+ ,∅) has no edges and is trivially independent.
• M2: If (+ , �) has no cycles, then (+ , �′) for �′ ⊆ � has no cycles as well.
• M3: Given a set of edges � ⊆ � , a basis � of � consists of components �1, . . . , �:

where �8 is a spanning tree of component �8 of �. Since spanning trees of the same
component have the same size, all bases of � have the same size.

• M3’: Consider two independent sets �, � ∈ I such that |�| > |� |. If |� | ≤ 1, then
the graph (+ , � ∪ {G}) for any G ∈ � \ � consists of one or two edges only and thus
cannot form any cycle. If |� | > 1, the only case that we cannot find any G ∈ � \ �
where (+ , � ∪ {G}) is a forest such that every component of � is one edge away from
forming a cycle and � is unfortunately made up of those edges. But it takes at least
three edges to form a cycle and we have |�| > |� |, so this is impossible.

• The circuit characterization is trivial because they correspond to cycles.
• It is helpful to look at the bases characterization using graphic matroids. Suppose
)1 and )2 are two spanning trees of a connected graph � and 41 ∈ � ()1). Clearly,
if 41 ∈ � ()2) then we could exchange 41 with itself. Now suppose that 41 ∉ )2.
Then )2 + 41 contains a unique cycle �, each edge of which can be "traded" to )1.
To be more precisely, for every 42 ∈ �, )2 + 41 − 42 is still a spanning tree. It is then
easy to see that adding back some edge from � − 4 can reconnect the two connected
components resulted from removing 41 from )1. 2

2Reference: here.
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2.B. PRACTICE PROBLEMS

2.B Practice Problems.

Claim. Let � = (+ , �) be a digraph and # be its incidence matrix. Let " be the
linear matroid defined by # over Q. Prove that " is the graphical matroid of the
undirected graph corresponding to �.

Proof. Let � = (+ , �) be the underlying undirected graph of �. We show that the depen-
dent sets " (#) corresponds to non-empty edge sets of even subgraphs of � (subgraphs
with all vertex degrees even). This will show that a set is dependent iff it has a cycle.

Let � = {41, . . . , 4=} be an edge set of an even subgraph of �. Decompose � into edge dis-
joint cycles�1, . . . ,�: and give arbitrary orientations for each cycle. Let 08 = 1 if 48 appears
forward in the orientation for the cycle it is in, otherwise 08 = −1. Then

∑=
8=1 08# [48] = 0.

Thus, � is a dependent set of " .

Conversely, let � = {41, . . . , 4=} be a dependent set of " . Then there exists a non-trivial
linear combination of # [41], . . . , # [4=] over Q where the sum is 0. By scaling, we may
assume each coefficient in this linear combination is integer and all integers are rela-
tively prime. So we may assume at least one of the coefficient is an odd integer. In
other words, there exists 01, . . . , 0= ∈ Z such that 01, . . . , 0= are relatively prime and∑=
8=1 08# [48] = 0. By taking modulo 2, we can see that this is a non-trivial linear com-

bination of  [41], . . . , [4=] over Z2 where  is the incidence matrix of �, i.e.,
=∑
8=1

0′8 [48] ≡ 0 mod 2

where 0′
8
= 08 mod 2 and  [48] = # [48] mod 2. This implies that, in �, every vertex is

incident to an even number of edges of the undirected graph induced by �. Thus, � is an
edge set of even subgraphs of �. �

Claim. Let � = (+ , �) be an undirected graph and I := {� ⊆ � : ^(� − �) =
^(�)}, where ^(�) is the number of connected components of �. Show that M =

(� , I) is a matroid.

Proof. Let M′ := M(�) = (� , I′) be the graphic matroid on � and let � ⊆ � . Note that
AM′ (� − �) = |+ | − ^(� − �). Thus, � ⊆ I iff AM′ (� − �) = |+ | − ^(�) = AM′ (�). Thus, "
is the dual matroid of M′. As a remark, note that AM(-) = |- | − ^(� − -) + ^(�) for any
subset - of � . �
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2.B. PRACTICE PROBLEMS

Claim. Consider an undirected graph � = (+ , �) and define

I := {� ⊆ � : each component of (+ , �) has at most one cycle}.

Show that (� , I) is a matroid.

Proof. M1 and M2 hold trivially. For M3, let � ⊆ � be a set of edges and consider the
graph� [�] = (+ , �) induced by �. Let (+1, �1), . . . , (+?, �?) be the connected components
of this graph. Consider the 8-th component for 1 ≤ 8 ≤ ? and let � be an inclusion-wise
maximal subset of �.

We claim that � ∩ �8 has cardinality |+8 | −1 if (+8, �8) has no cycles, and it has |+8 | otherwise.

Since (+8, �8) is connected and � is maximal, it clearly has at least |+8 | − 1 edges from �8. �
also has no more than |+8 | edges from �8 as otherwise we could pick a maximal tree ) in
� ∩ �8 which has |+8 | − 1 edges. Each of the at least two edges in (� ∩ �8) \) gives rise to a
cycle, contradicting the independence of �.

So, if (+8, �8) is itself a tree, then |� ∩ �8 | = |+8 | − 1 and we are done. Suppose, therefore,
that (+8, �8) has a circuit �, and assume for contradiction that � ∩ �8 is a tree, and therefore
has only |+8 | − 1 edges. � \ � has at least one edge, say 4, and adding 4 to � creates a unique
cycle in component (+8, � ∩ �8), i.e., � ∪ 4 is independent, contradiction.

For connected component 8, define X8 = 1 if (+8, �8) is acyclic. We just proved that

|� | = |+ | −
?∑
8=1

X8

for all maximal independent sets � ⊆ �. �
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3 POLYMATROID

In this chapter, we look at polymatroids, polytopes associated with a submodular func-
tion. Our plan is as follows.

1. Motivate and define submodular functions.
2. Motivate and define of polymatroids.
3. Study the optimization problem over polymatroids.

Motivation

Let ( be a set of possible sensor locations and let 5 : 2( → R denote the amount of
information obtainable by placing sensors at locations in (. Fix a set � ⊆ (. The marginal
gain of information by adding one sensor at location B to � is given by 5 (� ∪ {B}) − 5 (�).

Now consider another set � ⊇ �. Since � contains more sensors where some of them
might cover the area near the new sensor B, we expect the marginal gain of information
by adding B to � to be no more than that of �, i.e.,

� ⊆ � =⇒ 5 (� ∪ {B}) − 5 (�) ≥ 5 (� ∪ {B}) − 5 (�).

In other words, this function 5 has the property of diminishing marginal gain and we say it
is a submodular function.

Figure 3.1: Sensor example.

In the example below, let � = {3}, � = {1, 2}, B = 3. Then

5 ({1, 3}) − 5 ({1})︸                  ︷︷                  ︸
red + black

≥ 5 ({1, 2, 3}) − 5 ({1, 2})︸                        ︷︷                        ︸
black

.
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3.1. SUBMODULAR FUNCTIONS

3.1 Submodular Functions.

A submodular function is a set function whose value, informally, has the property that
the difference in the incremental value of the function that a single element makes when
added to an input set decreases as the size of the input set increases.

Definition 3.1. A function 5 : 2( → R is called submodular if

∀�, � ⊆ ( : 5 (�) + 5 (�) ≥ 5 (� ∩ �) + 5 (� ∪ �).

The following proposition shows this definition is equivalent to the one we gave in the
motivation (last page).

Proposition 3.2. A function 5 : 2( → R is submodular iff for all �, � ⊆ ( with
� ⊆ �, and for all 9 ∈ ( \ �, we have 5 (� ∪ { 9}) − 5 (�) ≥ 5 (� ∪ { 9}) − 5 (�).

Proof. Define d 9 (-) = 5 (- ∪ { 9}) − 5 (-) for all - ⊆ ( and 9 ∈ (. We want to show that 5
is submodular iff d 9 (�) ≥ d 9 (�), for all �, � ⊆ ( with � ⊆ �, and for all 9 ∈ ( \ �.

(=⇒) Let �, � ⊆ ( with � ⊆ �, 9 ∈ ( \ �. Since 5 is submodular,

5 (� ∪ { 9}) + 5 (�) ≥ 5 (�) + 5 (� ∪ { 9}),

which implies 5 (� ∪ { 9}) − 5 (�) ≥ 5 (� ∪ { 9}) − 5 (�) as desired.

(⇐=) Let �, � ⊆ ( be arbitrary and define � \ � := {41, . . . , 4?}. Since d 9 (�) ≥ d 9 (�),

d48 (� ∩ � ∪ {41, . . . , 48−1}) ≥ d48 (� ∪ {41, . . . , 48−1})

or equivalently,

5 (� ∩ � ∪ {41, . . . , 48}) − 5 (� ∩ � ∪ {41, . . . , 48−1}) ≥ 5 (� ∪ {41, . . . , 48}) − 5 (� ∪ {41, . . . , 48−1})

for all 1 ≤ 8 ≤ ?. Summing this inequality over all 8 yields the desired inequality

5 (�) − 5 (� ∩ �) ≥ 5 (� ∪ �) − 5 (�).

�

Remark. Another characterization is given by

5 (� ∪ {G}) + 5 (� ∪ {H}) ≥ 5 (�) + 5 (� ∪ {G} ∪ {H}) ∀� ⊆ (,∀G ≠ H ∈ ( \ �.

We omit the proof of correctness.
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3.2. EXAMPLE OF SUBMODULAR FUNCTIONS

3.2 Example of Submodular Functions.

Graph Cut

Given an undirected graph � = (+ , �) and a non-negative capacity function 2 ∈ R�
+ , the

cut capacity function 5 : 2+ → R+ defined by 5 (() = 2(X(()) is a symmetric submodular
function; X(() is the set of all edges in � with exactly one endpoint in (.

To see this, consider �, � ⊆ + arbitrary. For simplicity, we assume a uniform 24 = 1 for all
4 ∈ � . We can categorize every edge 4 ∈ X(�) ∪ X(�):

1. 4 goes between � \ (� ∩ �) and � \ (� ∩ �), so 4 ∈ X(�) and 4 ∈ X(�).
2. 4 goes between � \ (� ∩ �) and + \ (� ∪ �), so 4 ∈ X(�).
3. 4 goes between � \ (� ∩ �) and + \ (� ∪ �), so 4 ∈ X(�).
4. 4 goes between � ∩ � and + \ (� ∪ �), so 4 ∈ X(�) and 4 ∈ X(�).

Now consider 5 (�) + 5 (�) vs 5 (� ∩ �) + 5 (� ∪ �):
• Every 4 of type 1 gets counted twice on the left but zero on the right.
• Every 4 of type 2 or 3 gets counted once on the left and once on the right.
• Every 4 of type 4 gets counted twice on the left and twice on the right.

It follows that 5 (�) + 5 (�) ≤ 5 (� ∩ �) + 5 (� ∪ �) and hence 5 is a submodular function.

Figure 3.2: Graph cut: Edge 48 is of type 8. Figure 3.3: Matroid rank: Sets and bases.

Example 2: Matroid Rank

The rank function A is also submodular.

Proposition 3.3. Let M = ((, I). Then A (�) is submodular.

Proof. Let �, � ⊆ (. Let �∩ be a basis of � ∩ �,. Extend �∩ be a basis �� of �. Extend
�� to a basis �∪ of � ∪ �. Note that |�∩ | = A (� ∩ �), |�� | = A (�), and |�∪ | = A (� ∪ �).
Define �′ = �∪ \ (�� \ �∩). It is not hard to see that �′ ∈ I and �′ ⊆ �. It follows that
A (�) + A (�) ≥ |�′| + |�� | = |�∪ | − (|�� | − |�∩ |) + |�� | = A (� ∪ �) + A (� ∩ �). �
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3.3. POLYMATROIDS

3.3 Polymatroids.

A halfspace in R= is a set of points G ∈ R= that satisfy 0)G ≤ 1 for some 0 ∈ R= and 1 ∈ R:

� = {G ∈ R= | 0)G ≤ 1; 0 ∈ R=, 1 ∈ R}.

A polyhedron in R= is a set of all points G ∈ R= that satisfy a finite set of linear inequalities:

% = {G ∈ R= | �G ≤ 1; � ∈ R<×=, 1 ∈ R<}.

A polytope is a bounded polyhedron. It can be shown that every polytope % is the convex
hull of a finite number of points (and vice versa).

Motivation

Let M = ((, I) be a matroid, 2 ∈ R(
+ be the costs, and G : ( → {0, 1} be decision variables.

Consider the following LP formulation for matroids.

(PM) := max 2)G

B.C. G(�) ≤ A (�) ∀� ⊆ (
G ≥ 0

Claim. G� is feasible for this PM for any � ∈ I.

Proof. By definition, A (�) is the size of the maximal independent set contained in �. For
any independent set � ∈ I, an arbitrary set � ⊆ ( can contain no more than A (�) element
from �, i.e., G� (�) ≤ A (�). �

Recall the rank function for matroids is submodular. The feasible region associated with
PM is an example of a polymatroid, a polytope associated with a submodular function.

Definition

Definition 3.4. Let 5 : 2( → R+ be submodular. The polyhedron given by

{G ∈ R( | G(�) ≤ 5 (�) for all � ⊆ (; G ≥ 0}

is called a polymatroid.

The following shows that we may assume 5 is normalized (i.e., 5 (∅) = 0) and monotone.
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3.3. POLYMATROIDS

Lemma 3.5. Let 6 : 2( → R+ be a submodular function and let %(6) be the cor-
responding non-empty polymatroid. Show there exists a submodular and monotone
function 5 : 2( → R+ with 5 (∅) = 0 and %(6) = %( 5 ).

Proof. Let % := {G ∈ R( | ∀� ⊆ ( : G(�) ≤ 6(�); G ≥ 0} be a non-empty polymatroid
defined by a submodular function 6 : 2( → R on some finite set (. Note that % is non-
empty, so there exists G ∈ % such that 0 ≤ G(�) ≤ 6(�) for all � ⊆ (.

Define a new function 5 : 2( → R by

5 (�) :=

{
0 � = ∅
min�⊆�⊆( 6(�) � ≠ ∅

We claim that %( 5 ) = % and 5 is a monotone submodular function.

Claim. %( 5 ) = %.

Proof. Clearly, we have %( 5 ) ⊆ % as 5 ≤ 6. To prove that % ⊆ %( 5 ), let G ∈ %. Suppose G ≠
%( 5 ), then there exists � ⊆ ( such that � ≠ ∅ and G(�) > 5 (�). Let � := arg min�⊆�⊆( 6(�)
so that 5 (�) = 6(�). But then G(�) ≤ G(�) ≤ 6(�) = 5 (�), a contradiction. �

Claim. 5 is monotone.

Proof. Let ∅ ≠ � ⊆ � ⊆ (. A superset of � is also a superset of �, so 6(�) ≤ 6(�). �

Claim. 5 is submodular.

Proof. Let - ,. ⊆ ( be such that - := arg min�⊆-⊆( 6(-) and . := arg min�⊆.⊆( 6(. ). Note
that � ∩ � ⊆ - ∩. and � ∪ � ⊆ - ∪. , so 5 (� ∩ �) + 5 (� ∪ �) ≤ 6(- ∩. ) + 6(- ∪. ). By
submodularity of 6, this value less than or equal to 6(-) + 6(. ) = 5 (�) + 5 (�). �

The proof is complete. �
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3.4. OPTIMIZATION OVER POLYMATROIDS

3.4 Optimization over Polymatroids.

Primal-Dual Pair

Let 5 be a monotone submodular function with 5 (∅) = 0. Suppose we want to optimize
wrt some vector 2 ∈ R( (note: no ≥ 0 constraint). Consider the following LP and its dual:

(Pf) = max 2)G

B.C. G(�) ≤ 5 (�) ∀� ⊆ (
G ≥ 0

(Df) = min
∑
�⊆( 5 (�)H�

B.C.
∑
�:4∈� H� ≥ 24 ∀4 ∈ (

H ≥ 0

Greedy Algorithm

Let the ground set be ( = {41, . . . , 4=} such that

first : elements have positive weights︷             ︸︸             ︷
241 ≥ · · · ≥ 24: > 0 ≥

the rest = − : elements have 0 or negative weights︷                ︸︸                ︷
24:+1 ≥ · · · ≥ 24= .

Define ( 9 := {41, . . . , 4 9 }, (0 = ∅. The primal greedy algorithm will pick the solution

G(4 9 ) =
{
5 (( 9 ) − 5 (( 9−1) 9 = 1, . . . , :

0 9 > :

The dual greedy algorithm will choose

H(�) =


2(4 9 ) − 2(4 9+1) ≥ 0 � = ( 9 , 9 = 1, . . . , : − 1

2(4: ) � = (:

0 otherwise

We show that greedy approach works for polymatroid optimizations.

Theorem 3.6. G, H produced by the primal/dual greedy algorithm are optimal for Pf,
Df, respectively.

Proof. We show that G, H are feasible for Pf, Df and satisfy the CS conditions.

Claim. G is feasible for Pf.

Proof. Let � ⊆ (. We show for 0 ≤ 9 ≤ : inductively that G(� ∩ ( 9 ) ≤ 5 (� ∩ ( 9 ). When
9 = 0, ( 9 := ∅, and we have G(∅) = 0 ≤ 0 = 5 (∅). Now suppose the statement holds for
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3.4. OPTIMIZATION OVER POLYMATROIDS

some 9 ≥ 0. If 4 9 ≠ �, then

G(� ∩ ( 9+1) = G(� ∩ ( 9 ) ≤ 5 (� ∩ ( 9 ) = 5 (� ∩ ( 9+1).

Otherwise, 4 9 ∈ �, and

G(� ∩ ( 9+1) = G(� ∩ ( 9 ) + G(4 9 )
= G(� ∩ ( 9 ) + 5 (( 9+1) − 5 (( 9 )
≤ 5 (� ∩ ( 9 ) + 5 (( 9+1) − 5 (( 9 )
≤ 5 (� ∩ ( 9+1)

where the last inequality follows since

5 (� ∩ ( 9+1) + 5 (( 9 ) ≥ 5 ((� ∩ ( 9+1) ∩ ( 9 ) + 5 ((� ∩ ( 9+1) ∪ ( 9 )
= 5 (� ∩ ( 9 ) + 5 ((� ∩ ( 9 ) ∪ {4 9 } ∪ ( 9 ))
= 5 (� ∩ ( 9 ) + 5 (( 9+1).

Since 5 is monotone, G(�) = G(� ∩ (: ) ≤ 5 (� ∩ (: ) ≤ 5 (�). Thus, G is indeed feasible for
the primal LP. �

Claim. H is feasible for Df.

Proof. Now consider the dual LP. Fix any 4 9 ∈ ( for 1 ≤ 9 ≤ : (recall 2(4 9 ) for 1 ≤ 9 ≤ :
are the only possible non-zero ones). Then∑

�:4 9∈�
H(�) =

∑
(8 :4 9∈(8

2(48) − 2(48+1) = 2(4 9 ).

Here 2(4=+1) is understood to be 0. Thus, the dual solution is feasible. Moreover, the dual
constraint for 4 ∈ ( is tight iff 2(4) > 0. �

Claim. G, H satisfies the CS conditions.

Proof. Observe G(4) > 0 can only happen when 4 = 4 9 , 1 ≤ 9 ≤ : . But for those elements,
we showed the dual constraints are tight.

Suppose now that the dual variable H� > 0 for some � ⊆ ( is non-zero. This can only
happen when � = ( 9 , 1 ≤ 9 ≤ : . We claim that G(( 9 ) = 5 (( 9 ) for 1 ≤ 9 ≤ : . Observe

G(( 9 ) =
1∑
8= 9

G(( 9 ) − G(( 9−1) =
1∑
8= 9

5 ((8) − 5 (( 9−1) = 5 (( 9 ).

Since G, H are feasible and satisfy CS conditions, they are optimal for the respective LPs. �

35



3.4. OPTIMIZATION OVER POLYMATROIDS

Corollary 3.7. Let M = ((, I), 2 ∈ R(, and � ∈ I. Then � is an inclusion-wise
minimal, maximum-weight independent set iff the following hold:

1. 4 ∈ � =⇒ 24 > 0
2. 4 ∉ �, � ∪ {4} ∈ I =⇒ 24 ≤ 0
3. 4 ∉ �, 5 ∈ �, (� ∪ {4}) \ { 5 } ∈ I =⇒ 24 ≤ 2 5 .

Proof. =⇒: This direction is clear:

1. If 4 ∈ � and 24 ≤ 0, then we should remove 4 to get a better result.
2. If 4 ∉ � and � ∪ {4} ∈ Iand 24 > 0, then we should include it to get a better result.
3. If 4 ∉ �, 5 ∈ �, (� ∪ {4}) \ { 5 } ∈ I, 24 > 2 5 then we should include 4 instead of 5 in �.

