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1. Preliminaries

Section 1. Preliminaries

1.1. Theorem (First Principle of Induction): Let S be a set of integers containing a.
Suppose S has the property that whenever some integer n ≥ a belongs to S, then also n + 1 ∈ S.
Then S contains every integer greater than or equal to a.

1.2. Theorem (Second Principle of Induction): Let S be a set of integers containing a.
Suppose S has the property that the integer n belongs to S whenever each integer m with a ≤ m < n
belongs to S. Then S contains every integer greater than or equal to a.
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2. Equivalence Relations

Section 2. Equivalence Relations

2.1. Definition: An equivalence relation on a set S is a subset R ⊆ S × S satisfying the
following properties:

(1). reflexive: ∀a ∈ S : (a, a) ∈ R;

(2). symmetric: (a, b) ∈ R =⇒ (b, a) ∈ R;

(3). transitive: (a, b) ∈ R ∧ (b, c) ∈ R =⇒ (a, c) ∈ R.

For each a ∈ S, the set [a] = {x ∈ S | (a, x) ∈ R} is called the equivalence class of a.

2.2. Definition: A partition of a set S is a collection of non-empty disjoint subsets of S whose
union is S.

2.3. Theorem: The equivalence classes of an equivalence relation on a set S constitute a parti-
tion of S. Conversely, for any partition P of S, there is an equivalence relation whose equivalence
classes are the elements of P .
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3. Functions

Section 3. Functions

3.1. Definition: A function ϕ from a set A to a set B is a rule that assigns to each element
a of A exactly one element of B.

3.2. Definition: A function ϕ : A→ B is called

• injective or one-to-one or 1-1 if ϕ (a1) = ϕ (a2) =⇒ a1 = a2.

• surjective or onto if for every b ∈ B, there exists a ∈ A with ϕ(a) = b.

3.3. Definition: Suppose A,B and C are sets and ϕ : A → B and ψ : B → C are functions.
We define the composition of ϕ and ψ as

ψϕ(a) = ψ(ϕ(a)) (a ∈ A)

3.4. Proposition: Suppose A,B,C,D are sets and α : A → B, β : B → C, γ : C → D are
functions. Then the following hold:

(1). (associativity): γ(αβ) = (γα)β;

(2). If α and β are one-to-one, then so is βα;

(3). If α and β are onto, then so is βα;

(4). If α is one-to-one and onto, then there exists a function α−1 : B → A such that

∀a ∈ A : α−1α(a) = a

∀b ∈ B : αα−1(b) = b

3.5. Remark: Hence, given a set A, we can consider the set

{α : A→ A | α is one-to-one and onto}

which has a product on it given by composition of functions. This is an important example that
we will return to when we consider permutation groups.
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4. Basic Number Theory

Section 4. Basic Number Theory

4.1. Axiom (Well-Ordering Principle): Every non-empty set of positive integers contains
a smallest member.

4.2. Definition: Let m,n ∈ Z. We say that m divides n, denoted m|n, if there exists k ∈ Z
such that n = km. The integer m is called a divisor of n.

4.3. Lemma: Let a, b, c ∈ Z.

(1). If a|b and b|c, then a|c.
(2). If a|b and a|c, then a|(bx+ cy) for all x, y ∈ Z.

(3). If a|b and b 6= 0, then |a| ≤ |b|.

Proof. Trivial.

4.4. Theorem (Division Algorithm): If a, b ∈ Z with b > 0, then there exist unique integers
q, r ∈ Z such that a = qb+ r and 0 ≤ r < b. The integers q and r are called the quotient and the
remainder, respectively.

Proof. (Existence) Consider the set S := {a − bk | k ∈ Z, a − bk ≥ 0}. If 0 ∈ S, then b|a and
we have q = a/b and r = 0. Now assume 0 6∈ S. We claim that S 6= ∅. Indeed, if a > 0,
then a − b · 0 ∈ S; if a < 0, then a − b(2a) = a(1 − 2b) ∈ S; a 6= 0 since 0 6∈ S. Thus, we may
apply the WOP to conclude that S has a smallest member, say r = a−bq. Then a = bq+r and r ≥ 0.

It remains to show that r < b. Suppose r ≥ b. Then a − b(q + 1) = a − bq − b = r − b ≥ 0 so
a− b(q + 1) ∈ S. But a− b(q + 1) < a− bq, contradicts the assumption that a− bq is the smallest
member of S. Thus, r < b. This concludes the existence part.

(Uniqueness) Suppose there are integers q′, r′ such that a = bq + r = bq′ + r′ with 0 ≤ r, r′ < b.
WLOG, assume r′ ≥ r. Then b(q− q′) = r′− r so b divides r′− r and 0 ≤ r′− r ≤ r′ < b. It follows
that r′ − r = 0 and thus r′ = r and q = q′.

4.5. Definition: The greatest common divisor of two non-zero integers a and b, denoted
gcd(a, b), is the largest of all common divisors of a and b. If gcd(a, b) = 1, we say a and b are
relatively prime.

4.6. Theorem (Bezout): For any non-zero integers a and b, there exist integers s and t such
that gcd(a, b) = as+ bt. Moreover, gcd(a, b) is the smallest positive integer of the form as+ bt.

Proof. Consider the set S = {am + bn | m,n ∈ Z, am + bn > 0}. Since S is obviously non-empty,
WOP asserts that S has a smallest member, say, d = as+ bt. We claim that d = gcd(a, b). By the
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4. Basic Number Theory

division algorithm, write a = bq + r where 0 ≤ r < d. If r > 0, then

r = a− dq = a− (as+ bt)q = a− asq − btq = a(1− sq) + b(−tq) ∈ S,

contradicting the fact that d is the smallest member of S. So r = 0 and d|a. By symmetry, d|b.
This proves that d is a common divisor of a and b. Now suppose d′ is another common divisor of
a and b and write a = d′h and b = d′k. Then

d = as+ bt = (d′h)s+ (d′k)t = d′(hs+ kt) =⇒ d′|d.

Thus, among all common divisors of a and b, d is the greatest.

4.7. Corollary: If a and b are relatively prime, there exist integers s and t such that as+bt = 1.

Proof. By definition, a and b are relatively prime means gcd(a, b) = 1. Now apply Bezout’s Identity
above.

4.8. Corollary (Euclid): If p is a prime that divides ab, then p divides a or p divides b.

Proof. If p - a, then gcd(a, p) = 1. Then by Corollary 4.7, there exist s, t ∈ Z such that at+ps = 1.
Multiplying both sides by b, we get bat+ bps = b. As p divides both terms on the LHS, it divides
the sum, and thus p|b.

4.9. Theorem (Fundamental Theorem of Arithmetic): Every integer greater than 1 is a
prime or a product of primes. This product is unique, except for the order in which factors appear.

Proof. Later.
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5. Modular Arithmetic

Section 5. Modular Arithmetic

5.1. Definition: Let n ∈ Z+. If a, b ∈ Z, we say a is congruent to b modulo n and write
a ≡ b mod n if n|(a− b).

5.2. Theorem: Let n ∈ Z+ and R = {(a, b) | a ≡ b mod n}. Then R is an equivalence relation.

Proof. Check definition.

5.3. Definition: Let n ∈ Z+. The congruent class modulo n of the integer a is the set
[a] := {x ∈ Z | x ≡ a mod n}.

5.4. Definition: Let n ∈ Z+. The integers modulo n, denoted by Zn, is the set of n
congruence classes Zn = {[0], [1], . . . , [n− 1]}.