⇐=: Consider Pr, the LP above with function 5 = A, the rank function of matroids. Let H
be the solution of the dual greedy algorithm and let G� be the characteristic vector of �.
We argue that the these three conditions imply that G� , H satisfy the CS conditions, which
implies that G� is of maximum weight.

By definition of the dual, ∑
�:4 9∈�

H� = 2(4 9 )

for all 9 ≤ : . Condition 1 implies that G� (4 9 ) = 0 for all 9 > : as they have non-positive
weights so they cannot be chosen for �. Thus, for all 9 = 1, . . . , =, either the primal variable
is zero or the dual constraint is satisfied at equality:

G(4 9 ) = 0 ∨
∑
�:4 9∈�

H� = 2(4 9 ).

It remains to show that H� = 0 or G� (�) = A (�) for every � ⊆ (. Let � ⊆ ( by arbitrary
with H� > 0. By definition of H this implies � = ( 9 for some 9 ≤ : . Consider the set

G� (( 9 ) = |� ∩ ( 9 | = |� 9 |.

Suppose that |� 9 | < A (( 9 ), then � 9 is not a basis of ( 9 , so there is some 4 ∈ ( 9 \ � such that
� 9 ∪ {4} ∈ I. Consider the set � ∪ {4}.

• If � ∪ {4} ∈ I, then by statement 2, 24 ≤ 0. But then 4 ∈ ( 9 , 9 ≤ : implies 24 > 0.
Contradiction.

• Now suppose � ∪ {4} ∉ I. Extend � 9 ∪ {4} to a basis �′ of � ∪ {4}. Notice that � also
is a basis of � ∪ {4} as � ∈ Iand � ∪ {4} ∉ I. (See next page for a diagram.)

Since both �′ and � are bases of � ∪ {4} and we are working with a matroid, they must
have the same size. Since �′ contains an element 4 that is not in �, there must exist exactly
one element 5 ∈ � that is not in � \ �′.
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3.4. OPTIMIZATION OVER POLYMATROIDS

Figure 3.4: A visualization of Case 2.

By Statement 3, �′ = (� ∪ {4}) \ { 5 } ∈ I implies

24 ≤ 2 5 .

But we also had

H� = H(( 9 ) = 2(4 9 ) − 2(4 9+1) > 0.

Recall ( 9 contains the 9 heaviest edges. Then 5 ∉ ( 9 implies 2(4 9+1) ≥ 2( 5 ) as its weight is
bounded above by the ( 9 + 1)-th edge weight. Since 4 ∈ ( 9 , we get

2(4) ≥ 2(4 9 ) > 2(4 9+1) ≥ 2( 5 ),

which contradicts Statement 3. Thus, we must have |� 9 | = A (( 9 ) and hence G� (( 9 ) = A (( 9 )
holds, satisfying the CS condition. It follows that G� is optimal and hence � is a maximum
weight independent set. Finally, by Statement 1, � is inclusion-wise minimal. �
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4 MATROID CONSTRUCTION

Given from a matroid, we can construct new matroids using the following operations.
Let M = ((, I) be a matroid.

4.1 Deletion and Truncation.

Deletion

Let � ⊆ (. Then M\ � := ((′, I′) defined as below is a matroid:

M\ � := ((′, I′)
(′ := ( \ �
I := {� ⊆ (( \ �) : � ∈ I}

In words, we deleted any element in � from ( and any independent set � containing any
element from � from I. In forest matroids this corresponds to deleting some edges of a
graph, and in linear matroids to deleting some columns of a matrix. It is easy to see that
the bases unaffected by the deletion are preserved.

Truncation

Let : ∈ Z. Then M′ := ((, I′) given below is a matroid:

M′ := ((, I′)
I′ := {� ∈ I : |�| ≤ :}

In words, sets with size ≥ : that were independent before are no longer considered in-
dependent. To prove M3, let � ⊆ ( and � a maximal subset of � that is in I′. Then if
: ≥ A (�), then � is a basis of � in " , so |� | = A (�). If : < A (�), then clearly |� | = : . In
either case, the size of � depends only on �, not on the choice of �. Moreover, we have
proved that its rank function A′ satisfies A′(�) = min{A (�), :} for all � ⊆ (.

Example. Truncating a graphical matroid with : = 3 returns a matroid where only forests
with at most three edges are considered independent. ♦
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4.2 Disjoint Union.

Let M8 = ((8, I8), 8 = 1, . . . , : , be matroids, where the ground sets are disjoint, i.e., (8 ∩ ( 9 =
∅ for all 8 ≠ 9 . Then M1 ⊕ · · · ⊕M: := ((, I) given below is a matroid:

M1 ⊕ · · · ⊕M: := ((, I)
( :=

⋃:
8=1 (8

I := {� ⊆ ( | � ∩ (8 ∈ I8,∀8 = 1, . . . , :}

Claim. M1 ⊕ · · · ⊕M: is a matroid.

Proof. M1 and M2 holds (easy). For M3, let � be a basis of � ⊆ ( and �8 = � ∩ (8 for all 8.
Then �8 ∈ I8 and in particular, it is a basis of � ∩ (8. (If there exists 4 ∈ (� ∩ (8) such that
�8 ∪ {4} ∈ I8, then � ∪ {4} is a basis for �, contradiction.) Thus, |� | = ∑:

8=1 A8 (� ∩ (8), so all
bases of � have the same size, satisfying M3. �

Example. Let ( = (1 ¤∪ · · · ¤∪ (: ("categories") and 11, . . . , 1: ∈ Z+ ("capacities"). We say a
subset � ⊆ ( is independent when |� ∩ (8 | ≤ 18 for every 8. Then M = ((, I) with

I := {� ⊆ ( : |� ∩ (8 | ≤ 18,∀8 = 1, . . . , :}

is called a partition matroid. To verify that it’s a matroid, we can write " = "1 ⊕ · · · ⊕ ":

where each "8 = ((8, {� ⊆ (8 : |� | ≤ 18}) is a uniform matroid.

A basis of a partition matroid is a set whose intersection with every block (8 has size
exactly 18 (which makes it inclusion-wise maximal). A circuit of the matroid is a subset of
a single block (8 with size exactly 18 + 1. The rank of the matroid is

∑
8 B8. ♦

Example. In fact, we’ve seen an example of a partition matroid before: 2.3.

Let � = (+ , �), , ⊆ + a stable set.1 For each E ∈ , , we define :E ∈ /+ as an upper bound
of number of edges it may incident to among a set of edges �.

Claim. (� , I) given by I := {� ⊆ � : |X(E) ∩ � | ≤ :E for all E ∈ ,} is a matroid.

Observe that the X(E)’s are disjoint because, is a stable set. Thus, we can treat

{X(E8)}E8∈, ∪ - ,

where - represents the edges not included in X(E)’s, as a partition of the ground set. ♦

1Recall a stable set in graph theory refers to a set of vertices no two of which are adjacent. We used to
call it "independent set" in graph theory but this term is already used in matroid theory.
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4.3 Contraction.

Let � ⊆ ( and � be a basis of �. Then M/� = ((′, I′) given below is a matroid:

M/� := ((′, I′)
(′ = ( \ �
I′ := {� ⊆ (( \ �) : � ∪ � ∈ I}

In words, given a set of elements � to be removed from ( and � a basis of �, a set � is
independent in the new matroid if the union of � and � were independent in the original
matroid. Note the construction of new matroid does not depend on the choice of basis �.

A natural example is the forest matroid.

Proposition 4.1. If M is a forest matroid of � = (+ , �), � ⊆ � , then M/� is a
forest matroid of �/�.

Proof. Suppose M is the forest matroid of � and we contract a set of edges � ⊆ � (�) from
� to form �′. Then the forests of �′ are precisely the sets that form a forest with a forest
of � in �. In this special case, M′ is the forest matroid of �′. �

Theorem 4.2. M/� is a matroid that does not depend on the choice of �, and its
rank function is AM/� (�) = AM(� ∪ �) − AM(�).

Proof. M1 and M2 are easy to show. For M3, let � ⊆ (′ := ( \ �. Let �′ be a basis of � in
the new independence system M/�. By definition of contraction, � ∪ �′ ∈ I. We claim
that � ∪ �′ is a basis of � ∪ � in matroid M. Suppose otherwise, so there exists an element
4 ∈ � ∪ � such that � ∪ �′ ∪ {4} ∈ I. But 4 ∉ � since � is maximally independent in � and
4 ∉ � because �′ is maximally independent in M/�. It follows that |� ∪ �′| = AM(� ∪ �)
which implies |�′| = AM(� ∪ �) − |� | = AM(� ∪ �) − AM(�) as desired. �
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4.4 Duality.

M∗ = ((, I∗) given below is a matroid:

M∗ := ((, I∗)
I∗ := {� ⊆ ( : ( \ � has a basis of M}

= {� ⊆ ( : A (( \ �) = A (()}.

In words, a set � ⊆ ( is independent in the dual matroid if the set ( \ � still has a basis of
M. Equivalently, every subset � of ( such that the rank of ( \ � is exactly the rank of the
original matroid is independent.

Example. Consider the uniform matroid M = *A= with � ⊆ ( = {1, . . . , =}. So when does
� ∈ I∗?. By definition, � ∈ I∗ ⇐⇒ ( \ � has a basis of M. A basis of M is any subset
of ( with exactly A elements. Thus, as long as |�| ≤ = − A, we are still left with a basis.
Therefore, the dual matroid is given by M∗ = *=−A

= . ♦

Theorem 4.3. M∗ is a matroid with rank fn A∗(�) = |�| + AM(( \ �) − AM(().

Proof. M1 and M2 are easy to show. For M3, let � ⊆ (, �∗ be a M∗-basis of �, and � be a
M-basis of ( \ �. Extend � to an M-basis �′ of ( \ �∗.

Figure 4.1: A visualization of the sets and bases.

By definition of contraction, �∗ ∈ I∗ implies that A (( \ �∗) = A ((), so �′ is an M-basis of
(. We now show that � \ �∗ ⊆ �′, i.e., there’s nothing left in the left half of the diagram
above outside of �∗ and �′ \ �.

Suppose otherwise that there exists 4 ∈ (� \ �∗) \ �′. Since �′ ⊆ ( \ (�∗ ∪ {4}) and �′ is an
M-basis of (, �∗ ∪ {4} ∈ I∗ by definition of contraction. This contradicts the fact that �∗

was an M∗-basis of �. It follows that |�′| = |� \ �∗ | + |� | = |�| − |�∗ | + |� | which implies

|�∗ | = |�| − |�′| + |� | = |�| − AM(() + AM(( \ �).

�
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Example. Consider the forest matroid Mof a planar graph �. Let M∗ be the dual matroid.
Observe

� ∈ I ⇐⇒ A (� \ �) = A�
⇐⇒ � [� \ �] = (+ , � \ �) has a spanning tree

⇐⇒ + (� \ �) is connected

Cycles in �∗ correspond to edge sets X(() in �. Thus, the minimal dependent sets in M∗

are cycles and M∗ is the forest matroid for �∗. ♦
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5 MATROID INTERSECTION

Remark. You should read this chapter after studying all materials on matchings.

5.1 Matroid Intersection.

Problem. Let M1 = ((, I1) and M2 = ((, I2) be two matroids over the same
ground set. The matroid intersection problem comes in two versions:

• Unweighted: Find � ∈ I1 ∩I2 maximizing |�|.
• Weighted: Given 2 ∈ R(

+, find � ∈ I1 ∩I2 maximizing 2(�).

Motivation

Let � = (+ , �) be bipartite with bipartition +1,+2. Define

I1 = {� ⊆ � : |� ∩ X(E) | ≤ 1,∀E ∈ +1}
I2 = {� ⊆ � : |� ∩ X(E) | ≤ 1,∀E ∈ +2}

Then (� , I1) and (� , I2) are partition matroids. Review 4.2 if necessary.

Observe the problem of finding � ∈ I1 ∩ I2 maximizing |�| is exactly the maximum
cardinality matching problem on bipartite graphs.

Min-Max Theorem

Let � ∈ I1 ∩I2 be a feasible solution to the matroid intersection problem and let � ⊆ ( be
arbitrary. Our goal is to give an upper bound for the size of � based on some function of
�. We do this by splitting � into an M1 component and an M2 component.

A natural bound is given by

|� | =

∈I1︷ ︸︸ ︷
|� ∩ �| +

∈I2︷ ︸︸ ︷
|� ∩ �̄| ≤ A1(�) + A2( �̄).

Edmonds showed in 1971 that this inequality is actually an equality.

Theorem 5.1 (Edmonds). Let "8 = ((, I8), 8 = 1, 2 be matroids. Then

max{|� | : � ∈ I1 ∩I2} = min{A1(�) + A2( �̄) : � ⊆ (}.

Proof. Skipped as this does not add much to our understanding.

43



5.1. MATROID INTERSECTION

Example

Let � = (+ , �) be bipartite with bipartition +1,+2. Define

I1 = {� ⊆ � : |� ∩ X(E) | ≤ 1,∀E ∈ +1}
I2 = {� ⊆ � : |� ∩ X(E) | ≤ 1,∀E ∈ +2}

Let " be a maximum cardinality matching of �. By the matroid intersection theorem,
there exists � ⊆ � achieves the minimum, i.e.,

max{|� | : � ∈ I1 ∩I2} = |" | = A1(�) + A2(� \ �) = min{A1(�) + A2(� \ �) : � ⊆ �}.

Suppose we are given the following bipartite graph. Let � be the set of red edges.

Figure 5.1: Left: �. Middle: �1 and*1. Right: �2 and*2.

Let �1 be a M1-basis of � and �2 be a M2-basis of �. Let*8 = �8 ∩+8, 8 = 1, 2.

Claim. |*1 | = A1(�), |*2 | = A2(� \ �),*1 ∪*2 is a vertex cover of �, i.e., any edge
in � is incident with at least one vertex in*1 ∪*2.

Proof. Observe that by definition, every vertex of � ∩+1 is incident to at most one vertex
of �1. But every vertex of �∩+1 is incident to at least one edge by maximal independence.
Thus, |*1 | = |�1 | = A1(�). A similar argument shows |*2 | = |�2 | = A2(� \ �).

Next, every edge 4 either lives in � or � \ �. In the case of the former, a vertex in *1 is
incident to it; in the case of the latter, a vertex in *2 is incident to it. Thus, *1 ∪*2 is a
vertex cover. �

Note this result implies Konig’s Theorem: a(�) = g(�) when � is bipartite.
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5.2. MATROID INTERSECTION ALGORITHM

5.2 Matroid Intersection Algorithm.

We can derive an algorithm for the matroid intersection problem by exploring its connec-
tion with matchings in bipartite graphs. Recall a matching " is not maximum if we can
find an "-augmenting path. The same idea applies here.

Figure 5.2: Example.

Let � be a matching and % = 41, 51, 42, 52, 43 be an augmenting path, where 48 ≠ � and
58 ∈ �. Denote the two ends of % by E1, E6 (bottom-right, top-left). Let us describe this
path in matroid languages. First, since 41 is �-exposed and no edges in � is touching E1,
we have � ∪ {41} ∈ I2. Similarly, we have � ∪ {43} ∈ I1. Next, the augmenting path is
given by taking the symmetric differences between " and %. Observe we have

• � ∪ {48} \ { 58} ∈ I1;
• � ∪ {48+1} \ { 58} ∈ I2.

Let’s formalize these. Denote the six conditions below by ★.

Definition 5.2. Let � ∈ I1 ∩I2 and % = {41, 51, . . . , 4<, 5<, 4<+1} such that

• ∀8 : 48 ∉ �
• ∀8 : 58 ∈ �
• � ∪ {41} ∈ I2

• � ∪ {4<+1} ∈ I1

• ∀8 : � ∪ {48} \ { 58} ∈ I1

• ∀8 : � ∪ {48+1} \ { 58} ∈ I2

Define �′ = �4% = � ∪ {41, . . . , 4<+1} \ { 51, . . . , 5<}.

Lemma 5.3. If % is the smallest subset of ( satisfying ★, then �′ ∈ I1 ∩I2.

Proof. We claim that � ∪ {48} ∉ I1 for all 8 = 1, . . . ,<. Suppose not. Then {41, 51, . . . , 48−1, 58−1, 48}
also satisfies ★ and is a smaller set than %. Contradiction.
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5.2. MATROID INTERSECTION ALGORITHM

Now pick � = � ∪ {41, . . . , 4<+1} and define �8 := � \ { 5<, . . . , 58}. In words, �8 is the set
obtained by removing the last 8 elements that were previously in � from �, e.g., �<+1 = �
(we haven’t removed any element from { 58}<8=1 yet) and �1 = �

′ (we remove all elements
from { 58}<8=1). Let �8 be the M8-circuit in � ∪ {48} for all 8 = 1, . . . ,<, which exists by the
previous claim. We claim that �8 ⊆ �8+1 = � \ { 5<, . . . , 58+1}.

Suppose not, i.e., some 5: with 8 + 1 ≤ : ≤ < is in �8. Then removing 5: from �8 gives an
independent set in M1. In other words, there is : > 8 such that � ∪ {48} \ { 5: } ∈ I1. But
then {41, 51, . . . , 48, 5: , 4:+1, . . . , 5<, 4<+1} also satisfies ★. Contradiction. Thus, �8 ⊆ �8+1.

Since �8 ⊆ �8+1 = �8 ∪ { 58}, we have �8 \ { 58} ⊆ �8. By ★, �8 \ { 58} ∈ I1, so we can extend
it to an M1-basis of �8, call it �8. But �8 ⊇ (�8 \ { 58}) means (�8 ∪ { 58}) ⊇ �8. Moreover,
�8 ⊆ �8 ⊆ �8+1 = �8 ∪ { 58}. Then �8 is an M1-basis of �8+1, because if it’s not, then the only
extra element from �8+1 compared to �8 is 58 but (�8 ∪ { 58}) ⊇ �8 is dependent.

Therefore, A1(�8) = A1(�8+1). Since this holds for all 8, we have A1(�′) = A1(�1) = A1(�<+1) =
A1(�). By★, � ∪ {4<+1} ∈ I1 so A1(�) ≥ |� | + 1 = |�′|. But A1(�) = A1(�′) ≤ |�′|. Thus, �′ ∈ I1.

A symmetric argument shows that I′ ∈ I2. �

Augmenting Paths

So how exactly do we find such an "augmenting path" %? We can model this with a DAG.
First, recall the following definition.

Definition 5.4. Let � ∈ I1 ∩I2 and % = {41, 51, . . . , 4<, 5<, 4<+1} such that

★1 ∀8 : 48 ∉ �
★2 ∀8 : 58 ∈ �
★3 � ∪ {41} ∈ I2

★4 � ∪ {4<+1} ∈ I1

★5 ∀8 : � ∪ {48} \ { 58} ∈ I1

★6 ∀8 : � ∪ {48+1} \ { 58} ∈ I2

Define �′ = �4% = � ∪ {41, . . . , 4<+1} \ { 51, . . . , 5<}.

Given ( = {G1, . . . , G<} (think: edges) and � ∈ I1 ∩I2 (think: a matching),1 define the node
set # = ( ∪ {A, B}, where A is the source and B is the sink, and the arc set � as follows.

P1. For each G8 such that G8 ∉ � and � ∪ {G8} ∈ I2, add an arc AG8.
P2. For each G 9 such that G 9 ∉ � and � ∪ {G 9 } ∈ I1, add an arc G 9 B.
P3. For 5 , 4 ∈ (, if 5 ∈ �, 4 ∉ �, � ∪ {4} ∉ I2, and � ∪ {4} \ { 5 } ∈ I2, add an arc 5 4.
P4. For 4, 5 ∈ (, if 4 ∉ �, 5 ∈ �, � ∪ {4} ∉ I1, and � ∪ {4} \ { 5 } ∈ I1, add an arc 4 5 .

1In the definition above, 48 and 5 9 ’s are "edges", but here the G8’s are "nodes". Just be careful.
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5.2. MATROID INTERSECTION ALGORITHM

Lemma 5.5. The A, B-alternating paths in this DAG correspond precisely to the
"augmenting paths" satisfying the ★ conditions.

Proof. Let %′ be a A, B-alternating dipath where # (%) = {A , G1, G2, G3, B}. This corresponds to
an augmenting path % = {G1, G2, G3}. Align the terms, we see that G1 ↦→ 41, G2 ↦→ 51, G3 ↦→ 42.
Let us verify that % satisfies all six ★s above. By our construction:

• AG1 ≡ A41 ∈ �(%) =⇒ 41 ∉ �, � ∪ {41} ∈ I2, i.e., ★1 and ★3 are satisfied;
• G3B ≡ 42B ∈ �(%) =⇒ 42 ∉ �, � ∪ {42} ∈ I1, i.e., ★1 and ★4 are satisfied;
• G1G2 ≡ 41 51 ∈ �(%) =⇒ 41 ∉ �, 51 ∈ �, � ∪ {41} ∉ I1, and � ∪ {41} \ { 51} ∈ I1, i.e., ★1,
★2, ★5 are satisfied;

• G2G3 ≡ 5142 ∈ �(%) =⇒ 42 ∉ �, 51 ∈ �, � ∪ {42} ∉ I2, and � ∪ {42} \ { 51} ∈ I2, i.e.,
★1,★2,★6 are satisfied.

It follows that A, B-alternating paths correspond precisely to paths satisfying the ★ con-
ditions. In addition, we can simply find the shortest such path to get an inclusion-wise
minimal path. �

Lemma 5.6. If there is no A, B-alternating paths, which implies there are no aug-
menting paths % satisfying ★, then � is a maximum cardinality element of I1 ∩I2.

Proof. Let * ⊆ ( be the set of elements reachable from A via dipaths. If * = ∅, by P1, � is
an inclusion-wise maximal element of I2, so it is the max cardinality element in I1 ∩I2.

Otherwise, there is some 4 ∈ * \ �. Indeed, by P1, there is an arc A48 for which 48 ∉ � and
� ∪ {48} ∈ I2. Since 4B is not an arc (or we get an A, B-alternating path), � ∪ {4} ∉ I1 by P2.

Let � be the M1-circuit of � ∪ {4}. Since there is no 4 5 with 5 ∈ ( \* (or 5 is reachable
from A and hence will be contained in*), we must have

� ⊆ * =⇒ � ⊆ (� ∩*) ∪ {4}..

Note that � ∩* ∈ I1, so � ∩* is an M1-basis of*. (Need clean up: (?))

Apply the same argument to show that � ∩* is an M2-basis of �. It follows that

|� | = |� ∩* | + |� ∩* | = A1(*) + A2(*)

and |� | attains the upper bound. �

This leads to a polynomial-time algorithm for solving the matroid intersection problem,
assuming checking independence can also be done in polynomial time. The weighted
version can also be solved in polynomial time.
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LP Approach

Note the problem can also be solved using the following LP:

max 2)G

B.C. G(�) ≤ A1(�) ∀� ⊆ (
G(�) ≤ A2(�) ∀� ⊆ (
G ≥ 0
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5.3 Matroid Intersection with Three Matroids.

The matroid intersection problem with three matroids is NP-hard. That is, given matroids
M8 = ((, I8) for 8 = 1, 2, 3, finding the largest cardinality element of I1∩I2∩I3 is NP-hard.

Consider the NP-hard directed Hamiltonian path problem: Given a digraph � = (+ , �)
and A , B distinct vertices in + for which there exists an A, B-dipath in �. Determine if there
is an A, B-dipath % in � such that every vertex in + \ {A, B} is visited exactly once, i.e.,
( |X+(E) | = |X−(E) | = 1).

By definition, any Hamiltonian path % from A to B satisfies the following conditions:

H1. No arc going into source A; exactly one edge going into every other E ∈ + \ {A}.
H2. No arc leaving the sink B; exactly one edge leaving every other E ∈ + \ {A}.
H3. Each vertex E ∈ + is used exactly once in %.

We can model these three conditions with three matroids M1,M2,M3 as follows:

Let M1 = (� , I1) be the partition matroid with independent sets being subsets of � with 0
outgoing edge from sink B and at most 1 outgoing edge from every other vertex E ∈ + \ {B}.

Let M2 = (� , I2) be the partition matroid with independent sts being subsets of � with 0
edge going into source A and at most 1 edge going into each other vertex E ∈ + \ {A}.

Let M3 = (� , I3) be the forest matroid of the underlying undirected graph � of �, i.e., a
set � ⊆ � is independent in M3 iff � contains no cycles.

Consider the following algorithm, which takes in a digraph � = (+ , �) and two distinct
vertices A, B ∈ + , and outputs True if there is an A , B Hamiltonian path and False otherwise:

1. Define M1,M2,M3 as above.
2. Let � be the largest cardinality element in I1 ∩I2 ∩I3.
3. Return True if |� | = |+ | − 1 and False otherwise.

Lemma 5.7. This algorithm solves the directed Hamiltonian path problem.

Proof. Let % be a directed Hamiltonian path from A to B. Then % satisfies H1, H2, H3,
so it is in I1 ∩ I2 ∩ I3. Moreover, it satisfies the conditions for I1 and I2 at equality
(always having 1 edge going into each E ∈ + \ {A} and always having 1 edge leaving each
E ∈ + \ {B}), so it is a basis for I1 and I2. It follows that % is a maximum cardinality set in
I1 ∩I2 ∩I3 with |% | = |+ | − 1. So the algorithm returns True.

Now suppose the algorithm returns True, i.e., there exists some � ∈ I1 ∩ I2 ∩ I3 with
|� | = |+ | − 1. We claim it is a Hamiltonian path. Indeed, since � ∈ I1 and |� | = |+ | − 1, it
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5.3. MATROID INTERSECTION WITH THREE MATROIDS

must contains exactly one edge going into each E ∈ + \ {A}. Similarly, it contains exactly
one edge leaving each E ∈ + \ {B}. It cannot contains any cycle because � ∈ I3. By
definition, � is a Hamiltonian dipath from A to B as required. �

Proposition 5.8. The matroid intersection problem for 3 matroids is NP-hard.

Proof. Suppose not. Then we can use the algorithm above to solve the Hamiltonian path
problem in polynomial time, which contradicts the fact that Hamiltonian path is NP-hard.
The result follows. �
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5.4 Matroid Partitioning.

Definition 5.9. Let M8 = ((, I8), 1 ≤ 8 ≤ : be matroids. We say that � ⊆ ( is
partitionable if � = �1 ¤∪ · · · ¤∪ �: with �8 ∈ I8, 1 ≤ 8 ≤ : .

Theorem 5.10 (Matroid Partitioning; Edmonds, Fulkerson).

max{|� | : � is partitionable} = min
�⊆(

{
| �̄| +

:∑
8=1

A8 (�)
}

.

Proof. Write the ground set as ( = {41, . . . , 4=}. Let (8 be a copy of ( for each 1 ≤ 8 ≤ : , i.e.,

∀8 = 1, . . . , : : (8 := {481, . . . , 48=}.

For � ⊆ ⋃:
8=1 (

8, let �0 be the corresponding set of elements in (, i.e.,

�0 := {4 ∈ ( | ∃8 ∈ {1, . . . , :} : 48 ∈ �}.

For each 8, define M′
8

:= ((8, {� ⊆ (8 | �0 ∈ I8}), i.e., a copy of the original matroid but over
the ground set (8. Define #0 := "′1 ⊕ · · · ⊕ "

′
:
. Define another matroid #1 = ((′, I1) with

(′ :=
⋃:
8=1 (8

I1 := {� ⊆ (′ | ∀4 ∈ ( : � has at most one copy of 4}.

The intuition is that since we can only pick at most one copy of each element 4, if we
picked the 9-th copy, 4 9 , then that element is from M9 . This leads to the observation that �
is independent in both #0 and #1 iff �0 is partitionable. Moreover, in such case, |� | = |�0 |.
It follows by the matroid intersection theorem that

max{|�0 | : �0 is partitionable} = min
�⊆(′
{A0 (�) + A1 ((′ \ �)}.

We claim that a minimizer � is of the form
⋃
4∈�0{41, . . . , 4: }. Suppose there is some 4 9 ∈ �

and let 4: ∈ (′ \ �. Consider �′ := � \ {4 9 }. Let � be a M1-basis of (′ \ � and notice that
� ⊆ (′ \ �′. If � ∪ {4 9 } ∈ I1, then � ∪ {4: } ∈ I1 as well, which contradicts the maximality
of � within (′ \ �. It follows that � is also a basis of (′ \ �′ and A1 ((′ \ �′) = A1 ((′ \ �).
Moreover, A0 (�′) ≤ A0 (�), so �′ is also a minimizer. With this claim, we get

A0 (�) =
:∑
8=1

A8 (�0) and A1 ((′ \ �) = |( \ �0 |,

so the result holds. �
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Matchings
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6 MATCHING

In this chapter, we will study machines and algorithms for the respective optimization
problems. Our plan is as follows.

1. Basic definitions and maximum cardinality matchings.
2. Perfect matching in bipartite graphs: properties and algorithms.
3. Perfect matching in general graphs: properties and algorithms.

Recall the following definitions and properties from CO-342.

Definition 6.1. Given a graph � = (+ , �), a subset " ⊆ � is a matching if
every vertex is incident with at most one edge in " , i.e.,

∀E ∈ + : |X(E) ∩" | ≤ 1.

Definition 6.2. Given a matching " , a vertex E is said to be "-covered if
|X(E) ∩" | = 1 and "-exposed otherwise.

Lemma 6.3. Given � = (+ , �) and a matching " , there are 2|" | vertices that are
"-covered and |+ | − 2|" | vertices that are "-exposed.

Definition 6.4. A matching " is perfect if there are no "-exposed vertices.

Definition 6.5. The size of the maximum matching in � is denoted a(�).

Definition 6.6. We say D ∈ + is essential if D is "-covered in every maximum
matching " . Otherwise, we say D ∈ + is inessential.

Lemma 6.7. " is a perfect matching iff a(�) = |+ (�) |/2.

Definition 6.8. Given � = (+ , �) and a matching " , a path % = (E1, . . . , E: )
is called "-alternating if ∀8 = 2, . . . , : − 1 : E8−1E8 ∈ " ⇐⇒ E8E8+1 ∉ " .

Definition 6.9. An "-alternating path is "-augmenting if E1, E: are exposed.
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6.1 Maximum Matchings.

Symmetric Difference

Definition 6.10. Given �1, �2 ⊆ � , the symmetric difference between �1 and
�2, denoted as �14�2, is defined as

�14�2 := {4 ∈ � : 4 is in exactly one of �1, �2}.

Alternating Paths

Theorem 6.11 (Berge). Let " be a matching of� = (+ , �). Then " is a maximum
matching iff there does not exist an "-augmenting path.

Proof. If % is an "-augmenting path, then "′ := "4(� (%)) is a strictly larger matching.
Now suppose "′ is a matching of � with |"′| > |" |. Consider �′ = (+ ,"4"′). Since
each E can incident to at most one edge from each of " and "′, we have |X� ′ (E) | ≤ 2 for
all E ∈ + . Thus, �′ is a disjoint union of paths and cycles where all of them are alternating
wrt both " and "′. Since |"′| > |" |, at least one of the components of �′ has more edges
from "′. Since " and "′ would contribute an equal number of edges if this component
were a cycle, we conclude that this component must be a path; let’s call it %. Moreover,
the first and last edge of % must come from "′, so % is our desired "-augmenting path. �

Alternating Trees

Recall we could run BFS to check whether there exists a D, E-path in a graph. We can
use the same idea to check whether there exists an "-alternating path from a "-exposed
vertex D to an "-exposed vertex E as follows: Start at an "-exposed vertex A , compute a BFS
tree where odd-distanced vertices were "discovered" through non-matching edges while
even-distanced vertices were "discovered" through matching edges.

1. If we "discovered" an "-covered vertex, then we can extend the tree by two vertices.
2. Otherwise, if we "discovered" an "-exposed vertex E, we can augment our matching

using the newly found A, E-path and initialize our tree from another exposed vertex.

Figure 6.1: An alternating tree.

This idea almost works.
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6.2 Perfect Matchings in Bipartite Graphs.

Hall’s Theorem

For - ⊆ + . The neighbour set # (-) is given by {E ∈ + \ - : ∃D ∈ - , DE ∈ �}.

Definition 6.12 (Hall). Let � = (+ , �) be bipartite with bipartition + = � ¤∪ �.
There exists a matching covering � iff |# (-) | ≥ |- | for all - ⊆ �.

Proof. (¬ ⇐= ¬): This is a necessary condition: If there exists - ⊆ � such that |- | > |# (-) |,
then no matching can cover all vertices in - .

(⇐=): Prove by induction on |�|. If |�| ≤ 1, the result holds trivially. Suppose that
for every non-trivial subset - ⊆ �, |# (-) | > |- |. Pick DE ∈ � with D ∈ �, E ∈ � and
consider �′ := � − {D, E}. This is a bipartition �′ := � − D and �′ := � − E. For all - ⊆ �′,
|#� ′ (-) | ≥ |#� (-) | − 1 ≥ |- |, so Hall’s conditions holds for �′ in �′. By induction, there
is a matching "′ covering �′. It follows that "′ + DE covers �.

Figure 6.2: Hall’s theorem, Case 2 below. (� ′ is highlighted.)

Otherwise, there is some non-trivial - ⊆ � such that |# (-) | = |- |. By induction, there is
a matching "∗ in � [- ∪ # (-)] covering - , since Hall’s condition holds for the subgraph.
Consider �′ := � [(� \ -) ∪ (� \ # (-))]. We wish to argue that Hall’s condition still holds.
Indeed, for any . ⊆ � \ - ,

|#� ′ (. ) | = |#� (. ) \ #� (-) |
= |#� (- ∪. ) | − |#� (-) |
= |#� (- ∪. ) | − |- |
≥ |- ∪. | − |- | = |. |.

Thus, there exists a matching "′ in �′ covering � \ - . Combining "∗ and "′, we found
a matching in � covering �. �
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It is easy to see that if the bipartition of a graph satisfies Hall’s conditions and have the
same size, then the graph has a perfect matching.

Corollary 6.13. Let � = (+ , �) be bipartite with bipartition + = � ¤∪ �. Then �
has a perfect matching iff |�| = |� | and |- | ≤ |# (-) | for all - ⊆ �.

Proof. Omitted. �

Algorithm for Finding a Perfect Matching in Bipartite Graphs

Algorithm 6: Algorithm for Finding a Perfect Matching in Bipartite Graphs

input: � = (+ , �) bipartite
output: A perfect matching " of � or None if � does not have a perfect matching
main:

1: Initialize matching " ← ∅ and let A ∈ +
2: Initialize ) ← (+ ()) = {A}, � ()) = ∅)
3: �← ∅, �← {A}, the odd-distanced and even-distanced vertices, respectively
4: while ∃EF ∈ � : E ∈ �()),F ∉ + ()) do
5: if F is "-covered then ⊲ Case 1 below.
6: Use EF to extend )
7: else ⊲ F is "-exposed; Case 2 below.
8: Use EF to augment "
9: if ∃"-exposed vertex A′ ∈ + then ⊲ Restate the algorithm

10: ) ← (+ ()) = {A′}, � ()) = ∅)
11: �← ∅, �← {A′}
12: else
13: return " ⊲ No "-exposed vertex left =⇒ " is a PM.
14: return None

Edges in " are marked red:

Figure 6.3: Case 1. Extend the tree by 2 edges. Figure 6.4: Case 2. AF is an "-augmenting path!
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Claim. If the algorithm reaches the last line, then � has no perfect matching.

Proof. Let ) , �, � be the state of the algorithm just before termination. By definition,
�, � contain the odd-distanced and even-distanced vertices (from A) in �. We have the
following observations:

1. # (�())) = �()): Every neighbour F of E ∈ �()) was not present in ) when it was
added to ) . Thus, all of them have an odd distance from A and thus in �()).

2. |�()) | > |�()) |: There is exactly one more element in �()) than �()), namely the
root A of the tree.

Since (�, �) is a bipartition of � but |�| < |� | = |# (�) |, by Corollary 6.13, � does not have
a perfect matching. �

Claim. The algorithm runs in polynomial time.

Proof. We can augment the matching at most =/2 times (that’s the size of a maximum
matching of a graph with = vertices), with each augmentation requiring linear time to
compute the alternating tree. �

Example: Algorithm for Finding a Perfect Matching in Bipartite Graphs

Figure 6.5: Top: Graph and matching " (in red). Bottom: "-alternating tree.

Start with the bipartite graph on the top left. Pick A = E1. Discover E2 where E2 ∉ ) and
is "-exposed. Augmenting the matching with E1E2. Now pick A = E3. Discover E2 where
E2 ∉ ) and is "-covered. Discover an "-augmenting path E3, E2, E1, E4. Augment " with
this path. Now pick A = E5. Discover E2 and E4 and extend the tree. Observe there is no
other neighbours of E3 and E1 that are "-exposed. Stop and return this matching. ♦
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6.3 The Tutte-Berge Formula.

Vertex Covers

Definition 6.14. A set of vertices * ⊆ + is a vertex cover of � = (+ , �) if
every edge in � has at least one ends in*, i.e., ∀4 ∈ � : |4 ∩* | ≥ 1.

The size of a minimum vertex cover of � is denoted g(�).

Lemma 6.15. For any graph �, a(�) ≤ g(�).

Theorem 6.16 (Konig). If � is bipartite, then a(�) = g(�).

Odd Components

Motivation. Our goal is to find an upper bound for the size of any matching " of �.

Let � ⊆ + and �1, . . . ,�: be the connected components with an odd number of vertices
in � − �. We call them odd components and denote the number of odd components in
� − � by : = odd(� − �).

Figure 6.6: Odd components �1, . . . ,�: of � − �, � ⊆ + , and even components of � − �.

Claim. For any matching " of �, the number of "-exposed vertices is ≥ : − |�|.

Proof. If �8 has no "-exposed vertex, then there exists at least one edge in " from �8 to
�, because an odd component cannot have a perfect matching. The same logic applies to
all odd components. However, there can be at most |�| such edges (between vertices in �
and one of the �8’s), because we only have |�| vertices in � to use. Therefore, there will
always exist at least : − |�| vertices that are "-exposed for all matchings " of �. �
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Recall a matching " has |+ | − 2|" | vertices that are "-exposed. Thus, |+ | − 2|" | ≥ : − |�|,
which implies |" | ≤ 1

2 ( |+ | − : + |�|). Since a(�) is an upper bound of |" | and the above
expression must holds for every � ⊆ + , we get

a(�) ≤ 1
2
( |+ | − odd(� − �) + |�|) ∀� ⊆ + .

How tight is this bound? Observe if � is any vertex cover, then odd(� − �) = |+ | − |�| as
deleting � from � removes every edge, which gives

1
2
( |+ | − odd(� − �) + |�|) = 1

2
( |+ | − |+ | + |�| + |�|) = |�| ≥ g(�).

Therefore, this bound is at least as good as the vertex cover bound a(�) ≤ g(�).

Tutte’s Matching Theorem

Theorem 6.17 (Tutte-Berge). Let � = (+ , �). Then

a(�) = 1
2

min
�⊆+
{|+ | − odd(� − �) + |�|}.

The Tutte-Berge Formula above tells us that a matching is maximum when it reaches the
given size. We will give a formal proof later. For now, we prove an easier result, which
can be viewed as a corollary of the Tutte-Berge Formula.

Theorem 6.18 (Tutte). � has a prefect matching⇔ ∀� ⊆ + : odd(� − �) ≤ |�|.

Intuition. Each odd component "consumes" a vertex in �, so if � − � has more than |�|
odd components, there cannot be a perfect matching.

Proof. Suppose odd(�) > 0. Then � has no perfect matching, so LHS is false; the RHS is
also violated by setting � = ∅, so we have ¬ LHS ⇐⇒ ¬ RHS for the case odd(�) > 0.

Now suppose odd(�) = 0. By the Tutte-Berge formula, � has a perfect matching iff

⇐⇒ a(�) = =
2

Size of perfect matchings

⇐⇒ = = min
�⊆+
{= − odd(� − �) + |�|} Tutte-Berge formula

⇐⇒ min
�⊆+
{|�| − odd(� − �)} = 0. Take = out as it is a constant

The minimum 0 is obtained by setting � = ∅ as |�| − odd(� − �) = 0 − 0 = 0, provided
that odd(�) = 0. Therefore, the minimum evaluates to 0 iff ∀� ⊆ + : odd(� − �) ≤ |�|,
i.e., � has a p.m. ⇐⇒ min�⊆+ {|�| − odd(� − �)} = 0 ⇐⇒ ∀� ⊆ + : odd(� − �) ≤ |�|.
This proves LHS ⇐⇒ RHS for the case odd(�) = 0. �
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Odd Cycles

Let � be an odd cycle. Define �′ := �/� given by1

+ (�′) := (+ (�) \+ (�)) ∪ {C} (vertex C represents the contracted cycle)
� (�′) := {4 ∈ � (�) : 4 ∩� = ∅} ∪ {EC : ∃DE ∈ � (�) with D ∈ + (�), E ∉ + (�)}.