5.5. Theorem: Define two operations on Zn, addition and multiplication, as follows:

[a] + [b] = [a+ b]

[a] · [b] = [a · b]

Then for [a], [b], [c] ∈ Zn, we have

• [a] + [b] = [b] + [a], [a][b] = [b][a] (commutativity);

• ([a] + [b]) + [c] = [a] + ([b] + [c]), ([a][b])[c] = [a]([b][c]) (associativity);

• [a]([b] + [c]) = [a][b] + [a][c] (distributivity);

• [a] + [0] = [a] = [0] + [a] (additive identity);

• [a][1] = [1][a] = [a] (multiplicative identity);

• [a] + [−a] = [−a] + [a] = 0 (additive inverse).

5.6. Theorem: Let n ∈ Z+ and [a] ∈ Zn. Then [a] has a multiplicative inverse iff gcd(a, n) = 1.

Proof. Suppose there exists [s] ∈ Zn such that [a][s] = [1]. This means that as ≡ 1 mod n =⇒
1 = as + nt for some t ∈ Z. By Bezout’s identity, this means that gcd(a, n) = 1. Conversely,
suppose that gcd(a, n) = 1. By Bezout’s identity, there exists s, t ∈ Z such that 1 = ns+nt. Hence
as ≡ 1 mod n and [s] is a multiplicative inverse of [a].
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1. Basic Definitions

Section 1. Basic Definitions

1.1. Definition: A set G together with a binary operation

· : G×G→ G,

(a, b) 7→ ab

on G is called a group if the following hold:

• Associativity: (ab)c = a(bc) for all a, b, c ∈ G.

• Existence of identity: There is an element e ∈ G such that ae = ea = a for all a ∈ G.

• Existence of inverse: For each a ∈ G, there is an element b ∈ G such that ab = ba = e.

In addition, if ab = ba for all a, b ∈ G, we say G is Abelian or commutative. Otherwise, we say
G is non-Abelian.

1.2. Example: Elementary examples of groups concerning scalars:

• (Z,+), (Q,+), (R,+) are all Abelian groups under usual addition.

• (Q+,×) is an Abelian group under usual multiplication; the inverse of a ∈ Q+ is 1/a ∈ Q+.

• ({1,−1, i,−i},×) ⊆ C is an Abelian group, where (−1)(−1) = 1 and (i)(−i) = 1.

• (Zn := {0, 1, . . . , n− 1},+ mod n) is Abelian and known as the group of integers modulo n.

• (R∗ := R \ {0},×) is an Abelian group with identity 1 and inverse 1/a for a ∈ R∗.

1.3. Example: Elementary examples of groups concerning matrices:

• (Mn(R),+), the set of n× n matrices with real entries is a group under addition.

• GL(n,R), the set of n × n matrices with non-zero determinant is a non-Abelian (for n > 1)
group under matrix multiplication. It is called the general linear group of degree n.

• SL(n,R), the set of n × n matrices with determinant 1 is a non-Abelian (for n > 1) group
under matrix multiplication. It is called the special linear group of degree n. Note that
SL(n,R) ⊂ GL(n,R).

1.4. Example: Elementary examples of non-groups:

• (Z,×) is not a group: the element 2 does not have an integer inverse.

• (Z,−) is not a group: the operation is not associative.

• ({x | x ∈ R+ \Q+} ∪ {1},×) satisfies the three properties given in the definition but is not a
group, as the set is not closed under multiplication:

√
2×
√

2 = 2 ∈ Q+.

• (Mn(R),×) is not a group: inverses do not exist for matrices with 0 determinant.

• {0, 1, 2, 3} is not a group under multiplication modulo 4. Although 1 and 3 have inverses, the
elements 0 and 2 do not.
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1. Basic Definitions

1.5. Proposition: Let n ∈ N. The set of integers that are smaller than n and relatively prime
with n, U(n) := {m ∈ N | m < n, gcd(m,n) = 1} is a group under multiplication modulo n.