Let � be an odd cycle and �′ := �/�. Observe a matching in �′ can be extended to a
matching in � with some exposed vertices.

Proposition 6.19. Let � = (+ , �), � be an odd cycle, and �′ := �/�. Let "′ be
a matching in �′. Then there exists a matching " of � such that the number of
"-exposed vertices in � is equal to the number of "′ exposed vertices in �′.

Figure 6.7: "Proof by example".

In particular, we add ( |� | − 1)/2 new edges to "′ to obtain " . It follows that

a(�) ≥ a(�′) + |� | − 1
2

.

Unfortunately, equality does not always hold. In the example below, we have a(�′) =
1, ( |� | − 1)/2 = 1, but a(�) = 3:

Figure 6.8: Equality does not always hold.

Definition 6.20. We say an odd cycle � is tight if

a(�) = a(�′) + |� | − 1
2

.

1From now on, we allow graphs to have parallel edges (but not loops) because we are contracting stuff.
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Proving Tutte-Berge Formula

Theorem 6.21 (Tutte-Berge). Let � = (+ , �). Then

a(�) = 1
2

min
�⊆+
{|+ | − odd(� − �) + |�|}.

Proof. Our goal is to produce a matching " and a Berge witness � ⊆ + with exactly
odd(� − �) − |�| "-exposed vertices. Since the Tutte-Berge formula trivially provides
an upper bound, to show the equality holds, it suffices to show there is a some (" , �)
attaining this upper bound. We do induction on < = |� |. The case < = 0 is trivial. Now
choose some DE ∈ � arbitrarily.

Case 1. E is essential. Suppose that one of the endpoints is essential, say E. Define �′ :=
� − E. Since E is essential, removing E necessarily decreases the size of every matching, so
a(�′) < a(�). By induction, there is a maximum matching "′ in �′ and �′ ⊆ + − E with

|"′| = 1
2
((= − 1) − odd(�′ − �′) + |�′|).

Let " be a matching of � with |" | = a(�). Choose 4 ∈ X(E) ∩ " . (Note there must be
such an edge since E is essential.) Then "̄ := " − 4 is a matching in �′. It follows that

|"̄ | = |" | − 1 ≤ |"′|.

But |"′| ≤ |" | − 1 = |" | since E is essential. Thus, |"′| = |" | − 1. Now define � := �′ + E.
Notice that odd(� − �) = odd(�′ − �′) by definition. It follows that

|" | − 1 =
1
2
((= − 1) − odd(�′ − �′) + |�′|)

|" | = 1
2
(= − odd(� − �) + |�|) − 1 + 1 =

1
2
(= − odd(� − �) + |�|).

Case 2. D, E are inessential. By Lemma 6.22, we can pick a tight odd cycle � containing DE
and where C is inessential in �′ := �/�. Then there exists a matching "′ of �′, such that

∀�′ ⊆ + (�′) : |" |′ = 1
2
( |+ (�′) | − odd(�′ \ �′) + |�′|) .

By Lemma 6.23, C ∉ �′. We claim that any component of �′ \ �′ containing C will be a
component of � \ �′ of the same parity. To see this, observe we remove C and add an
odd number of vertices (from the odd cycle �) when we reconstruct � \ �′ from �′ \ �′.
Thus, even cycles stay even and odd cycles stay odd, so odd(�′ \ �′) = odd(� \ �′). By
Proposition 6.19, we can extend "′ to " with odd(�′ \ �′) − |�′| = odd(� \ �′) − |�′|
"-exposed vertices as desired. �
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Lemma 6.22. Let DE ∈ � . If D, E are inessential, then there is a tight odd cycle �
containing the edge DE such that C is inessential in �′ := �/�.

Proof. Let "D,"E be two maximum matchings exposing D and E, respectively. Notice:

• DE ∉ "D ∪"E as DE ∉ "D and DE ∉ "E;
• "D covers E, otherwise we could add DE to "D. Similarly, "E covers D.

Thus, both D and E have exactly one neighbour in "D4"E, i.e., deg4 (D) = deg4 (E) = 1.

Let � := "D4"E. We claim that (+ , �) is a vertex disjoint union of "D,"E-alternating
paths/cycles. Indeed, each vertex in (+ , �) has degree at most two, so it is a vertex disjoint
union of paths and cycles. Moreover, adjacent edges must come from different matchings,
so it is "D-alternating as well as "E-alternating.

Since deg(D)4 = 1, there exists an alternating path % starting in D. Notice:

• The first edge of % is from "E because D is exposed in "D.
• The last edge of % is from "D as otherwise this becomes an "D-augmenting path.

Let I be the other end of %, which must be "E exposed. If I ≠ E, since ED ∉ "E, ED + % is
an "E-augmenting path, contradiction. Therefore, this path % must be a D, E-path.

Consider cycle � := DE + %. Since % is alternating but not augmenting, % has an even
number of edges, so � is an odd cycle.

Denote % by D = E1, E2, . . . , E=−1, E= = E, 48 = E8E8+1, 8 ∈ {1, . . . , = − 1}. Note that the odd-
indexed edges are in "E and the even-indexed edges are in "D.

We claim that (X(�) ∩"D) = ∅. Suppose not, so there exists F@ ∈ "D such that F ∈ � and
@ ∉ �. If F = D, then D is not "D-exposed, contradiction. Now suppose F = E8 for some
8 ∈ {1, . . . , =}. If 8 is even, 48 = E8E8+1 ∈ "D ∩�; if 8 is odd, 48−1 = E8−1E8 ∈ "D ∩�. Thus, E8 is
covered by an edge in "D ∩�, contradiction as well. It follows that X(�) ∩"D = ∅.

Next, we claim that "D \� is a maximum cardinality matching in�/�. Let’s first show it’s
a matching. Since "D \� is a subset of a matching, we only need to show that "D \� ⊆
� (�/�), which in turn implies "D \ � is a matching in �/�. Suppose not, so there is
some 4 ∈ "D \ � such that 4 ∉ � (�/�). If 4 ∈ X(�), i.e., 4 = @F where @ ∈ "D ∩ �
and F ∈ "D \ �. But this contradicts X(�) ∩ "D = ∅. Now suppose 4 = @F ∉ � where
@,F ∈ + (�). But every vertex in � \ {D} is already covered by an "D edge in �, and D is
exposed by construction. Thus, this case is also impossible.
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6.3. THE TUTTE-BERGE FORMULA

Next,

|"D ∩� | =
|� | − 1

2
=⇒ |"D \� | = |"D | −

|� | − 1
2

.

Since � is an odd cycle,

a(�) ≥ a(�/�) + |� | − 1
2

.

But we also have

a(�) = |"D | = |"D \� | +
|� | − 1

2
,

which implies

|"D \� | +
|� | − 1

2
≥ a(�/�) + |� | − 1

2
=⇒ |"D \� | ≥ a(�/�) =⇒ |"D \� | = a(�/�),

so "D \� is indeed a maximum cardinality matching. Substitute this into the line above,
we have

a(�) = a(�/�) + |� | − 1
2

,

which implies � is tight. We have found our desired circle �. �

Lemma 6.23. Let " be a matching and a set of vertices � ⊆ + that satisfies the
Tutte-Berge formula

|" | = 1
2
( |+ | − odd(� \ �) + |�|).

Then all vertices in � are essential.

Proof. Let E ∈ �. Define �′ := � \ {E},+ ′ := + \ {E}, and�′ := � \ {E}. Note the components
of � \ � are the same as those of �′ \ �′, so odd(� \ �) = odd(�′ \ �′). Observe

a(�′) ≤ 1
2
( |+ ′| − odd(�′ \ �′) + |�′|) = 1

2
( |+ | − 1 − odd(� \ �) + |�| − 1) = |" | − 1.

Since removing E from � necessarily decreases the size of any maximum matching of �,
every maximum matching must have an edge incident to E, so E is essential. �
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6.4 Perfect Matching in General Graph: The Blossom Algorithm.

Recall our algorithm for finding perfect matchings in bipartite graphs:

1. Given a matching " , pick an "-exposed vertex A.
2. Construct an "-alternating tree rooted at A and extend it if possible.
3. Upon finding an "-augmenting path starting at A, augment " with the path, and

restart the algorithm with another "-exposed vertex.

When the algorithm terminates and there were still "-exposed vertices in the graph, we
conclude that the bipartite graph cannot have a perfect matching. What happens if we
apply this algorithm on a general (not necessarily bipartite) graph?

Frustrated Tree

Intuitively, a frustrated tree is an alternating tree where we can no longer make progress.
That is, the current matching " is not perfect and we can’t extend the tree or augment the
matching anymore.

Definition 6.24. We say an "-alternating tree) is frustrated if for every edge
DE ∈ � such that D ∈ �()), the other endpoint satisfies E ∈ �()).

Figure 6.9: Left: Graph and matching (in red). Right: A frustrated tree.

The tree returned by the bipartite graph perfect matching algorithm when no perfect
matching exists is an example of a frustrated tree. It is easy to derive a characterization
using the notion of frustrated alternating trees.

Proposition 6.25. If ) is frustrated, then � has no perfect matching.

As a remark, since we start with �()) = {A} and �()) = ∅, at all times during the algo-
rithm we have |�()) | − |�()) | = 1, so |�()) | > |�()) |.

Proof. Since all neighbours of vertices in �()) are in �()), � \ �()) has ≥ |�()) | odd
components (each of size 1). Then |odd(� \ �())) | ≥ |�()) | > |�()) |. It follows from
Tutte’s matching theorem that � has no perfect matching. �
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6.4. THE BLOSSOM ALGORITHM

Blossom

Let D, E ∈ �()) such that DE ∈ � . Then ) + DE has a unique odd cycle � (called a Blossom).
Shrink the blossom and let �′ = �/�. We call the new vertex a pseudonode.

Figure 6.10: Blossom (highlighted in yellow) and pseudonode (circled in red).

Note that

• Edges in " \ � (�) form a matching "′ in �′.
• Shrunken tree ) ′ is "′-alternating in �′.
• Pseudonode is in the set �() ′) for the tree ) ′.

Thus, we can keep shrinking blossoms and forgetting about the blossoms shrunken so far.
Note that when an "′-augmenting path is found, one can augment "′ using this path,
then reconstruct " and augment it as well. Note one may need to shrink multiple times.

Figure 6.11: Top: shrink, shrink, discover an augmenting path. Bottom: augment, reconstruct, reconstruct.
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6.4. THE BLOSSOM ALGORITHM

Derived Graph

We say the graph obtained after shrinking (sequentially) blossoms is a derived graph. We
use ((E) to denote the set of vertices that have been shrunk into E ∈ + (�′).

Theorem 6.26. Formally, for all E ∈ + (�′),

((E) =
{
E E ∈ + (�)⋃
F∈C ((F) E = EC for some blossom C

Figure 6.12: Example of ((E).

Notice |((E) | is odd for all E ∈ + (�′), as it’s either a single node or the union of odd cycles.

Proposition 6.27. Let �′ be a derived graph from �, "′ a matching of �′, ) ′ an
"′-alternating frustrated tree of �′ with all pseudonodes in �() ′). Then � has no
perfect matching.

Proof. As before (note every vertex in �() ′) becomes an isolated vertex in �′ − �() ′)),

odd(�′ − �() ′)) ≥ |�() ′) | > |�() ′) |,

because every neighbour of a vertex in �() ′) resides in �() ′). Upon un-contraction of
the blossoms of �() ′), each odd component of �′ − �() ′) remains an odd component of
� − �() ′) (the same parity argument applies). Thus,

odd(� − �() ′)) ≥ |�() ′) | > |�() ′) |.

The result follows from Tutte’s Matching Theorem. �

The following proposition shows we can recursively shrink blossoms and get desired
results. (Combine this with Figure 6.11 and the previous proposition.) Proof is skipped.
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6.4. THE BLOSSOM ALGORITHM

Proposition 6.28. Let �′ be a derived graph from �, "′ a matching of �′, ) ′ an
"′-alternating tree, DE ∈ � (�′) with D, E ∈ �() ′), �′ a unique cycle (Blossom) in
) ′ + DE. Then "′′ := "′ \ � (�′) is a matching for �′′ := �′ \�′ and ) ′′ := (+ () ′) \
+ (�′) ∪ {E� ′}, � () ′) \ � (�′)) is an "′′-alternating tree in �′′ with E� ′ ∈ �() ′′).

Blossom Algorithm for Perfect Matching

Algorithm 7: Blossom Algorithm for Perfect Matching

input: A graph � = (+ , �) and a matching " of �.
output: A perfect matching "′ of �, or a certificate proving no such matching exists
main:

1: Set "′← " and �′← �.
2: Choose an "′-exposed node A of �′ and put ) = ({A},∅)
3: while there exists EF ∈ �′ with E ∈ �()) and F ∉ �()) do
4: case F ∉ + ()) and F is "′-exposed ⊲ Case 1: Found augment path
5: Use EF to augment "′

6: Extend "′ to a matching " of �
7: Replace "′ by " and �′ by �
8: if there is no "′-exposed node in �′ then
9: return the perfect matching "′

10: else
11: Replace ) by ({A′},∅) where A′ is "′-exposed

12: case F ∉ + ()) and F is "′-covered ⊲ Case 2: Extend the tree
13: Use EF to extend )
14: case F ∈ �()) ⊲ Case 3: Shrink a blossom and repeat
15: Use EF to shrink a blossom )E,F + EF and update "′ and )

16: return �′,"′,) ′ and stop. � has no perfect matching

Theorem 6.29. Blossom algorithm does$ (=) augmentations,$ (=2) shrinks,$ (=2)
tree extensions, and correctly determines if � has a perfect matching.

Proof. The correctness follows from our previous propositions about frustrated trees, as
that is exactly what our algorithm returns if no perfect matching is found. For running
time, note that each augmentation increases |"′| by 1, so there are at most $ (=) augmen-
tations. Between two augmentation steps, shrinking reduces the size of �′ by at least 2
vertices, which implies $ (=) shrinks. Thus, there are in total $ (=2) shrinks. Finally, each
edge is added to the tree at most once, so there are $ (<) = $ (=2) tree extensions. �
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6.4. THE BLOSSOM ALGORITHM

Blossom Algorithm for Maximum Cardinality Matching

We can adapt this algorithm to compute a maximum cardinality matching.

Algorithm 8: Blossom Algorithm for Maximum Cardinality Matching

input: A graph � = (+ , �) and a matching " of �.
output: A perfect matching "′ of �, or a certificate proving no such matching exists
main:

1: Set "′← " , �′← �, T= ∅ ⊲ T tracks all frustrated trees
2: Choose an "′-exposed node A of �′ and put ) = ({A},∅)
3: while there exists EF ∈ �′ with E ∈ �()) and F ∉ �()) do
4: case F ∉ + ()) and F is "′-exposed
5: Use EF to augment "′

6: Extend "′ to a matching " of �
7: Replace "′ by " and �′ by �
8: if there is no "′-exposed node in �′ then
9: return the perfect matching "′

10: else
11: Replace ) by ({A′},∅) where A′ is "′-exposed
12: case F ∉ + ()) and F is "′-covered
13: Use EF to extend )
14: case F ∈ �())
15: Use EF to shrink and update "′ and )
16: T← T∪ {)},�′← � \+ ()),"′← " \ � ())
17: Goto line 2 if there exists any "′-exposed node A of �′.

In other words, we use T to keep track all frustrated trees, and on Lines 16 and 17 we
remove the tree from the graph and reinitiate our algorithm.

Proposition 6.30. The algorithm above produces a maximum matching of �.

Proof. Let T := {)1, . . . ,): } and " be the final matching. For each )8, there is only one
"-exposed vertex in )8, namely its root A8. Thus, there are : "-exposed vertices. Put
� :=

⋃:
8=1 �()8). Each vertex in �()8) is an odd component of � − �. It follows that

odd(� − �) ≥
:∑
8=1

|�()8) | ≥
:∑
8=1

(1 + |�()8) |) = |�| + : .

However,

|" | = = − :
2
≥ 1

2
(= − odd(� − �) + |�|).

The reverse inequality holds for any matching. Thus by Tutte-Berge we are done. �

68



6.5. GALLAI-EDMONDS DECOMPOSITION

6.5 Gallai-Edmonds Decomposition.

Definition 6.31. Let � = (+ , �),
• � be the set of inessential vertices,
• � := {E ∈ + \ � : E ∈ #� (�)}, i.e., vertices adjacent to some E ∈ �,
• � = + \ (� ∪ �), i.e., everything else.

Then (�,�,�) is called the Gallai-Edmonds partition/decomposition of �.

Figure 6.13: Gallai-Edmonds decomposition.

Intuitively,

• � [�] only has odd components;
• � is a minimizer of the Tutte-Berge formula;
• In a maximum matching " ,

– " ∩ � (�) is a perfect matching of � [�];
– there exist some edges between � and �;
– any "-exposed vertices are in �.

We will spend the rest of this section proving these claims.

Proposition 6.32. Let )1, . . . ,): be the frustrated trees found in the Blossom algo-
rithms. Then

� =

:⋃
8=1

�()8), � =

:⋃
8=1

©­«
⋃

E∈�()8)
((E)ª®¬ , � := + \ (� ∪�).
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6.5. GALLAI-EDMONDS DECOMPOSITION

Note: This proposition implies that:

• All components of � [�] are odd because they correspond to odd cycles.
• � is a minimizer of the Tutte-Berge formula (from the Blossom algorithm).
• Gallai-Edmonds decomposition can be computed in polynomial time.
• � [�] only has even components: all vertices in � are "-covered and are consumed

within the component.
• No E ∈ � is adjacent to a vertex of � while every E ∈ � is matched/adjacent to a

vertex in �.

Proof. (Sketch) We saw all vertices in � are essential. This is because the Blossom algo-
rithm finds a minimizer of the Tutte-Berge formula, of which all vertices are essential.

For all vertices in �, there is an even "-alternating path from an "-exposed vertex A
(a root of one of the frustrated trees) to it. Take such an even path % and observe that
"′ := −"4� (%) is a matching with |"′| = |" | exposing E. It follows that E is inessential.

Finally, we know that � [�] only has even components. Let E ∈ �. We claim that a(� −
E) < a(�). Indeed, we have already shown that � is a minimizer to the Tutte-Berge
formula. Therefore, there are exactly : exposed vertices in a maximum matching. But
there are at least : exposed vertices of �, so no vertex of � can be exposed in a maximum
matching. Thus, � [�] contains a perfect matching as required. �
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7 WEIGHTED MATCHING

7.1 Minimum Weight Perfect Matching.

The problem of minimum weight perfect matching is given as below.

Problem. Given � = (+ , �), 2 ∈ R� , find a perfect matching " of � minimizing

2(") =
∑
4∈"

24.

If a perfect matching does not exist, return a certificate of infeasibility.

Recall the degree of each vertex is exactly 1 in a perfect matching. Consider the IP below.

min
∑
4∈� 24G4

B.C. G(X(E)) = 1 ∀E ∈ +
G ≥ 0, G ∈ Z�

We throw away the G ∈ /� constraint and obtain the following primal-dual LP pair.

(%") := min
∑
4∈� 24G4

B.C. G(X(E)) = 1 ∀E ∈ +
G ≥ 0

(�") := max
∑
E∈+ HE

B.C. HD + HE ≤ 2DE ∀DE ∈ �

An immediate observation is that if I%" be an optimal solution of %" , then I%" ≤ 2(")
for all perfect matchings " . But can we hope to solve the problem of minimum weight
perfect matching by solving %"? The answer is no. Consider the following example.
Any perfect matching must include at least one of the horizontal edges of cost 1, yet the
optimal value to %" is 0. (Show)

As a remark, this is what happens in most cases: if you have some combinatorial opti-
mization problem and you write down what you think as the most natural IP formulation,
chances are, the optimal solution to its LP relaxation is not integral, i.e., it will not corre-
spond to a combinatorial object you are looking for. The MST problem is a very special
case where you could drop the integrality constraint and obtain a solution directly.
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7.2 Minimum Weight Perfect Matching in Bipartite Graphs.

In bipartite graphs, the LP approach described in the previous section works.

Theorem 7.1 (Birkhoff). Let � = (+ , �) be a bipartite graph, 2 ∈ R� . Then � has
a perfect matching iff %" is feasible. Moreover, if %" is feasible, let "∗ be the min
cost perfect matching. Then we have I%" = 2("∗).

The forward direction of the iff is trivial: if � has a perfect matching, then %" is feasible.
The backward direction will be shown in A3. We will do an algorithmic proof for the
second statement.