Proof. We first show that U(n) is closed under multiplication modulo n, that is, m1,m2 ∈ U(n),
then (m1m2) mod n ∈ U(n). Let i ∈ {1, 2}. Since gcd(mi, n) = 1, by Bezout’s Lemma, there
exists xi, yi such that mixi + nyi = 1 for i = 1, 2. Thus, mixi ≡ 1 mod n for i ∈ {1, 2} and hence
m1m2(x1x2) ≡ 1 mod n. It follows that gcd(m1,m2, n) = 1 and (m1m2) mod n ∈ U(n).

We now check the three properties given in the definition:

• Associativity is inherited from multiplication modulo n;

• 1 ∈ U(n) is the identity element;

• Existence of inverse follows from Theorem 5.6, which states that a ∈ Zn = {0, 1, . . . , n − 1}
has a multiplicative inverse iff gcd(a, n) = 1, which is satisfied by all a ∈ U(n).

1.6. Corollary: {1, 2, . . . , n− 1} is a group under multiplication under modulo n iff n is prime.

Proof. By Proposition 1.5, {1, 2, . . . , n − 1} is a group under multiplication modulo n iff n is
relatively prime to every m ∈ {1, 2, . . . , n− 1} iff n is prime.

10



2. Elementary Properties of Groups

Section 2. Elementary Properties of Groups

We start with three elementary properties:

• Uniqueness of identity.

• Cancellation property.

• Uniqueness of inverse element.

2.1. Theorem: There exists a unique element e ∈ G such that ae = ea = a for every a ∈ G.

Proof. The existence of an element e is guaranteed by the definiton of a group. Suppose e and f
are both identity elements. Then e = ef = f .

2.2. Theorem: Let a, b, c ∈ G. Then ba = ca =⇒ b = c and ab = ac =⇒ b = c.

Proof. Suppose ba = ca. Then multiplying both sides on the right by an inverse of a gives b = c,
so we have right cancellation. The other side follows similarly.

2.3. Theorem: For each a ∈ G, there exists a unique element b ∈ G such that ab = ba = e.

Proof. Suppose there exist b, c ∈ G such that ab = ba = e and ac = ca = e. Then c = ce = c(ab) =
(ca)b = eb = b.

2.4. Remark: Let G be a group.

• By uniqueness of inverses, we denote the inverse of an element a ∈ G as a−1 ∈ G.

• The associative property means that we can unambiguously write the product

a× · · · × a︸ ︷︷ ︸
n times

as an for n ∈ N. For n < 0, we take an to be the (−n)-fold product of a−1 and a0 := e.

In general, it is not true in a non-Abelian group G that (ab)n = anbn for a, b ∈ G and n ∈ Z.
Howver, we have the following result that expresses the inverse of a product as a reversed
product of inverses.

2.5. Theorem: Let G be a group and a, b ∈ G. Then (ab)−1 = b−1a−1.

Proof. (ab)b−1a−1 = e = b−1a−1ab.
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1. Subgroups

Section 1. Subgroups

1.1. Definition: A subset H of a group G which is itself a group under the operation of G is
called a subgroup of G. This is denoted by H ≤ G.

1.2. Note:

• If H ≤ G and H 6= G, then H is called a proper subgroup of G, denoted H < G.

• The subgroup {e} is called the trivial subgroup of G; others are said to be non-trivial.

1.3. Example:

• (Z,+) < (Q,+) < (R,+) < (C,+): easy.

• (Zn,+ mod n) 6≤ (Z,+) because they have different operations.
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2. Subgroup Tests

Section 2. Subgroup Tests

If a subset of a group is closed under the group operation as well as the inverse operation,
then it is a subgroup.

2.1. Theorem (One-Step Subgroup Test): Let G be a group and H be a non-empty subset
of G. If ab−1 ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. We check the definition of groups:

(1). The operation of G defines a binary operation on H, that is, H is closed under the operation.
Let x, y ∈ H. Then xy = x(y−1)−1 ∈ H by the hypothesis.

(2). The associativity of the operation is inherited from G.

(3). As H 6= ∅, there exists some a ∈ H, so e = aa−1 ∈ H.

(4). Let a ∈ H. Then a−1 = ea−1 ∈ H by the hypothesis.

Hence, H is a group in its own right and thus a subgroup of G.

2.2. Corollary (Two-Step Subgroup Test): Let G be a group and H be a non-empty subset
of G. If ab ∈ H for all a, b ∈ H and a−1 ∈ H for all a ∈ H, then H is a subgroup of G.

Proof. Trivial.

2.3. Note: Let G be a subgroup and H ⊆ G. To show that H is a subgroup of G:

(1). Show that H is non-empty.

(2). Let a, b ∈ H, show that ab−1 ∈ H (or show ab ∈ H and a−1 ∈ H separately).

2.4. Example: Let G be an Abelian group. We use one-step subgroup test to show the following
subsets are subgroups of G:

• {x ∈ G | x2 = e}: Since e2 = e, H 6= ∅. Let a, b ∈ G. Since G is Abelian, we have

(ab−1)(ab−1) = a2(b−1)2 = ee = e =⇒ ab−1 ∈ H.

• {x2 | x ∈ G}: Since G 6= ∅, H 6= ∅. Let a, b ∈ H with a = x2 and b = y2 for x, y ∈ G. Then

ab−1 = x2y−2 = (xy−1)2 ∈ H.

• HK = {hk | h ∈ H ⊆ G, k ∈ K ⊆ G}: Since e ∈ H and e ∈ K, e = e2 ∈ HK ⇒ HK 6= ∅.
Let a, b ∈ HK so a = hkk1 and b = h2k2 with hi ∈ H and ki ∈ K. Since G is Abelian,

ab−1 = h1k1(h2k2)
−1 = h1k1k

−1
2 h−12 = (h1h

−1
2 )(k1k

−1
2 ) ∈ HK.

14



2. Subgroup Tests

2.5. Note: To prove a subset of a group is not a subgroup:

• Show that the identity is not in the set.

• Exhibit an element of the set whose inverse is not in the set.

• Exhibit two elements of the set whose product is not in the set.

2.6. Example: Let G = R∗ with multiplication and H be the set of non-zero irrational numbers.
Since

√
2 ∈ H but

√
2 ·
√

2 = 2 6= H, we conclude that H is not a subgroup of G.

If the subset is finite, then all we need is its closure under the group operation.

2.7. Theorem (Subgroup Test for Finite Subsets): Let H be a non-empty finite subset
of a group G. If H is closed under the group operation of G, then H is a subgroup of G.

Proof. As ab ∈ H for all a, b ∈ H, it suffices to show that for each a ∈ H, its inverse in G, a−1

also belongs to H. The finiteness of H plays a key role here. Let a 6= 0. As H is closed under the
operation of G, {a, a2, . . . , } ⊆ H. As H is finite, we must have ai = aj for some i < j. Hence,
aj−i = e for some j − i > 1. Rewriting, we have a(aj−i−1) = e = (aj−i−1)a which implies that
aj−i−1 ∈ H is the inverse of a.

What can we say about the union and intersection of subgroups?

2.8. Proposition: Let H and K be subgroups of G. Then

(1). H ∩K is a subgroup of G.

(2). H ∪K is a subgroup of G iff H ⊂ K or K ⊂ H.

Proof. (1) Since e ∈ H ∩K, H ∩K is non-empty. Let x, y ∈ H ∩K. Then xy−1 ∈ H ∩K.
(2) Suppose H ⊂ K or K ⊂ H. Then H ∪ K = K or H ∪ K = H. This direction is trivial.
Conversely, suppose for a contradiction that H ∪K is a subgroup but H 6⊂ K and K 6⊂ H. Then
there exists h ∈ H \K and k ∈ K \H. Then as h and k are in H ∪K, so is their product hk. But
this means either k = h−1(hk) ∈ H or h = (hk)k−1 ∈ K, both of which are impossible. Hence, we
must have that one subgroup is included in the other.