Deduce Algorithm from CS Conditions

Recall the primal-dual LP pair:

(%") := min
∑
4∈� 24G4

B.C. G(X(E)) = 1 ∀E ∈ +
G ≥ 0

(�") := max
∑
E∈+ HE

B.C. HD + HE ≤ 2DE ∀DE ∈ �

Assuming � is bipartite, we want to construct a matching " that corresponds to an opti-
mal solution to %" . As before, we use CS conditions. Let H̄ be feasible for �" . Define

�= := {DE ∈ � : H̄D + H̄E = 2DE},

i.e., �= contains the edges whose dual constraints are satisfied at equality. Recall the CS
condition requires either a dual constraint is tight, or the corresponding primal variable
is 0. Thus, for any edge we want to include in our matching (i.e., GDE = 1), then the
corresponding dual constraint must be tight. In other words, �= contains the edges we
could use in our matching. As a remark, the other CS condition requires either a primal
constraint is tight or the corresponding dual variable is 0. But every constraint must be
satisfied at equality for any feasible solution,so we don’t need to worry about this one.

If �= := (+ , �=) has a perfect matching " , then G" , H̄ satisfy the CS conditions, which in
turn shows that " is a minimum weight perfect matching. Otherwise, we want to update
H̄. This will be the basic flow of our algorithm. As a remark, this relies on the perfect
matching identification algorithm we covered in the last chapter.
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Updating Potentials

Recall after running the perfect matching algorithm on �=; two cases could happen. If
we found a perfect matching " , since " ⊆ �=, this is the desired min-weight perfect
matching in �. If we found a frustrated tree, we want to update �= by updating H, where

• H̄ is still feasible for �" : maintain a feasible dual solution.
• The current " ⊆ �=new: keep our matching valid.
• The current � ()) ⊆ �=new: keep the alternating tree valid.
• At least one edge DE ∈ � \ �=old satisfies D ∈ �()), E ∉ + ()) is in �=new: bringing in

new candidates for our matching.

Recall edges not in �= satisfy H̄D + H̄E < 2DE. To keep H a feasible dual solution and to bring
more edges into our candidate set �=, we define

Y := min{2DE − H̄D − H̄E | ∃DE ∈ � , D ∈ �()), E ∉ + ())}

and update H̄D with

• ∀D ∈ �()) : H̄D ← H̄D + Y;
• ∀D ∈ �()) : H̄D ← H̄D − Y;
• ∀D ∉ + ()) : H̄D remains unchanged.

This ensures that H̄ is still feasible for the dual constraint

∀DE ∈ � : HD + HE ≤ 2DE.

Next, " ⊆ �= for the new �= by construction; � ()) ⊆ �= since we increased/decreased
the vertex potentials based on parity of distance from the root. And if there are any
vertices D ∉ + ()), our update ensures that at least one "-exposed vertex is found and we
can augment our matching.

Example

Here is an example of running the algorithm for one step. Note the number above each
vertex D is the potential H̄D and the number above each edge DE is the cost 2DE. We use
colors to denote the edges within different groups.

Figure 7.1: Current situation.
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Suppose we ran the perfect matching algorithm on �= and saw ourselves in the situation
described in the figure. Observe there are two edges not in �= that goes from D ∈ �()) to
E ∉ + ()), namely the two orange edges. Since the lower edge has a weight of 2 and a sum
of potentials 1 and the upper edge has a weight of 5 and a sum of potentials 3, we want
to set Y = min{5 − 3, 2 − 1} = 1. We then increase all potentials of vertices in �()) by Y = 1
and decrease all potentials of vertices in �()) by Y = 1, which results in the graph below:

Figure 7.2: Updating the potentials.

Now observe the path from A to E is an "-augmenting path.

Figure 7.3: Detecting an "-augmenting path.

Augment our matching with this path. Since this is a perfect matching of �=, by our
previous remark about CS conditions, it must be a minimum weight perfect matching of
�. We are done.

Figure 7.4: Found a perfect matching. Done.

It’s time for the actual algorithm.
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Algorithm 9: Algorithm for Finding a Min Weight Perfect Matching in Bipartite Graphs

input: : � = (+ , �) bipartite
output: : A perfect matching " of � or None if � does not have a perfect matching
main:

1: Let H be a feasible dual solution and " be a matching of �=

2: if " is a perfect matching of � then
3: return "

4: Initialize ) ← (+ ()) = {A}, � ()) = ∅), where A is an "-exposed vertex in �
5: �← ∅, �← {A}, the odd-distanced and even-distanced vertices, respectively
6: while True do

# Find a perfect matching in our bipartite graph
7: while ∃EF ∈ � : E ∈ �()),F ∉ + ()) do
8: if F is "-covered then
9: Use EF to extend ) , �← � ∪ {F}, �← � ∪ {F}

10: else ⊲ F is "-exposed
11: Use EF to augment "
12: if ∃"-exposed vertex A′ ∈ + then
13: ) ← ({A′},∅) where A′ is "-exposed, �← ∅, �← ∅
14: continue
15: else ⊲ No "-exposed left vertex in �, we are done.
16: return the perfect matching "

# Update dual solution
17: if every EF ∈ � with E ∈ �()) has F ∈ �()) then ⊲ Frustrated tree!
18: Stop, � has no perfect matching
19: else
20: Let Y = min{2̄EF : E ∈ �()),F ∉ + ())}
21: Replace HE by HE + Y for E ∈ �()), HE − Y for E ∈ �())

To see correctness, observe " ⊆ �= at all time, and we have the following two stop points:

• Found a perfect matching " in �=: " ⊆ �= so by CS conditions we are good.
• Found a frustrated tree in �: no perfect matching exists, we are doomed.

Observe that the inner while loop is the bipartite matching algorithm and terminates
in polynomial time. On the other hand, if the outer loop does not terminate, then it is
guaranteed we have an "-augmenting path in �= in the next iteration. Thus, the outer
loop runs for at most = iterations. To summarize, the algorithm correctly finds a minimum
weight perfect matching in a bipartite graph with polynomial time.
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7.3 Minimum Weight Perfect Matching in General Graphs.

A New Constraint

Observe any perfect matching must use at least one edge in X(():

Figure 7.5: Any perfect matching must use at least one edge in X(().

Let us add some constraints to the LP that represent this observation:

∀( ⊆ + where |( | is odd and |( | ≥ 3 : G(X(()) ≥ 1

Let us denote these ( by O, the "odd sets". This leads to a new formulation:

(%′
"
) := min

∑
4∈� 24G4

B.C. G(X(E)) = 1 ∀E ∈ +
G(X(()) ≥ 1 ∀( ∈ O
G ≥ 0

(�′
"
) := max

∑
E∈+ HE +

∑
(∈O H(

B.C. HD + HE +
∑
(∈O:DE∈X(() H( ≤ 2DE ∀DE ∈ �

H( ≥ 0 ∀( ∈ O

With this constraint added, the set of feasible solutions of the IP remains the same, but
the set of feasible solutions of the LP %′

"
is different. In particular, the counterexample we

provided before is no longer a feasible solution to %′
"

as it violates the new constraint!

Algorithm Implied by CS Conditions

Similar what we did before, we will try to compute a perfect matching which satisfy CS
conditions. We will only use edges DE with 2̄DE = 0 in our matching:

2̄DE := 2DE −
∑

(∈O:DE∈X(()
H( − HD − HE

The CS conditions requires that:

• ∀E ∈ + : G(X(E)) = 1: satisfied by any perfect matching, so we are good.
• ∀( ∈ O : G(X(()) = 1 or H( = 0: need some work.
• ∀DE ∈ � : GDE = 0 or 2̄DE = 0: need some work.

We will construct a perfect matching " such that

★ " ⊆ �= := {4 ∈ � : 2̄4 = 0}
★★ |" ∩ X(() | = 1 for all ( ∈ Owhen H( > 0.

Note that �= is defined based on implicitly the graph � and a feasible dual solution H̄.
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Why the previous algorithm for bipartite graph fails here

Let’s start with what we did for bipartite graphs:

1. Start with a feasible dual solution H̄ such that H̄( = 0 for all ( ∈ O.
2. If found a perfect matching " in �=, we are done.
3. Otherwise, look at the frustrated tree ) in �= and update H̄ so that more vertices can

be added to ) .

Y := {min 2̄DE : D ∈ �()), E ∉ + ())}, H̄D :=


H̄D + Y D ∈ �())
H̄D − Y D ∈ �())
H̄D D ∉ + ())

Figure 7.6: Applying the MWPM algorithm for bipartite graph to a non-bipartite graph.

Given the left graph, we see that Y = min{4− 3, 6− 4, 4− 3} = 1. Update H̄ using the above
rule. Note that the highlighted vertical edge has a weight of 4 but the potentials at its
ends sum up to 3 + 2 = 5, which means 2̄DE = −1, violating the dual constraint!

To address this issue, we define Y2, which imposes an upperbound on how much we can
increase the potentials at both ends of an edge without violating the dual constraint.

Y1 := min{2̄DE : D ∈ �()), E ∉ + ())}
Y2 := min{2̄DE/2 : D ∈ �()), E ∈ + ())}
Y := min{Y1, Y2}

With this modification, Y = min{1, 1/2} = 1/2, so we update the potentials as below. Note
that the vertical edge now is part of �=!

Figure 7.7: Fixing the problem.
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Observe the left 5 edges make up a blossom in�=. Therefore, if we find a perfect matching
in �=/�, then it can be extended to a perfect matching " of �= satisfying ★★. We will see
more details about this later.

Shrinking blossoms

But how exactly do we shrink the blossom? Previously when we were working with un-
weighted perfect matchings, all we care about is whether we could find a perfect match-
ing in the shrunken graph; we don’t care which vertex the pseudo-vertex E� really repre-
sents. But now since edges could have different weights and we are looking for the one
with minimum weight, we do need to care about this.

Figure 7.8: The resulting graph (edge) could either be the edge of weight 4 or the one of weight 6.

What are my potential and weight for this graph here? First, since E� represents a blos-
som, the value of HE� should just be

HE� := H((E� ) ,

the total potential of the set of vertices in the shrunken blossom. Since we started with
H̄( = 0 for all ( ∈ O, we can just initialize this to 0. Not too bad.

The bigger problem is the edge weight. In the unweighted case, we don’t differentiate
between the edges, but now since they have different weights, we want to keep both of
them in the shrunken graph. Thus, we introduce parallel edges. Note this implies that
we will be working with a multi-graph.

Figure 7.9: Introducing parallel edges to retain information on both edges.
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Another observation is that we never work with the edge weight directly in the algorithm.
Instead, we work with the CS conditions, i.e., the 24 is used to calculate 2̄DE, which tells us
how much more we can increase HE or HD and still be feasible for the dual LP. Recall

2̄DE := 2DE − HD − HE −
∑

(∈O:DE∈X(()
H( ≥ 0.

Consider the edge DE in the original graph. We want to reflect the fact that we won’t
be modifying HD after shrinking, and since 2̄DE must remain positive, the upper bound of
HE +

∑
(∈O:DE∈X(() becomes 6 − 2.5 = 3.5. In general, we update the edge weight to be

2′E2E := 2DE − HD.

Figure 7.10: Assigning new costs to the edges.

This concludes the shrinking part: we know how to shrink, and we know the potentials
and weights for the resulting graph.

Continue the Perfect Matching Algorithm

Continue the perfect matching algorithm, find E� as the exposed vertex, cannot extend it
because it’s in orange, so we increase HE� here to 0.5. The bottom edge is now in �=.

Figure 7.11: Assigning new costs to the edges.

Build a perfect matching from this. As a remark, HE� = 0.5 means the blossom has a
potential of 0.5.

Figure 7.12: Find a perfect matching in the resulting graph.
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Reconstruct the perfect matching.

Figure 7.13: Reconstruct the perfect matching.

Observe this matching satisfies ★ and ★★. First, all edges in the matching are in my �=

(the special edge here is the right one: the total potential is 2 + 1.5 + 0.5 = 4 where the 0.5
comes from the blossom), and we use exactly one edge in the right triangle which is the
only ( ∈ O such that H( > 0.

Time to formalize this.

Algorithm for Shrinking

We say �′, 2′ is derived from �, 2 by shrinking a blossom � if �′, 2′ are defined as:

• + (�′) := (+ (�) \�) ∪ {E�};
• ∀DE ∈ � :

– If D, E ∉ + (�), add DE to � (�′), and let 2′DE = 2DE.
– If D ∈ + (�), E ∉ + (�), add E�E to � (�′), with cost 2′E�E := 2DE − HD.

Algorithm for Finding Perfect Matchings

Let’s start with what we did for bipartite graphs:

1. Start with a feasible dual solution H̄ such that H̄( = 0 for all ( ∈ O.
2. If found a perfect matching " in �=, we are done.
3. Otherwise, look at the frustrated tree ) in �= and update H̄ so that more vertices can

be added to ) . If update allows to find a blossom � with � (�) ⊆ �=, shrink it, and
set HE� = 0.

The following proposition formalizes the idea.
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Proposition 7.2. Let H̄ be feasible for �′
"
(�) with H̄( = 0 for all ( ∈ O(�). Let

�′, 2′ be derived from �, 2 by shrinking blossom � with � (�) ⊆ �=(�, H̄). Let "′

be a perfect matching of �′ and H′ feasible for �′
"
(�′), where "′, H′ satisfy ★,★★,

and H′E� ≥ 0.a Extend "′ to a perfect matching "̂ of � and define Ĥ as

• ĤE = H̄E for all E ∈ + (�);b

• ĤE = H
′
E, for all E ∈ + (�′) \ E� ;c

• Ĥ((E� ) = H
′
E�

.d

• Ĥ((�) = H
′
�

, for all � ∈ O(�′);
• Ĥ( = 0, for all other ( ∈ O;

Then Ĥ is a feasible solution for �′
"
(�) and "̂ , Ĥ satisfy both ★ and ★★.

aNote the H′E� ≥ 0 is an extra condition here. The H variables didn’t have sign constraints
in the dual LP. But we need this constraint here to make the proposition work. A deeper
reason is that HE� corresponds to a blossom, so when we un-shrink the blossom, this is in
fact one of the H( variables which has to be non-negative. See the bottom of this page for
more info.

bThe potentials for vertices in � remain the same.
cH′E here is the potential of E in the shrunken graph. When we reconstruct the perfect

matching, we just keep it this way for all E ∈ + (� ′) \ E� .
dThe potential of the blossom (more precisely, the vertex set of the blossom) is equal to

the potential of the pseudo-vertex in the shrunken graph.

Proof. Omitted. �

Another Bound on Potential

Figure 7.14: New bound Y3.

In the current iteration of the algorithm, we get Y1 = 1
and Y2 = 0.75, so we pick Y = 0.75 and update the
potentials. Note that HE� corresponds to H((E� ) , i.e., it
corresponds to a blossom instead of a variable. For H
to be a feasible dual solution, H( must be non-negative
for all ( ∈ O. Our update here makes HE� negative, vi-
olating this constraint. (Remark: Observe we require
H′E� ≥ 0 in the proposition above. Here we revealed
the reason.) To address this, we introduce Y3 given by

Y3 := min{H̄D : D ∈ �()) and D is a pseudonode}.

With this change, Y = Y3 = 0.
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Un-shrink blossoms when stuck

Figure 7.15: Got stuck. Time to expand �. Left: original graph. Right: current derived graph.

Now we are stuck. Since HE� = 0, Y = Y3 = 0 from now on, so we can no longer make
progress in this derived graph. Let’s try to expand the blossom �. Recall we don’t want
to expand the blossom every time we found an augmenting path because we don’t want
to keep track of all ( ∈ Owith H( > 0. But now since HE� = 0, expanding � back wouldn’t
cause any problems.

A formal description of expanding the blossom is as follows. Suppose we are given a
matching "′ consisting of equality edges of a derived graph �′, an "′-alternating tree )
consists of equality edges, and an odd pseudonode E� of �′ such that HE� = 0.

Let 5 , 6 be the edges of ) incident with E, let � be the circuit that was shrunk to form E� ,
let D,F be the ends of 5 , 6 in + (�), and let % be the even-length path in � joining D to F.
Replace �′ by the graph obtained by expanding �. Replace "′ by the matching obtained
by extending "′ to a matching of �′. Replace ) by the tree having edge-set � ()) ∪ � (%).
For each edge BC with B ∈ + (�) and C ∉ + (�), replace 2′BC by 2′BC + HB.1 The expanded graph
is shown below.

Figure 7.16: Expand the blossom.

1This last step corresponds to "restoring" the cost of the edges. See Figure 7.11 for more info on how we
arrived at 2′BC in the first place.
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Algorithm

Algorithm 10: Algorithm for Finding a Min Weight Perfect Matching in General Graphs

input: : � = (+ , �)
output: : A perfect matching " of � or None if � does not have a perfect matching
main:

1: Let H be a feasible dual solution, "′ be a matching of �=, and �′← �.
2: if "′ is a perfect matching of � then
3: return "′. Done.
4: Initialize ) ← (+ ()) = {A}, � ()) = ∅), where A is an "-exposed vertex in �
5: �← ∅, �← {A}, the odd-distanced and even-distanced vertices, respectively
6: while True do

� Augmenting path found. Augment "′ and continue working in the derived graph.
7: case ∃4 ∈ �= whose ends in �′ are E ∈ �()) and an "′ exposed node F ∉ + ())
8: Use EF to augment "′

9: if there is no "′-exposed node in �′ then
10: Extend "′ to a perfect matching " of � and stop
11: else
12: Replace ) by ({A′},∅) where A is "′-exposed

� Extend the tree. Same as before.
13: case ∃4 ∈ �= whose ends in �′ are E ∈ �()) and an "′-covered node F ∉ + ())
14: Use E< to extend )

� Found edge 4 ∈ �= that creates a blossom. Shrink and work in the derived graph.
15: case ∃4 ∈ �= whose ends in �′ are E,F ∈ �())
16: Use EF to shrink and update "′,) and 2′

� Stuck. Expand the blossom and work in the expanded graph.
17: case ∃E� ∈ �()) pseudonode with HE� = 0
18: Expand E� and update "′,) and 2′

� Check if we’ve reached a frustrated tree. If not, update potentials and continue.
19: case None of the above
20: if every 4 ∈ � incident in �′ with E ∈ �()) has its other end in �()) and �())

contains no pseudonode then
21: Stop, ) is a frustrated tree and �()) has no perfect matching
22: else Change H and continue our algorithm
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Correctness can be shown by arguing each step preserves " ⊆ �= (and use CS condi-
tions). Omitted. To show polynomial time complexity, we bound the number of steps
while keeping the same matching. The key remark is that shrink and unshrink may lead
to infinite loop (as they may undo each other). To address this, observe every unshrink
is done on a pseudonode in �()). Every time we shrink, the newly-created pseudonode
lands in �()). The only way for a pseudonode to go from �()) to �()) is that we modified
matching. Therefore, we will not be stuck in an infinite loop.

One more thing to note: Every time we do a change in H, the next step will always be
either: shrink, unshrink, extend the tree, or augment the matching.

This concludes the minimum weight perfect matching algorithm.

85



7.4. MAXIMUM WEIGHT MATCHING

7.4 Maximum Weight Matching.

Maximum Weight Perfect Matching

Suppose we are given a minimum weight perfect matching algorithm as a black box. Re-
ducing the maximum weight perfect matching problem to the minimum weight perfect
matching problem is trivial: just multiple the weights by −1.

Maximum Weight Matching

A more interesting problem is the maximum weight matching problem, where the goal
is to find a matching " (not necessarily perfect) maximizing 2("). There are direct algo-
rithms to solve this, but we can also reduce this to maximum weight perfect matching.

Let � = (+ , �) and 2 ∈ R� . Let �′ be a copy of � with exactly the same edge costs.

Let �̄ be a graph with vertices + (�) ∪+ (�′), edges � (�) ∪ � (�′) ∪ {EE′ : E ∈ + (�)}where
these new edges have costs 0. Note that �̄ always has a perfect matching (by just using
the new edges).

Proposition 7.3. Let "̄ be a maximum weight perfect matching in �̄. Then " =

"̄ ∩ � (�) is a maximum weight matching in �.

Proof. It is clear that " is a matching of �. Let "∗ be a maximum weight matching of �.
We can copy "∗ in �′ and take the edges EE′ for "∗-exposed vertices E in � to construct
a perfect matching in �̄. This matching has a weight of 2 · 2("∗).

Since the edges in X(+ (�)) all have weight 0, the edges within � (�) and � (�′) contribute
to all the weights. In particular, we must have 2(") ≥ 2("̄ ∩ � (�′)) or else "̄ was not
maximum (take a copy of "̄ ∩ � (�′) in � instead).

It follows that 2 · 2(") ≥ 2("̄) ≥ 2 · 2("∗) =⇒ 2(") ≥ 2("∗). �

LP Formulation for Maximum Weight Matching

(%") := max
∑
4∈� 24G4

B.C. G(X(E)) = 1 ∀E ∈ +
G(� (()) ≤ |( | − 1 ∀( ∈ O
G ≥ 0
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This chapter is closely related to weighted matchings. Make sure to read that chapter first.

8.1 Motivation.

Euler Tour and Postman Tour

Given a connected graph � = (+ , �) (potentially having parallel edges), an Euler tour is a
closed walk visiting every edge exactly once. Note a connected graph � has a Euler tour
iff every vertex of � has an even degree.

A postman tour is a closed walk traversing every edge at least once. Thus, every Euler
tour is a postman tour.

Problem. Find a minimum cost postman tour wrt 2 ∈ R�
+ .

It is clear that if� has an Euler tour ) , then ) must be an optimal solution to this problem.
Thus, the interesting case is when � is not Eulerian. Let ) ⊆ + be the set of vertices with
odd degrees. By the hand-shaking lemma, each graph contains an even number of odd
vertices, i.e., |) | is even or |) | mod 2 ≡ 0.

Consider a postman tour and say it visits each edge 1 + G(4) times, where G(4) ∈ Z≥0.
Then, it is easy to see that the multigraph induced by placing 1 + G4 copies of 4 is in fact
Eulerian. Conversely, if G ∈ Z�

≥0 and the multigraph is Eulerian, then it induces a postman
tour of cost

∑
4∈� 24 (1 + G4). In the following example, G ∈ Z�

≥0 is labeled red.1

Figure 8.1: � and �G .

This motivates the following LP formulation.

1Note this G does not give us a postman tour because �G does not have a Euler tour as the left vertex has
an odd degree. A feasible G is given by G4 = 1 for the middle edges and 0 otherwise.
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Linear Program Formulation

Let G ∈ Z�
≥0. Let �G be obtained by making 1 + G4 copies of 4 (all with cost 24). The idea

is to find G such that �G has an Euler tour. Equivalently, we want every vertex E in �G to
have an even degree (the condition of having a Euler tour), i.e.,

∀E ∈ + :
∑
4∈X(E)

(1 + G4) ≡ 0 mod 2.

This is equivalent to saying G(X(E)) ≡ |X(E) | mod 2 as∑
4∈X(E)

(1 + G4) =
∑
4∈X(E)

1 +
∑
4∈X(E)

G4 = |X(E) | + G(X(E)).

Observe that if G4 ≥ 2, then reducing G4 by 2 maintains feasibility. Combined with the
assumption that 24 ≥ 0, we may assume G4 ∈ {0, 1} for all 4 ∈ � . Thus, we get:

min
∑
4∈� 24G4

B.C. G(X(E)) ≡ |X(E) | mod 2 ∀E ∈ +
G4 ∈ {0, 1} ∀4 ∈ �

To be more precise, we are looking for some set of edges � ⊆ � such that

|� ∩ X(E) | ≡ |X(E) | mod 2.

Such sets � (the ones that are feasible for this problem) are called postman sets.

Remark (More intuition). The basic idea is to add some parallel edges so that each
E ∈ + has an even degree in �G . So how many edges can we add for each E? Since
we want E to end up with an even degree in �G , if E is an odd vertex in �, we would
add an odd number of edges incident to E; if E is an even vertex in �, we would add
an even number of edges incident to E.

Recall G4 counts the number of additional copies of 4 in �G , which corresponds to
how many extra times our walk G uses 4. Thus, when |X(E) | is odd and we add an
odd number of copies for each 4 ∈ |X(E) |, the total number of extra copies of edges in
|X(E) | must also be odd, i.e., G(X(E)) ≡ |X(E) | mod 2. The same goes for the vertices
of even degrees.

Also, if 2 ≥ 0, then we don’t want to add any parallel edges incident to E if E is an
even degree in �, and we want to add exactly one parallel edge incident to E if E is
an odd vertex in �; adding more edges yields sub-optimal solutions. We therefore
have G4 ∈ {0, 1}.
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8.2 T-Joins.

We can solve the min-cost postman tour problem by finding an optimal )-join.

Definition 8.1. Let ) ⊆ + with |) | even. A set of edges � ⊆ � is a )-join if

∀E ∈ + : |� ∩ X(E) | ≡ |) ∩ {E}| mod 2.

In other words, � ⊆ � is a )-join when ) contains the odd vertices in (+ , �).

Remark (Remark on the condition). First consider the case that

|) ∩ {E}| mod 2 ≡ 1 ≡ |� ∩ X(E) | mod 2.

This means that E ∈ ) and E is an odd vertex in (+ , �). Now consider

|) ∩ {E}| mod 2 ≡ 0 ≡ |� ∩ X(E) | mod 2.

Since |) ∩ {E}| ≤ 1, we have |) ∩ {E}| = 0. Thus, when E has an even degree in
(+ , �), it is not in ) . It follows that ) is the set of vertices with odd degree in (+ , �).

Remark (Some more intuition). Let � be an optimal solution to the min-cost
postman tour problem on graph �. By our previous analysis, we know that each
edge in � is repeated 0 or 1 time in �G depending on the parity of (the degree of) E.
The graph (+ , �) consists of only these additional edges.

If E is an odd vertex in �, since it becomes an even vertex in �G , we must have
added in total an odd amount of edges to |X(E) |, i.e., |� ∩ X(E) | mod 2 ≡ 1. If E is
an even vertex in �, since it remains even in �G , we must have added in total an
even amount of edges to |X(E) |, i.e., |� ∩ X(E) | mod 2 ≡ 0. By definition of a )-join,
E has an odd degree in (+ , �) iff E ∈ ) and that � is a )-join.
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8.3 Minimum-Cost )-Join.

The Minimum Cost )-Join Problem

Problem. Given 2 ∈ R� , � = (+ , �), ) ⊆ + with |) | even, find a T-join of �
minimizing 2(�) :=

∑
4∈� 24.a

aWe assume � is connected and 2 ≥ 0 in the postman problem. Neither is required for
the generic min-cost T-join problem.

Besides postman sets, )-joins are also useful in the following settings.

Remark (Even Sets/Negative Cycles). Set ) = ∅, i.e., we want every vertex in
� to have an even degree. Then a )-join is exactly an even set, i.e., a set � ⊆ � such
that every vertex in (+ , �) has an even degree. A set is even iff it can be decomposed
into edge-sets of edge-disjoint circuits. The problem is trivial (pick ∅) if 2 ≥ 0.a It
follows that we can find a negative cycles or determine that none exists by solving
an optimal )-join problem.

aBecause of the decomposability property mentioned above, ∅ is optimal iff � has no
negative cycles.

Remark (Shortest Paths). Set ) = {A, B}, i.e., only A and B can have odd degree.
The solution to this problem will be the sum of an A, B-path plus a bunch of cycles. In
particular, when 2 ≥ 0, the optimal does not contain any cycle, so it is a (shortest)
A, B-path.

Min-Cost )-Join with Non-Negative Weights

Let us first focus on the case where 2 ≥ 0. In this case, there is always an optimal )-join
that is minimal (does not contain any )-join as a strict subset, easy argument with 2 ≥ 0).
So what do minimal )-joins look like? Intuitively, it is a union of disjoint paths.

Figure 8.2: Example: A minimal )-join.

We prove the following result first.
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Proposition 8.2. Let �′ be a ) ′-join of �. Then � is a )-join of � iff �4�′ is a
()4) ′)-join of �.

Proof. =⇒: Let � = �4�′ and E ∈ + . If E ∈ ) and E ∉ ) ′, then E ∈ ()4) ′), |� ∩ X(E) | is
odd, and |�′ ∩ X(E) | is even. Then |� ∩ X(E) | + |�′ ∩ X(E) | is odd (parity argument). But
�4�′ removes an even number of edges (removing the edges in both ) and ) ′, i.e., the
double-counted ones), which implies |� ∩ X(E) | is odd.

Figure 8.3: The top three edges are double-counted.

The exact same argument works for all other cases. It follows that |� ∩ X(E) | is odd ⇐⇒
E ∈ )4) ′. Note this is precisely the definition of a ()4) ′)-join and thus we are done.

⇐=: We utilize the associativity and commutativity of the symmetric difference operator.
Specifically, let us apply the =⇒ argument with �′ := �′,) ′ := ) , � := �4�′, and ) := )4) ′.
Then �′4�4�′ = � is a )4)4) ′ = )-join. �

Proposition 8.3. � is a minimal )-join iff it is the union of the edges of |) |/2 edge-
disjoint paths, joining pairs of vertices in ) (all distinct).

Proof. ⇐= is trivial: we only have this many vertices to use.

=⇒: It suffices to show that � contains such edge set.

Let D ∈ ) and  be the connected component of (+ , �) containing D. There is necessarily
some E ∈ ) \ D such that E ∈  since vertices in ) have odd degree in (+ , �).

Let % be a D, E-path in (+ , �). Consider �′ := � \ � (%). If we show �′ is a ) ′-join where
) ′ := ) \ {D, E}, then by induction (same problem, smaller graph) we are done.

Observe �′4� = � (%) is a {D, E}-join as the only odd degree vertices of (+ , � (%)) are the
endpoints D, E. Thus an application of the next proposition yields the result. �
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Solving Min-Cost )-Joins with Non-Negative Weights

Proposition 8.4. Suppose 2 ≥ 0. Then there exists a min-cost T-join that is the
union of |) |/2 edge-disjoint shortest paths joining vertices of ) in pairs (all distinct).

Proof. Let � be a minimal min-cost )-join. Let % be a D, E-path with � (%) ⊆ �; D, E ∈ ) .
Suppose % is not the shortest, i.e., there exists a D, E-path %′ with 2(� (%′)) < 2(� (%)). By
previous remarks/examples, � (%) and � (%′) are {D, E}-joins. Then �′ := �4� (%)4� (%′) is
a )4X{D, E}4X{D, E} = )-join with cost

2(�′) = 2(� \ � (%)) + 2(� (%′)) − 22((� \ � (%)) ∩ � (%′))
≤ 2(�) + 2(� (%′)) − 2(� (%)) < 2(�).

Contradiction. �

Lemma 8.5. Let �′ be the complete graph with + (�) and 3 (D, E) be the cost of a
shortest D, E-path. A min-cost T-join when 2 ≥ 0 can be found by computing a
minimum weight perfect matching in �′ with weights 2DE = 3 (D, E).

Proof. Let " be the minimum weight perfect matching in �′. Let {D8, E8} |) |/28=1 be the edges
in " . Put %8 as the shortest path in � for 1 ≤ 8 ≤ |) |/2. Then � (%1)4 · · · 4� (%|) |/2) is a )-
join of cost ≤ ∑|) |/2

8=1 3 (D8, E8). By the previous proposition, any minimal )-join corresponds
to a matching in �′ and has cost at least that sum. Optimality follows. �

Min-Cost T-Join for Arbitrary Costs

Let # = {4 ∈ � : 24 < 0}. Let ) ′ := {E ∈ + : E has odd degree in (+ , #)}. Then # is a
) ′-join. By previous results, we know � is a )-join iff �4# is a ()4) ′)-join. Observe2

2(�) = 2(� \ #) + 2(� ∩ #)

=

[
2(� \ #) − 2(# \ �)

]
+

[
2(# \ �) + 2(� ∩ #)

]
=

∑
4∈�4#

|24 | + 2(#)

Since 2(#) is a constant, in order to minimize 2(�), it suffices to find a min cost ()4) ′)-join
wrt costs 2′ := |2 | ∈ R� . This motivates the following algorithm:

1. Find a min-cost ()4) ′)-join �∗ wrt 2′ := |2 | ∈ R� .
2. Output the min-cost )-join �∗4# .

2Every edge in # \ � has a negative cost, so 2(� \ #) − 2(# \ �) is essentially summing up the absolute
values of the costs of edges in �4# .
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8.4 LP Formulations for Min-Cost )-Joins.

In this section, we solve the min-cost )-join problem with linear programmming.

)-Odd Sets and )-Cuts

Definition 8.6. A set ( ⊆ + is )-odd if |( ∩) | is odd. If ( is )-odd, then X(()
is called a )-cut.

To see how this definition is related to )-joins, let ( ⊆ + be )-odd and � be a )-join. By
definition of a )-join, every E ∈ (( ∩ )) has an odd degree in (+ , �). If � ∩ X(() = ∅, then
the subgraph of (+ , �) induced by ( (that is, the graph obtained by removing vertices in
+ \ ( and any edge using these vertices) has an odd number of odd degree vertices, which
is impossible. Thus, any )-join must cross this )-cut at least once, i.e.,

|� ∩ X(() | ≥ 1.

Let O be the set of )-odd sets. We can formulate an LP based on the observation above:

(%) := min G)2

B.C. G(X(B)) ≥ 1 ∀( ∈ O
G ≥ 0.

Proof of Correctness for (%)

Theorem 8.7. Let � = (+ , �), ) ⊆ + with even cardinality, and 2 ∈ R�
≥0. Then

the cost of a min-cost )-join wrt 2 is equal to the optimal value of (%).

Proof. Let �∗ be a optimal )-join. We have argued that the algorithm gives us a feasible
solution to the LP, so 2(�∗) ≥ I∗ where I∗ is the optimal value of the LP.

Consider the primal-dual pair below:

(%) := min
∑
4∈� 24G4

B.C. G(X(()) ≥ 1 ∀( ∈ O
G ≥ 0

(�) := max
∑
(∈OU(

B.C.
∑
(∈O:4∈X(() U( ≤ 24 ∀4 ∈ �

U ≥ 0
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Case 1: ) = + . (Note this implies that |+ | is even as we cannot have an odd number of
odd vertices in a graph.) Let �′ = () = + , �′) be the complete graph used to get a perfect
matching with costs 3 that solves the min-cost )-join problem. As before, define 3

O" := {� ⊆ + : |�| ≥ 3, |�| odd}.

Here’s the primal-dual pair for the minimum weight perfect matching:

(%") := min
∑
DE∈� ′ 3 (D, E)FDE

B.C. F(X(E)) = 1 ∀E ∈ +
F(X(�)) ≥ 1 ∀� ∈ O"
F ≥ 0

(�") := max
∑
E∈+ VE +

∑
�∈O" W�

B.C. VD + VE +
∑
�∈O" :DE∈X(�) W� ≤ 3 (D, E) ∀D, E ∈ �′

W� ≥ 0

We’ve shown that 2(�∗) = $%)%" = $%)�" (Lemma 8.5). Let us transform solutions to
(�") to solutions to (�). The idea is as follows. Note that � ⊆ �′ and 3 (D, E) ≤ 2DE for
all DE ∈ � . From an optimal solution to (�"), we can build a solution to (�) of the same
cost and vice versa.

The only caveat is that some of the V variables can be negative. However, it can be shown
that they are in fact non-negative. We omit the proof.

Case 2: General ) . Let � = (+ , �), ) ⊆ + , |) | even, 2 ∈ R�
≥0. We define �̂ to have vertex

set +̂ := + ∪ {Ê : E ∈ + \ )} and edge set �̂ := � ∪ {EÊ : E ∈ + \ )}, where 2(EÊ) = 0 for
all E ∈ + \) . Let )̂ = +̂ and �̂ be a min-cost )̂-join of �̂. We claim that we can construct a
min-cost )-join � from �̂.

Figure 8.4: Construction of �̂.

3Check the chapter on weighted matchings if you find this unfamiliar.
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For every Ê that is newly added, there is exactly one edge EÊ incident to Ê in �̂. Since �̂ is
a min-cost )̂-join of �̂, it is a union of |)̂ |/2 edge-disjoint paths joining pairs of vertices in
)̂ = +̂ . Every vertex in +̂ is being joined by a path in �̂ to another vertex in +̂ . In particular,
EÊ must belong to the path in �̂ with Ê as an endpoint. Thus, EÊ ∈ �̂ for every E ∈ + \) .

We define � := �̂ \ {EÊ : E ∈ + \ )}. Clearly, � ⊆ � . For every D ∈ ) , no edge incident to
D are removed from �̂. Thus, |X� (D) ∩ � | = |X�̂ (D) ∩ �̂ |, which is odd. For every E ∈ + \ ) ,
exactly one edge EÊ is incident to E is removed from �̂. Thus, |X� (E) ∩ � | = |X�̂ (E) ∩ �̂ | − 1,
which is even. Hence, � is a )-join. Since only edges of 0 costs are removed from �̂, we
have 2(�) = 2(�̂).

Now we have a )-join, let us prove it’s minimal. Suppose � is not a min-cost )-join. Let
�′ be a )-join with 2(�′) < 2(�). Let �̂′ := �′ ∪ {EÊ : E ∈ + \ )}. For every D ∈ ) , no
edge incident to D are added to �̂′, so |X�̂ (D) ∩ �̂′| = |X� (D) ∩ �′|, which is odd. For every
E ∈ + \) , EÊ is the only edge added to �̂′ incident to E or Ê, so |X�̂ (E) ∩ �̂′| = X� (E) ∩ �′| + 1,
which is odd. We also have |X�̂ (Ê) ∩ �̂′| = 1, which is odd. It follows that �̂′ is a )̂-join.
However, we only added edges of 0 costs to �̂′, we get

2(�̂′) = 2(�′) < 2(�) = 2(�̂),

which contradicts the fact that �̂ is a min-cost )̂-join. It follows that � must be a min-cost
)-join.

This concludes the proof. �
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9 FLOWS

9.1 Max-Flow Min-Cut.

Maximum Flow Problem

Definition 9.1. Given a digraph � = (+ , �) and A, B ∈ + (often referred to as
the source and the sink), we say G ∈ R� is an A, B-flow if the following holds
(often referred to as the flow conservation constraint):

∀E ∈ + \ {A, B} : G(X−(E)) − G(X+(E)) = 0,

where

• X−(() := {DE ∈ � : D ∉ (, E ∈ (} is the set of arcs entering (, and
• X+(() := {DE ∈ � : D ∈ (, E ∉ (} is the set of arcs leaving (.

We call their difference 5G (E) := G(X−(E)) − G(X+(E)) the net flow into E.

Definition 9.2. Given lower and upper bounds (or capacities) ℓ ≤ D ∈ R�,
an A, B-flow G is feasible if

∀0 ∈ � : ℓ0 ≤ G0 ≤ D0.

The value of a feasible A, B-flow G is given by 5G (B), the total flow into the sink.

For simplicity, assume the lower bound of the flow is 0 and there is no arc entering the
source or leaving the sink, i.e., ℓ = ®0 and X−(A) = X+(B) = ∅.

Problem.

• Maximum Flow: Given � = (+ , �), source and sink A, B ∈ + , and ℓ, D ∈ R�,
find a feasible A, B-flow G ∈ R� of maximum value.

• Maximum Integral Flow: Given � = (+ , �), source and sink A, B ∈ + , and
ℓ, D ∈ R�, find a feasible A, B-flow G ∈ Z� of maximum value.

Basic Results

Definition 9.3. For ' ⊆ + , we call the set of arcs leaving ', X+('), a (directed)
cut. Moreover, if A ∈ ' and B ∉ ', we say that X+(') is an A, B-cut.
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Proposition 9.4. If G is a feasible A , B-flow and X+(') is an A, B-cut, then

G(X+(')) − G(X−(')) = 5G (B).

Proof. Since G is feasible, 5G (E) = G(X+(E)) − G(X−(E)) = 0 for all + \ {A , B}. Then

G(X+(')) − G(X−(')) =
∑
E∈'

[
G(X+(E)) − G(X−(E))

]
= 5G (B) +

∑
E∈'\{B}

[
G(X+(E)) − G(X−(E))

]
= 5G (B).

�

Corollary 9.5. If G is a feasible A, B-flow and X+(') is any A, B-cut, then

5G (B) ≤ D(X+(')).

In words, the total in-flow of B cannot exceed the out-flow of any A , B-cut.

Proof. Observe 5G (B) = G(X+(')) − G(X−(')) ≤ G(X+(')) ≤ D(X+(')). �

Augmenting Paths

Suppose % is a A, B-path in � that uses some arcs in "forward" direction, some in "back-
ward" direction (i.e., % is not a real dipath).

Definition 9.6. We say that % is G-incrementing if for each edge 0 ∈ � (%),
• G0 < D0 if 0 appears in forward direction, and
• G0 > 0 if 0 appears in backward direction.

% is G-augmenting if it is an G-incrementing A , B-path.

Below is an G-augmenting path. Observe it satisfies the condition such that all forward arcs
are not at capacity and all backward arcs have a positive flow.

Figure 9.1: The highlighted path is an G-augmenting path. Arcs are labelled with (flow, capacity)
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The key observation is that, if there exists an G-augmenting path, then our current flow
G is NOT a maximum flow, because we can increase G0 by Y for all forward arcs and
decrease G0 by Y for all backward arcs, which increases 5G (B) by Y. For example, we can
"push" one extra unit of flow from A to B via this path:

Figure 9.2: Augmenting the flow.