2.9. Corollary:

(1). An arbitrary intersection of subgroups is a subgroup.

(2). An arbitrary union of nested subgroups is a subgroup.

Proof. Omitted.

15



3. Cyclic Groups

Section 3. Cyclic Groups

In this section, we introduce the notion of cyclic groups as an example of subgroups and to
demonstrate how our subgroup tests work. We will revisit cyclic groups in the next chapter.

3.1. Theorem: Let G be any group and a ∈ G. Then 〈a〉 := {am | m ∈ Z} is a subgroup of G.

Proof. For am, an ∈ 〈a〉, we have an(am)−1 = an−m ∈ 〈a〉.

3.2. Definition: Let G be a group and a ∈ G.

• The set 〈a〉 := {am | m ∈ Z} is called the cyclic subgroup of G generated by a.

• If 〈a〉 = G, then G is said to be cyclic and a is called a generator of G.

3.3. Remark:

• In general, generators are not unique since if a is a generator of G, then so is a−1.

• Although the list {. . . , a−2, a−1, e, a1, a2, . . .} has infinitely many entries, the set {an | n ∈ Z}
might have only finitely elements.

• Every cyclic group is Abelian since aiaj = ai+j = aj+i = ajai.

• When the group operation is addition, an means na.

3.4. Example: Some basic examples:

• In (Z,+), Z = 〈1〉.
• In (Z10,+ mod 10), 〈2〉 = {2, 4, 6, 8, 0}.
• In (Zn,+ mod n), Zn = 〈1〉 = 〈n− 1〉. (Think: n = 10.)

3.5. Example: Fix n ∈ N and define G = {z ∈ C | zn = 1}. From MATH-145, we know that
G = {e2kπi/n : k ∈ Z}. Thus, G =

〈
e2πi/n

〉
and hence is a cyclic group, known as the group of

nth root of unity.

3.6. Example: Recall the group U(10) = {1, 3, 7, 9} with multiplication mod 10. Consider the
cyclic (sub)groups generated by the element 3, 7, and 9.

• 〈3〉 = {3, 9, 7, 1} = U(10) as 32 mod 10 = 9, 33 mod 10 = 7, and 34 mod 10 = 1.

• 〈7〉 = {7, 9, 3, 1} = U(10);

• 〈9〉 = {9, 1}, which is a proper subgroup of U(10).

16



3. Cyclic Groups

A cyclic group by definition is a subgroup generated by a single element of the group G. We
can generalize this notion to a subgroup generated by any subset S of G.

3.7. Definition: Let S be a non-empty subset of group G. The subgroup generated by S,
denoted 〈S〉, is the smallest subgroup of G containing S. More concretely, it is the subgroup of G
containing all finite products of elements of S and their inverses.

3.8. Lemma: If S ⊆ G is a subgroup, then 〈S〉 = S.

Proof. Trivial.

Different subsets can generate the same subgroup.

3.9. Example: Let G = Z12 with addition mod 12. Then 〈{2, 8}〉 = {0, 2, 4, 6, 8, 10} = 〈2〉.

17



4. Center of a Group and Centralizer of an Element

Section 4. Center of a Group and Centralizer of an Element

We now discuss two more examples of subgroups.

• The center of a group G, Z(G) ≤ G, which contains the set of elements in G that com-
mutes with every element g ∈ G;

• The centralizer of an element a ∈ G, C(a) ≤ G, which contains the set of elements in G
that commutes with a.

4.1. Definition: The center Z(G) of a group G is the subset of elements of G that commute
with every element of G, i.e., Z(G) = {a ∈ G | ∀x ∈ G : ax = xa}.