Max-Flow Min-Cut

Theorem 9.7 (Max-Flow Min-Cut). If there exists a max flow, then

max{ 5G (B) : G is a feasible A, B-flow} = min{D(X+(')) : X+(') is an A , B-cut}.

In words, there exists a cut whose out-flow (cut value) equals the max flow into B.

Proof. Let G be a max A , B-flow and ' be the set of vertices reachable by an G-incrementing
path starting at A. Note that A ∈ ' and B ∉ ', so X+(') is an A, B-cut. For all EF ∈ X+('), we
must have GEF = DEF, as otherwise we can push flow to F which means F ∈ '. Likewise,
any EF ∈ X−(') must have GEF = 0 or we could decrease the flow on AF which makes
E ∈ '. It follows that 5G (B) = G(X+(')) − G(X−(')) = D(X+(')) − 0 = D(X+(')). �

Corollary 9.8. A feasible A, B-flow G is maximum iff there is no G-augmenting path.

Proof. Easy. Omitted.

Theorem 9.9. If D ∈ Z�
+ and there is a maximum flow, then there is an integral

maximum flow.

Proof. First remark that the set of integral flows are non-empty and the flow values of
integral flows are bounded from above. Thus, a maximum integral flow exists. Let G be a
maximum integral flow but not a maximum flow. Then there is a G-augmenting A, B-path.
But the residual capacities are integral and thus at least 1. This contradicts the assumption
that G was a maximum integral flow. �
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9.2 Maximum Flow Algorithms: Ford-Fulkerson and Edmonds-Karp.

Ford-Fulkerson

The idea is to construct an auxiliary graph �G = (+ , �G), where

• EF ∈ �G if EF ∈ � and GEF < DEF, and
• EF ∈ �G if FE ∈ � and GFE > 0.

This reduces the problem of finding an maximum flow in � to finding A , B-dipaths in �G .

Figure 9.3: Digraph � with flow G (left) and the auxiliary graph �G (right).

Consider the middle arc of �. It has a capacity of 3 and we are using 2 units. Thus, we
have the option to decrease at most 2 units of flow and to send at most 1 extra unit of flow
along this arc. These two options correspond to the two middle arcs in �G .

Observe there exists an G-augmenting path iff there exists an A, B-dipath in �G . Moreover,
if % is such a path, then 5G (B) can be increased by the smallest residual capacity in %. An
augmenting path can be found in$ (<) = $ ( |�|) time. But how many times do we need to
augment a flow before reaching a maximum one? Recall from CO-351, if we don’t choose
our strategy carefully, the following graph could require 2" iterations.

Figure 9.4: Naive way of augmenting the flow.

Remark. Will FF always terminate? If 2 is integral, then at each step we increase
our flow by at least 1, so it terminates by induction. If 2 is rational, we can multiply
2 by the GCD of all denominators and make it integral. If 2 is irrational, then it is
possible that it does not terminate. The runtime for FF is pseudo-polynomial, i.e.,
it is a polynomial in the numeric values of your input.
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Edmonds-Karp

Edmonds-Karp is an implementation of Ford-Fulkerson which has a guaranteed$ ( |+ | |�2 |)
time complexity. The idea is simple: always choose the shortest G-augmenting path in �G .

Theorem 9.10 (Edmonds-Karp). If % is chosen to be the shortest (wrt to number of
arcs) A, B-dipath in the auxiliary graph �G , then there are at most =< augmentations.

Proof. Let 3G (E,F) be the length of shortest E,F-path in �G , % = E0, . . . , E: be the shortest
A, B-path in �G , and G′ be the feasible A, B-flow obtained after augmenting G with %. We
break the proofs into the following two lemmas. First, the length of the shortest A, E-path
and the length of the shortest E, B-path cannot go down after an augmentation.

Claim. We have ∀E ∈ + : 3G ′ (A, E) ≥ 3G (A, E), 3G ′ (E, B) ≥ 3G (E, B). a

aIf no D, E-path exists in �G , we set 3G (D, E) = ∞.

Proof (Claim). Suppose ∃E such that 3G ′ (A, E) < 3G (A, E). Choose such E with 3G ′ (A, E) small-
est possible (i.e., every F with a shorter distance from A satisfies 3G ′ (A,F) ≥ 3G (A ,F)). Let
%′ be the A, E-path of �G ′ with length 3G ′ (A, E). This path has at least 1 arc as otherwise
E = A and 3G ′ (A, A) = 3G (A, A) = 0. Let F be the vertex immediately before E in %′. Then

3G (A, E) > 3G ′ (A , E) assumption

= 3G ′ (A,F) + 1 definition of F

≥ 3G (A,F) + 1 choice of E

Suppose FE exists in the previous residual graph �G . Then 3G (A, E) ≤ 3G (A,F) + 1 because
we went from A to F and then F to E. This contradicts what we just proved. Therefore, we
must have FE ∉ �(�G). But FE ∈ %′, so FE ∈ �(�G ′), which implies FE or EF is an arc in
% (shortest A, B-path in �G) as these are the arcs with flows changed by the augmentation.

Since � (%) ⊆ �(�G) and FE ∉ �(�G), we have EF ∈ � (%), so E = E8−1 and F = E8 for some
8 = 1, . . . , : . Combined with 3G (A , E) ≥ 3G (A,F) + 1, we have 3G (A, E8−1) ≥ 3G (A, E8) + 1. But
this cannot happen because 3G (A, E8) is the length of the shortest A, E8-path that uses E8−1 as
an intermediate node. In particular, since % visits E then F, we have 3G (A,F) = 3G (A,F) − 1.

The second part can be shown with an analogous proof. �

The claim above shows that the algorithm works in ≤ = − 1 stages (in each stage 3G (A, B)
remains constant). We now show that in each stage we do a limited number of operations.
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Claim. Define �̃G := {FE ∈ � : FE or EF is in a shortest G-augmentation path}.
If 3G ′ (A , B) = 3G (A, B), then �̃G ′ ( �̃G .

In words, if the distance from A to B didn’t change, then the set of arcs �̃G ′ is a strict subset
of �̃G . Consider the set of red arcs below. They correspond to the orange G-augmenting
path on the right. Thus, �̃G consists of these three arcs. We will show that the number of
arcs in this set keeps decreasing as we augment the flow G.

Proof (Claim). Let : = 3G (A, B) and fix EF ∈ �̃G . If EF is in the shortest A, B-path in �G ′, then

3G ′ (A, E) = 8 − 1, 3G ′ (F, B) = : − 8 =⇒ 3G ′ (A, E) + 3G ′ (F, B) = : − 1.

By the previous claim, 3G (A, E) + 3G (F, B) ≤ : − 1 because 3 cannot decrease after an aug-
mentation. Suppose to the contrary that EF ∉ �̃G , which means neither EF nor FE were
in the shortest G-augmenting path, so the flow on EF remains the same, i.e, GEF = G′EF.
This implies EF ∈ �G . But then there exists an A, B-path of length : , contradiction. Thus,
EF ∈ �̃G and �̃G ′ ⊆ �̃G . A similar argument shows that FE is in a shortest A , B-path in �G ′.

We now argue for strict containment. Let % be the path used to change G to G′. We know
there exists EF ∈ � such that EF ∈ % ∧ G′EF = DEF or FE ∈ % ∧ G′DE = 0 (the two possible
modifications of the flow). We show this particular arc EF is no longer in �̃G ′.

Focus on Case 1 first. Since EF is on the shortest path, we have 3G (A, E) = 8 − 1, 3G (F, B) =
: − 8, EF ∈ �̃G , and EF ∉ �G ′. An G′-augmenting path cannot use FE, so if EF ∈ �̃G ′, there
exists an G′-augmenting path using FE. But then

3G ′ (A,F) + 3G ′ (E, B) ≥ 3G (A,F) + 3G (E, B) = (8 − 1 + 1) + (: − 8 + 1) = : + 1

(the new A,F-path use E in the middle). But the length of the shortest A, B-dipath in �G ′

using FE is not a shortest A, B-path. Thus, EF ∉ �̃G ′. The second case is similar. �

Going back to the main proof. The second claim shows that each stage has ≤ < iterations.
Therefore, the total run time is bounded by $ (= ·<) which is polynomial in input size. �

102



9.3. APPLICATIONS OF FLOWS/CUTS

9.3 Applications of Flows/Cuts.

Bipartite Matching

Figure 9.5: Reducing bipartite matching to maximum flow.

• Direct all edges from one bipartition to the other.
• Add two auxiliary nodes as source and sink.
• Add arcs A0 for each 0 ∈ � an arcs 1B for each 1 ∈ �.
• Set capacity for all arcs equal to 1.

The max-flow algorithm (FF/EK) returns an integral maximum flow, which corresponds
to a maximum cardinality matching. Note it’s not hard to show Konig’s theorem (g(�) =
a(�) when � is bipartite) with this set up.

Flow Feasibility

Given � = (+ , �), D ∈ R�
+ and 1 ∈ R+ such that 1(+) = 0.

Problem. Determine if there exists a flow G ∈ R� such that

• ∀0 ∈ � : 0 ≤ G0 ≤ D0,
• ∀E ∈ + : 5G (E) = 1E.

Using a similar intuition from CO-351 transshipment problem, let us treat nodes E with
1E < 0 as "supply nodes" and treat nodes E with 1E > 0 as "demand nodes". Our goal is to
"ship" all units of flows from the "demand nodes" to "supply nodes" such that all supplies
are exhausted, all demands are satisfied, and no flow capacity constraint is violated.
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Consider the following reduction. Create new vertices A, B. For each E where 1E < 0,
add arc AE with capacity DAE = −1E. For each E where 1E > 0, add arc EB with capacity
DAE = 1E. Intuitively, we added an additional source and sink for the entire network. In
particular, the total flow into all demand nodes is equal to the total in-flow of auxiliary
sink B. Since 1(+) = 0, i.e., total supply equals total demand, if we manage to satisfy all
demands and no capacity constraint is broken, then we’ve found a feasible flow. In other
words, a feasible flow exists iff the max flow into B in the auxiliary graph attains∑

E:1E>0

1E.

Observe for any ( ⊆ + , ( ∪ {A} is an A, B-cut, so the max flow attains
∑
E:1E>0 1E iff

∀( ⊆ + : D(X+(( ∪ {A})) ≥
∑
E:1E>0

1E.

We can rewrite the cut value as

D(X+(( ∪ {A})) =
∑

E∈(:1E>0

1E +
∑

E∉(:1E<0

(−1E) + D(X+� (()).

•
∑
E∈(:1E>0 1E is the total capacity for edges going from ( into B.

•
∑
E∉(:1E<0(−1E) is the total capacity for edges going from A to nodes not in (.

• D(X+
�
(()) is cut value of ( in the original graph �.

Figure 9.6: Flow feasibility.

Plugging this in, we have for all ( ⊆ + ,

D(X+(( ∪ {A})) =
∑

E∈(:1E>0

1E +
∑

E∉(:1E<0

(−1E) + D(X+� (()) ≥
∑
E:1E>0

1E

D(X+� (()) ≥
∑

E∉(:1E>0

1E +
∑

E∉(:1E<0

1E =
∑
E∉(

1E = 1(()

Flipping around ( and ( in the inequality above, we have D(X+
�
(()) ≥ 1((). In conclusion,

there exists a feasible flow iff the maximum A, B-flow has value
∑
E:1E>0 1E iff

∀( ⊆ + : 1(() ≤ D(X+� (()).
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9.4 Undirected Minimum Cut: Gomory-Hu Trees.

Undirected Minimum Cut

Problem. Given � = (+ , �) undirected, D ∈ R+≥0, find ∅ ≠ ( ( + minimizing the
cut D(X(()).

We can brute-force the solution by replacing each undirected edge with a forward and
backward arc with the same capacity and computing maximum E,F-flow for all E,F ∈ + .
This requires $ (=2) max-flow computations.

Gomory-Hu Trees: Construction

The Gomory-Hu tree of an undirected graph with capacities is a weighted tree that rep-
resents the min B, C-cuts for all B, C-pairs in the graph. It can be constructed in |+ | − 1
max-flow computations.

Let _(�) be the weight of a minimum cut and _(�, E,F) be the weight of a minimum E,F-
cut, i.e., E ∈ ( and F ∉ (. Pick A , B ∈ + arbitrary and compute the min A, B-cut. Let ', ( ⊆ +
be its "shores", i.e.,

_(�, A, B) = D(X(')), ( := + \ '.

We store results in a tree ) = ({', (}, {'(}) where the edge '( has label _(�, E,F). This
edge represents (the weight of) a minimum A , B-cut.

Figure 9.7: Later

In general, if our current Gomory-Hu tree ) has vertices corresponding only to singletons,
then we are done. Otherwise, suppose there is a tree node � ∈ + ()) which corresponds
to at least 2 vertices in + (�).

Pick 01, 02 ∈ �. Let us find the min 01, 02-cut in the original graph. The idea is as follows.
Suppose we take away the vertex set �. Then we are left with four connected components
(in the original graph), namely �,�,�, � . We contract these components of ) \ � and let
�� be the resulting graph.
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Figure 9.8: Left: current Gomory-Hu tree. Right: 01, 02 ∈ �; connected components of ) \ �.

Compute the min 01, 02 cut in�� and name it X(-), so that _(��, 01, 02) = D(X(-)). Define
�1 := - ∩ � and �2 := -̄ ∩ �. Split � into �1, �2 within ) , and label the edge �1�2 ∈ � ())
with _(��, 01, 02).

Figure 9.9: Split � into �1, �2 within ) . Connect the components.

As for each connected components of ) \ � , the corresponding contracted super-vertex
belongs either to - or -̄ in ��. Connect each component to either �1 or �2 accordingly.
For example, we have�1 connected to �1, which implies that the super-vertex E� ∈ + (��)
representing � was in - . Similarly, �1 is connected to �2, which implies that the super-
vertex E� ∈ + (��) representing � was in -̄ . Note �1 and �1 were originally connected to
�, which is the reason why they are the "representatives" of each component.
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9.4. UNDIRECTED MINIMUM CUT: GOMORY-HU TREES

Gomory-Hu Tree: Example

Let � be given as follows. We start off with a single node that represents the entire + (�).

Figure 9.10: Initialize �� with a single node.

Pick two vertices arbitrarily, say 0 and 1, in the vertex {0, 1, 2, 3} ∈ + (��). Since we only
have 1 vertex in �� , there is nothing to contract. The red line represents a min 0, 1-cut in
� with a weight of 10, where 0, 2 are in one shore and 1, 3 are in the other shore.

Figure 9.11: Compute a min 0, 1-cut in � and update the tree.

Observe the vertex {0, 2} ∈ + (��) corresponds to 2 vertices in �, so we want to split it.
Pick 0, 2 ∈ {0, 2}. If we take away 0 and 2, we are left with a component with vertex set
{1, 3}. Contract this component to obtain �{0,2}. The red line represents a min 0, 2-cut in
� with a weight of 12, where 0 is in one shore and 2, 1, 3 are in the other shore. We split
{0, 2} and connect {1, 3} to 2 because they are on the same side.

Figure 9.12: Compute a min 0, 2-cut in � and update the tree.
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It remains to split {1, 3}. If we take away 1 and 3, we are left with a connected component
with vertex set {0, 2}. Contract this component to obtain �{1,3}. The red line represents
a min 1, 3-cut in � with a weight of 6, where 3 is in one shore and 1, 0, 2 are in the other
shore. We split {1, 3} and connect {1} to {2} because they are on the same side.

Figure 9.13: Compute a min 1, 3-cut in � and update the tree.

Since each tree node represents a single vertex in �, we are done.

Gomory-Hu Tree: Reconstruct Solutions

How do we get min cuts from this Gomory-Hu tree )? Suppose we are interested in a
min G, H-cut. We just need to look at the min cost edge 4∗ in )G,H, the unique G, H-edge in ) .

For example, the min 2, 3-cut has a weight of 6 (edge 13 in )), which corresponds to the
cut {23, 13} in �.

Figure 9.14: Find min cuts from Gomory-Hu trees.

Thus, with =− 1 max-flow computations, we get a nice data structure to store all E,F-cuts.
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Gomory-Hu Tree: Correctness

Let us first show that the function D(X(�)) is in fact submodular.

Lemma 9.11. ∀�, � ⊆ + : D(X(�)) + D(X(�)) ≥ D(X(� ∪ �)) + D(X(� ∩ �)).

Proof. Fix �, � ⊆ + . Let us carefully decompose edge sets in consideration.

Figure 9.15: Problem setting.

Consider the following disjoint edge-sets.

��� := {01 ∈ � : 0 ∈ � \ �, 1 ∈ � \ �}
��- := {0G ∈ � : 0 ∈ � \ �, G ∈ + \ (� ∪ �)}
��- := {1G ∈ � : 1 ∈ � \ �, G ∈ + \ (� ∪ �)}
�.- := {HG ∈ � : H ∈ � ∩ �, G ∈ + \ (� ∪ �)}
�.� := {H1 ∈ � : H ∈ � ∩ �, 1 ∈ � \ �}
�. � := {H0 ∈ � : H ∈ � ∩ �, 0 ∈ � \ �}

Note these sets are pairwise disjoint since + \ (� ∪ �), � \ �, � \ �, and � ∩ � are disjoint
sets and we consider the six edge sets grouped by endpoints in the disjoint sets. Note that

X(�) = ��- ∪ �.- ∪ �.� ∪ ���
X(�) = ��- ∪ �.- ∪ �. � ∪ ���

X(� ∪ �) = ��- ∪ ��- ∪ �.-
X(� ∩ �) = �. � ∪ �.� ∪ �.-

It follows that

D(X(�)) + D(X(�)) − D(X(� ∪ �)) − D(X(� ∩ �)) = 2D(���) ≥ 0

as desired. �
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Lemma 9.12. Let X(() be a min A, B-cut and let E,F ∈ (. Then there exists a min
E,F-cut X()) such that ) ⊆ (.

In words, if I have a min B, C-cut X(() and two vertices E,F on the same side of the shore
((), then I can compute the minimum cut between E,F with the shore containing them.

Figure 9.16: Proof setting.

Proof. Let X(-) be a minimum E,F-cut. Note that (∩ - ≠ ∅ and (∩ -̄ ≠ ∅. WLOG, relabel
(switch ( with (̄ and/or - with -) if necessary, we may assume that B ∈ ( ∩ - .

First, suppose that A ∈ - . Since ( is a A, B-cut, we have A ∈ - ∩ (̄.

Figure 9.17: Case 1: A ∈ - .

Since D(X(�)) is submodular, we have

D(X(()) + D(X( -̄)) ≥ D(X(( ∩ -̄)) + D(X(( ∪ -̄)).

Note that ( ∪ -̄ is a shore of an A , B-cut. Since X(() is a min A, B-cut, we get

D(X(()) + D(X( -̄)) ≥ D(X(( ∩ -̄)) + D(X(( ∪ -̄)).
D(X(()) + D(X( -̄)) ≥ D(X(( ∩ -̄)) + D(X(())

D(X( -̄)) ≥ D(X(( ∩ -̄))

Since D(X( -̄)) = D(X(-)) is a min E,F-cut, D(X(( ∩ -̄)) must also be a min E,F-cut. In
particular, it is a subset of (. This case is done.

The second case is analogous. �
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Lemma 9.13. Let � = (+ , �), D ∈ R�
+ , B, C ∈ + , � ⊆ + , and B, C ∉ �. If there exists

a min B, C-cut X(-) with - ∩ � ≠ ∅, then _(�, B, C) = _(�/�, B, C).

Note this lemma justifies the contraction in the Gomory-Hu tree algorithm: we can safely
contract other components without worrying about the minimum cuts being destroyed.

Proof. Since - ∩ � = ∅, - ⊆ + (� \ �), contracting � does not impact - , so

_(�, B, C) = D(X� (-)) = D(X�/� (-)) ≥ _(�/�, B, C).

Figure 9.18: Left: - is min B, C-cut. Right: . is a min B, C-cut in �/�.

Let . ⊆ + (�/�) be a minimum B, C-cut in �/� with E� ∉ . (relabel . and .̄ if necessary).
Then . is also an B, C-cut in �. Thus, _(�/�, B, C) = D(X�/� (-)) = D(X� (-)) ≥ _(�, B, C). �

Definition 9.14. Suppose ) is a GH-tree at any point during the algorithm.
Let 54,∀4 ∈ � ()) be its labels. Let '( be an edge in ) . We say '( has a
representative if there exists A ∈ ' and B ∈ ( such that

• _(�, A, B) = 5'(, i.e., the label 5'( on edge '( represents the min A , B-cut
in the original graph �, and

• the connected component of) \ {'(} induces the cut of weight _(�, A, B),
i.e., the two connected components in ) \ {'(} correspond to the two
shores of a min A , B-cut.
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Lemma 9.15. Every edge in � ()) has a representative at all times.

Proof. We argue by induction. This is clearly true when initially there are no edges in the
tree. It is also true when we build the first edge. Now let G, H ∈ ' and - ,. define a cut in
�' with . := + (�') \ - , G ∈ - , H ∈ . , D(X�' (-)) = _(�', G, H). Note this describes how we
want to split ', i.e., how we go from the current GH-tree to the next GH-tree.

⇓

Figure 9.19: �, �', and GH-tree before and after the current iteration of the algorithm.
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It suffices to show that _(�', G, H) = _(�, G, H). as this immediately shows the first part
of the definition of being represented; moreover, the definition of how the algorithm re-
distributes the edges in X) (') yields the second part of the definition.

Restate the results we’ve proved before:

L1 Let X(() be a min A, B-cut and let E,F ∈ (. Then there exists a min E,F-cut X()) such
that ) ⊆ (.

L2 Let � = (+ , �), D ∈ R�
+ , B, C ∈ + , � ⊆ + , and B, C ∉ �. If there exists a min B, C-cut X(-)

with - ∩ � ≠ ∅, then _(�, B, C) = _(�/�, B, C).
For clarity, let us denote each edge �� as (�, �). Since (�1, ') had a representative, i.e.,
there exists 11 ∈ �1 and 12 ∈ ' such that D(X� (�)) = _(�, 11, 12). Apply Lemma 1 with
( = �̄, so there exists a min G, H-cut X� (*) with * ⊆ �̄. Apply Lemma 2, so _(�, G, H) =
_(�/�, G, H). Thus, it’s safe to contract �.

Continue in a similar fashion, since (�1, ') has a representative, its label was _(�, 31, 32)
and D(X� (�)) = _(�, 31, 32) with some 31 ∈ �1 and 32 ∈ '. Since � ∩ � = ∅, apply
Lemma 2 so that _(�, 31, 32) = _(�/�, 31, 32). So X�/� (�) is still a min 31, 32-cut in �/�.
Apply Lemma 1 to get a min G, H-cut in �/� X�/� (,) with , ⊆ �̄. Apply Lemma 2, so
_(�, G, H) = _(�/�, G, H) = _((�/�)/�, G, H).

In fact, you can continue doing the same argument and eventually arrive at _(�, G, H) =
_(�', G, H). In other words, the new edge (-′,. ′) has a representative. Also, every other
edge whose vertex set did not change still has a representative. It remains to show the
new edges (except (-′,. ′)) created by the algorithm, e.g., (�1, -′), (�1,. ′), and (�1,. ′).

Consider some redistributed edge in X) (') with label _(�, 1, 6) such that 1 ∉ ' and 6 ∈ '.
WLOG, suppose the edge was distributed with new endpoint - . If 6 ∈ - , then the edge
still has a representative. Now suppose 6 ∈ . . We claim in this other case that _(�, 1, 6) =
_(�, 1, G), so the redistributed/new edge (�1, -′) still has a representative.

Suppose we have the following lemma (see assignment):

L3 Let � = (+ , �), D ∈ R�
+ , ?, @, A ∈ + . Then _(�, ?, @) ≥ min{_(�, @, A),_(�, ?, A)}.

Note this is true iff the smallest two of _(�, ?, @), _(�, @, A), and _(�, ?, A) are equal. This
observation (iff) gives a shorter proof of the lemma:

=⇒ RHS is always equal to the smallest, so the result follows.
⇐= Let _(�, ?, @) be the smallest. Then one of the others must be equal to _(�, ?, @).

We want to show that _(�, 1, 6) = _(�, 1, G). Since 1 ∈ � and G ∉ �,

D(X� (�)) = _(�, 1, 6) ≥ _(�, 1, G).
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Next, recall we’ve proven _(�, G, H) = D(X� (()). By Lemma 1, there exists a min 1, G-cut
X� (,) with , ⊆ (. Now let �′ = �/. ′. Apply Lemma 2, we get _(�, 1, G) = _(�′, 1, G).
In words, if we contract . ′ from �, this shouldn’t impact the minimum (�1, -′) cut. But
then this implies that any E. ′, 1-cut in �′ is a 1, 6-cut in �, so we get

_(�′, E. ′, 1) ≥ _(�, 1, 6).

Also, any G, E. ′-cut in �′ is an G, H-cut in �, so

_(�′, E. ′, G) ≥ _(�, G, H).

Moreover, the min G, H-cut in � is a 1, 6-cut in �, so

_(�, G, H) ≥ _(�, 1, 6).

Combining these three inequalities and use Lemma 3, we get

_(�, 1, G) = _(�′, 1, G) ≥ min{_(�′, E. ′, 1),_(�′, E. ′, G)} Lemma 3

≥ min{_(�, 1, 6),_(�, G, H)} Inequality 1, 2

≥ _(�, 1, 6) Inequality 3

≥ _(�, 1, G) _(�, 1, 6) ≥ _(�, 1, G).

Therefore, everything above is equal. Our proof is done. �

We are finally ready to show that the final GH-tree stores all information we need for
global min-cuts. In particular, the min-cut value is equal to the smallest label on the
unique path in the GH-tree.

Theorem 9.16. Let ) be the final GH-tree. Then for all A, B ∈ + , _(�, A, B) is equal
to the smallest label of an edge in )A ,B. Also, if 4∗ is such an edge, then _(�, A , B) =
D(X(�)), where � is one of the connected components of ) \ 4∗.

Proof. Let )A ,B = E0, 41, E1, 42, . . . , 4: , E: and write 54 to be the labels of edges in ) . By the
previous lemma, _(�, E8−1, E8) = 548 for all 8 ∈ [:]. We claim that

_(�, A, B) ≥ min
8∈[:]

_(�, E8−1, E8),

which shows both statements: the minimum E8−1, E8-cut induced by components of ) − 48
are also A , B-cuts; each edge 48 has a representative in {E8−1}, {E8}. We do induction on : .
The base case : = 1 is trivial. Fix : ≥ 2. By induction, _(�, A, E:−1) ≥ min8∈[:−1] _(�, E8−1, E8).
Finally, by Lemma 3, _(�, A, B) ≥ min{_(�, A, E:−1),_(�, E:−1, B)} ≥ min8∈[:] _(�, E8−1, E8) as
desired. �

This wraps up the chapter on flows and cuts.
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10 OTHER TOPICS

10.1 Randomized Algorithms.

Instead of having deterministic algorithms, we can use randomization in a clever way to
achieve one or more of:

• better complexity,
• better performance guarantees,
• simpler algorithm,
• better practical performance.

Karger’s Algorithm for Min-Cut

Problem. Given � = (+ , �), D ∈ R�
+ , find ∅ ≠ ( ( + minimizing D(X(()).

Assume � is connected.

Algorithm. While |+ (�) | > 2:

• Choose 4 with probability D4/D(� (�)).
• Update � ← �/4.

Return the cut separating the 2 vertices.

Observe edges with higher weight have a higher probability being chosen/contracted.

Theorem 10.1. Karger’s algorithm returns a min cut with probability ≥ 2
=(=−1) .

Proof. Let � ⊆ � be a min cut. The algorithm returns � if none of its edges are contracted.
Let �8 be the graph after 8 edges have been contracted. Note |+ (�8) | = = − 8. Since � is a
min cut and each X�8 (E) represents a cut in �, we have

∀E ∈ + (�8) : D(�) ≤ D(X�8 (E)) =⇒ D(�) ≤
∑

E∈+ (�8)

D(X�8 (E))
= − 8 =

2D(� (�8))
= − 8 . (★)

The probability of picking an edge in � (�8) \ � is 1 − D(�)
D(� (�8)) . Combined with ★,

1 − D(�)/D(� (�8)) ≥ 1 − 2
= − 8 =

= − 8 − 2
= − 8 .

Complete this. �

For more information, see CO-351 notes.
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Boosting Probability

The algorithm fails with probability ≤ 1 − 2
=(=−1) , which is about 99% when = = 100. This

is really bad. To fix this, we can run the algorithm @ times (independently) and pick the
best result returned. The algorithm fails iff it fails all @ times, which has a probability

≤
(
1 − 2

=(= − 1)

)@
≤

(
1 − 2

=2

)6
≤ 4−2@/=2

where the last inequality follows from 1 + G ≤ 4G . Choose @ =  =2, the probability of
failure is ≤ 4−2 . For example, for  = 5, the probability of success is > 0.9999.

As a remark, if the probability of chosen each edge is uniform, the it requires an exponen-
tial number of boosts.

Take CS-761 if you are interested in randomized algorithms.
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10.2 Approximation Algorithms.

We want to find polytime algorithms with quality guarantee for NP-hard problems? In
particular, for a maximization problem with an optimal solution exists

I∗ = max 5 (G) B.C. G ∈ (,

an U(=) approximation algorithm is an algorithm that, on inputs of size =, returns in time
poly(=) a solution Ḡ of value ≥ U(=) · I∗. As a remark,

• For maximization problems, U(=) ≤ 1 and we need I∗ ≥ 0.
• For minimization problems, U(=) ≥ 1 and we need I∗ ≥ 0.

Note the greedy algorithm for matroid is an approximation algorithm!

K-Cuts

Problem. Given � = (+ , �), D ∈ R�
+ , find � ⊆ � minimizing D(�) such that

(+ , � \ �) has ≥ : components.

Algorithm.

• Compute a Gomory-Hu tree ) with edge labels 54.
• Order edges of ) such that 541 ≤ 542 ≤ · · · ≤ 54=−1 .
• Remove 41, . . . , 4:−1 gives : connected component of) ; name them+1, . . . ,+: .

Let �∗ ⊆ � be an optimal solution with connected components +∗1 , . . . ,+∗
:
. Note that

 ∑
8=1

D(X(+∗8 )) = 2D(�∗))

as we counted every edge in �∗ exactly twice.

Theorem 10.2.

D

( the solution we return︷                                    ︸︸                                    ︷
{EF ∈ � | E ∈ +8,F ∈ + 9 , 8 ≠ 9}

)
≤

(
2 − 2

:

)
· D(�∗).

Proof. Contract +∗
8

into E∗
8

in ) . Now drop some edges to get a GH tree ) ′. Consider the
following example. Suppose we have +∗1 = {1, 6},+∗2 = {3, 4},+∗3 = {2, 5}. Start with the
Gomory-Hu tree on the right, contract them to obtain the multi-graph in the middle, then
drop some edges to get a tree ) ′ in the left.
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Figure 10.1: Example.

Note ) ′ has  nodes and  − 1 edges. Each edge E∗
8
E∗
9

in ) ′ corresponds to an edge 01 in
) with 0 ∈ +∗

8
and 1 ∈ +∗

9
. Thus,

5E∗
8
E∗
9
= 501 ≤ D(X� (+∗9 ))

since X� (+∗9 ) is an 0, 1-cut.

Consider ) ′ as a tree rooted at some E∗A maximizing

D(X� (+∗A )).

Apply the inequality above to the child endpoint of every edge. Every node except the
root is counted once. Thus,∑

4∈� () ′)
54 ≤

:∑
9=1

D(X� (+∗9 )) − D(X� (+∗A ))

≤
:∑
9=1

D(X� (+∗9 )) −
:∑
9=1

D(X� (+∗9 ))
:

=

(
1 − 1

:

)
2D(�∗)

But we picked the cheapest : − 1 edges in ) which is a lower bound for∑
4∈� () ′)

54.

This concludes the proof. �
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Set Cover

Problem. Given elements � = {1, . . . ,<} and a set {(1, . . . , (=} of subsets of �,
each with a cost 2 9 ≥ 0, find Δ ⊆ {1, . . . , =} minimizing 2(!) such that∑

9∈Δ
( 9 = �.

LP formulation:

(%) := min
∑=
9=1 2 9G 9

B.C.
∑
9 :8∈( 9 G 9 ≥ 1 ∀8 = 1, . . . ,<

G ≥ 0

We may assume that any optimal solution G∗ to (P) satisfies 0 ≤ G∗
9
≤ 1 for all 9 = 1, . . . , =.

Let us view these G 9 ’s as probabilities.

Algorithm.

1. For each 9 ∈ [=], select ( 9 with probability G∗
9

independently.
2. Return Δ as the selected ( 9 ’s.

Claim. The probability 8 is covered by Δ is at least 1 − 1/4.

Proof. By independence, the probability that 8 is uncovered is at most∏
9 :8∈( 9
(1 − G∗9 ) ≤

∏
9 :8∈( 9

4
−G∗

9 = exp ©­«−
∑
9 :8∈( 9

G∗9
ª®¬ ≤ 4−1.

as
∑
9 :8∈( 9 G

∗
9
≥ 1. �

Run this algorithm 2 ln = times and output the UNION of all sets that were picked at any
given iteration. The probability that any 8 is not covered is at most

4−2 ln = =
1
=2 .

By a union bound, the probability that there is an uncovered 8 is at most 1/=.

The expected cost of a single run of this algorithm is given by

E[2(Δ)] =
=∑
9=1

2 9 Pr(( 9 ∈ Δ) =
=∑
9=1

2 9G
∗
9 = OPT% ≤ OPTSet Cover

Hence, the final solution has expected cost ≤ 2 ln = ·OPT.
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Primal-Dual Approach for Set Cover

Consider the following primal-dual pair:

(%) := min
∑=
9=1 2 9G 9

B.C.
∑
9 :8∈( 9 G 9 ≥ 1 ∀8 = 1, . . . ,<

G ≥ 0

(�) := max
∑<
8=1 H8

B.C.
∑
8∈( 9 H8 ≤ 2 9 ∀ 9 = 1, . . . , =

H ≥ 0

The idea is to find G∗, H∗ feasible to (P) and (D) satisfying the CS conditions:

• ∀ 9 : G∗
9
> 0,

∑
8∈( 9 H

∗
8
≥ 2 9 ,

• ∀8 : H∗
8
> 0,

∑
9 :8∈( 9 G

∗
9
≤ 1.

Note how we are writing the CS conditions. For example, when G∗
9
> 0, we want the

corresponding dual constraint to be tight, i.e.,
∑
8∈( 9 H

∗
8
= 2 9 . Instead of writing this, we

say
∑
8∈( 9 H

∗
8
≥ 2 9 , which combined with the constraint (≤) implies the tightness.

We need to relax the CS condition a bit as we are likely not able to find an integer solution.
Replace the "1" in the RHS of the primal constraint with 5 for some 5 > 1. This measures
"how far" our solution is from 1. Note with this, we get

=∑
9=1

2 9G
∗
9 =

=∑
9=1

G∗9
©­«
∑
8∈( 9

H∗8
ª®¬ =

<∑
8=1

H∗8
©­«
∑
9 :8∈( 9

G∗9
ª®¬ ≤ 5

<∑
8=1

H∗8 · 1 = 5 ·OPT.

Consider the following algorithm.

1. Start with G∗ ← 0, H∗ ← 0.
2. While ∃8 :

∑
9 :8∈( 9 G

∗
8
< 1:

(a) Pick one such 8 and raise H∗
8

until
∑
8∈( 9 H

∗
8
= 2 9 for some 9 .

(b) Let G∗
9
= 1 for all 9 where

∑
8∈( 9 H

∗
8
= 2 9 .

3. Output G∗.

Note we started with a feasible dual solution. We will maintain a feasible dual solution
throughout the algorithm. Some of the primal variables/constraints might be infeasible.
We will fix them.

The algorithm always progresses in each iteration since the only way an item is not cov-
ered is if no previously chosen set covers it. Hence, there is some unchosen set which
covers it and the corresponding set variable can be raised. It is also easy to see its poly-
nomial time complexity.

Claim. The proposed algorithm is an 5 -approximation algorithm where 5 is the
maximum number of sets in an element appears.

Proof. Omitted. �
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10.3 Integer Programming.

Minimum Bounded Degree Spanning Tree

Consider the problem of finding a minimum cost spanning tree of � where each vertex
in the tree has degree at most : .

Problem (MBDST). Given � = (+ , �) connected, 2 ∈ R� , : ∈ Z+, : ≥ 2, find a
spanning tree ) of minimum cost such that

∀E ∈ + : |X) (E) | ≤ : .

First, note the problem is NP-hard as it is equivalent to HamPath for : = 2. Let�′ = (+ , �′)
and let � be the corresponding complete graph. Define 24 = −1 if 4 ∈ �′ and 0 otherwise.
Then �′ has a Hamiltonian path iff the MBDST of � has cost −= − 1.

Let $%) (:) be the value of MBDST with parameter : ≥ 2. We want to find a spanning
tree ) with (a slightly relaxed constraint)

∀E ∈ + : |X) (E) | ≤ : + 2

with 2()) ≤ $%) (:). Assume the problem is feasible.

Remark. Note this is slightly different from the classic approximation algorithm
setting. In a typical approximation algorithm, we work with feasible solutions whose
objective values are slightly worse than the optimal. Here, we work with "almost-
feasible" solutions whose objective values are no worse than the optimal. In other
words, we relax the feasibility condition instead of the optimality condition here.

Consider the following LP formulation, which is obtained by adding the degree constraint
to the MST LP:

min
∑
4∈� 24G4

B.C. G(� (()) ≤ |( | − 1 ∀( ⊆ +
G(�) = = − 1
G(X(E)) ≤ : ∀E ∈ +
G ≥ 0

An integral optimal solution to this LP is an optimal solution to MBDST. Unfortunately,
this LP is exponential in size of input (graph), so we can’t solve it directly.

122



10.3. INTEGER PROGRAMMING

Integer Programming

Let G∗ be an optimal solution to the LP above. Define �∗ := {4 ∈ � : G∗4 > 0}, the set of non-
zero variables. Intuitively, the positive yet non-integral G variables are saying "I’m not
sure whether we want this edge or not" and the zero G variables are saying "we probably
don’t want this edge". We will show this is actually the correct intuition.

Next, find the desired spanning tree in �∗ = (+ , �∗).

The road map is as follows.

1. We may assume G∗ is an extreme point of the LP.
2. Under this assumption, |�∗(*) | ≤ 2|* | − 1 for all* ⊆ + .
3. By A5Q1, there exists an orientation of the edges �∗ such that the in-degree of every

vertex is at most 2.
4. Use matroid intersection to find the desired tree ) .
5. Argue that 2()) ≤ $%) (:).

Note the first two statements use arguments of polyhedral theory, which is covered in
CO-452/652, the Integer Programming course. We will focus on the last two steps.

Let �∗ be an orientation of �∗ such that the digraph �∗ = (+ , �∗) satisfies

∀E ∈ + : |X−�∗ (E) ≤ 2.

For any � ⊆ �∗, let � (�) be the corresopnding set of (undirected) edges in �∗. Define
M1 = (�∗, I∗) where

I∗ := {� ⊆ �∗ | ∀E ∈ + : |� ∩ � (X+�∗ (E)) | ≤ :}.

Note this is a partition matroid.

Lemma 10.3. If � ⊆ I∗, then |� ∩ X� (E) | ≤ : + 2.

Proof. The degree of each vertex is the sum of in and out degrees, which is at most : + 2.

Let M2 be the graphic matroid of �∗. Consider the following algorithm:

1. Define 2̄ := −2 +" > 0. Note this implies that ) is a min-cost spanning tree wrt c iff
) is a max-cost spanning tree wrt 2̄.

2. Compute the max-weight independent set ) in M1 and M2.
3. Return ) .

Lemma 10.4. ) is a spanning tree.

Proof. Skipped.
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By results in matroid intersection (plus some other polyhedral theory), G) corresponding
to ) (not the transpose!) is an optimal solution to the following LP:

min
∑
4∈� 24G4

B.C. G(� (()) ≤ |( | − 1 ∀( ⊆ +
G(�) = = − 1
G(� (X+

�∗ (E))) ≤ : ∀E ∈ +
G ≥ 0

But G∗ is a feasible solution for this LP. Therefore, we get

2()) ≤ 2)G∗ ≤ $%) (:)

as desired.

More on Integer Programming

Consider the integer program

min 2)G

B.C. �G ≤ 1
G ∈ Z=

Some of our approaches based on solving it by solving its LP relaxation is often not pos-
sible. In the Integer Programming course, we study the following questions:

• When can we solve the IP by solving its LP relaxation? (Polyhedral Theory)
• What to do if this is not possible and I still want to solve IP?

– Approximation algorithms: relax optimality constraint.
– Integer programming: still want optimal solutions, relax polytime constraint.

Take CO-452/652 if you are interested. This is the end of this course.
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