4.2. Theorem: The center of a group, Z(G), is an Abelian subgroup of G.

Proof. Let e be the identity of G. Then e ∈ Z(G) so Z(G) 6= ∅. We show that ab ∈ Z(G) and
a−1 ∈ Z(G) for all a, b ∈ Z(G). First, let a, b ∈ Z(G). Then

∀x ∈ G : (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) =⇒ ab ∈ Z(G).

Next, for a ∈ Z(G), we have

∀x ∈ G : ax = xa =⇒ �
��a−1axa−1 = a−1x���aa−1 =⇒ xa−1 = a−1x =⇒ z−1 ∈ Z(G).

Clearly, Z(G) is an Abelian group.

4.3. Definition: Let a ∈ G. The centralizer C(a) of a in G is the set of all elements of G
that commute with a, i.e., C(a) = {g ∈ G | ag = ga}.

4.4. Theorem: For each g ∈ G, C(a) is a subgroup of G.

Proof. Clearly, Z(G) ⊆ C(a) for each a ∈ G, so C(a) is non-empty. We show that cd ∈ C(a) and
c−1 ∈ C(a) for all c, d ∈ C(a). First, let c, d ∈ C(a), which means that ca = ac and da = ad. Then

∀x ∈ G : (cd)a = c(da) = c(ad) = (ca)d = (ac)d = a(cd) =⇒ cd ∈ C(a).

Next, for c ∈ C(a), we have

∀x ∈ G : ca = ac =⇒ ���c−1cac−1 = c−1a���cc−1 =⇒ ac−1 = c−1a =⇒ c−1 ∈ C(a).

There exists a nice relationship between the center and centralizers.

4.5. Lemma: Z(G) =
⋂
a∈GC(a).

Proof. x ∈ Z(G) iff x commutes with every a ∈ G iff x ∈ C(a) for every a ∈ G iff x ∈
⋂
a∈GC(a).

18



4. Center of a Group and Centralizer of an Element

4.6. Lemma: G is Abelian iff C(a) = G for every a ∈ G.

Proof. G is Abelian iff ab = ba for every a ∈ G iff C(a) = G for every a ∈ G.

Two important examples.

4.7. Example (Quaternion Group): The quaternion group Q is given by the set
{1,−1, i,−i, j,−j, k,−k} with multiplication table given as follows:

• Z(Q) = {1,−1} (note that ij 6= ji and kj 6= jk);

• C(i) = {1,−1, i,−i}.

4.8. Example (Hisenberg Group): The set of matrices

H =


1 a b

0 1 c
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ R


is a group with matrix multiplication. We will show that

Z(H) =


 1 0 y

0 1 0
0 0 1

 ∣∣∣∣∣∣ y ∈ R

 .

For an element A ∈ H to be in the center of H, we must have

A =

 1 x y
0 1 z
0 0 1


such that  1 a b

0 1 c
0 0 1

 1 x y
0 1 z
0 0 1

 =

 1 x y
0 1 z
0 0 1

 1 a b
0 1 c
0 0 1


for a, b, c ∈ R. With some computation, we see this implies that y can be arbitrary while az = xs
for all ac ∈ R. Hence, x = z = 0 and A has the claimed form.
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5. Order of a Group and of an Element

Section 5. Order of a Group and of an Element

As we will see, finite groups have interesting arithmetic properties.

5.1. Definition: The order of a group G, denoted by |G|, is the number of elements in G.

5.2. Definition: The order of an element g ∈ G, denoted by |g|, is the smallest positive integer
n such that gn = e. If not such n exists, the element g is said to have infinite order.

5.3. Example:

• Let G = U(10) = {1, 3, 7, 9} with multiplication mod 10. Then |U(10)| = 4. Moreover,
|1| = 1, |3| = |7| = 4, and |9| = 2.

• Let G = Z6 = {0, 1, 2, 3, 4, 5} with addition mod 6. Then |Z6| = 6 and |0| = 1, |1| = 6, |2| =
3, |3| = 2, |4| = 3, |5| = 6.

• Let G = Z with addition. Then Z has infinite order and so does each of its non-zero elements.

Suppose G is a group and a ∈ G. We will soon show that the order of the element a is equal
to the order of the cyclic group 〈a〉 generated by a. Thus, overloading “order” makes sense.
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1. Properties of Cyclic Groups

Section 1. Properties of Cyclic Groups

1.1. Definition: A group G is said to be cyclic if there exists an element a ∈ G such that
G = 〈a〉 = {am | m ∈ Z}. Such an element a is called a generator of G.

1.2. Example: The group (Z,+) is cyclic with generators 1 and −1. Indeed, any positive
integer can be written as 1 + · · ·+ 1 (n times) and negative integer −n as (−1− · · · − 1) (n times).
By definition, a0 here is the identity 0.

1.3. Example: The group Zn with addition modulo n for n ∈ N is cyclic with generators 1 and
(n − 1) ≡ (−1) mod n. In some cases, Zn may have other generators. For example, Z7 = 〈1〉 =
〈2〉 = 〈3〉 = 〈4〉 = 〈5〉 = 〈6〉. We will formalize what generators Zn has in Corollary 1.14.

1.4. Example: We have seen that U(10) = 〈3〉 = 〈7〉. On the other hand, U(8) is not cyclic.
Indeed, U(8) = {1, 3, 5, 7} while 〈1〉 = {1}, 〈3〉 = {3, 1}, 〈5, 〉 = {5, 1}, and 〈7〉 = {7, 1}.

The following theorem says that the order of a cyclic subgroup generated by an element is
equal to the order of the element itself, as there are precisely |a| elements in 〈a〉, both when
|a| is finite and infinite. This also explains why we use the same terminology for the order of
both a group and an element of a group.

1.5. Theorem: Let G be a group and a ∈ G.

• If |a| =∞, then 〈a〉 = {e, a, a2, . . .} and ai = aj ⇐⇒ i = j.

• If |a| = n <∞, then 〈a〉 = {e, a, . . . , an−1} and ai = aj ⇐⇒ n | (j − i).

Proof. Suppose |a| =∞ and ai = aj . Then aj−i = e. But |a| =∞, so

aj−i = e ⇐⇒ j − i = 0 ⇐⇒ j = i.

This also proves that 〈a〉 = {e, a, a2, . . .} as no two elements in the set are equal.

Next, suppose a has finite order equal to n, then an = e. It is clear that {e, a, . . . , an−1} ⊆ 〈a〉.
We need to show the other direction. Suppose ak ∈ 〈a〉. By the division algorithm, there exist
unique q, r ∈ Z such that k = qn+ r with 0 ≤ r < n. Hence, ak = aqn+r = (an)qar = eqar = ar, so
ak ∈ {e, a, . . . , an−1}.

We are left to show that if |a| = n, then ai = aj iff n | (j − i). Suppose ai = aj , then aj−i = e.
By the division algorithm, there exist q, r ∈ Z with ) ≤ r < n such that j − i = qn + r. Hence,
e = aj−i = (an)qar = eqar = ar. But by the definition of order of an element, n is the least
positive integer such that an = e. Thus, we must have r = 0 and hence j − i = qn. It follows that
n | (j − i). Conversely, suppose n | (j − i). Then there exists q ∈ Z such that j − i = nq. Hence
aj−i = (an)q = e, so that aj = ai.
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1. Properties of Cyclic Groups

1.6. Corollary: Let G be a group and a ∈ G. Then |a| = | 〈a〉 |.

Proof. The case where |a| < ∞ is trivial. Now suppose |a| = ∞. Then aj 6= ai for i 6= j. Hence,
the group 〈a〉 = {e, a, a2, . . .} is of infinite order.

1.7. Corollary: Let G be a group and a ∈ G be such that ak = e. Then |a| divides k.

Proof. Let |a| = n. As ak = e = a0, by Theorem 1.5, n divides k − 0 = k.

1.8. Intuition: Here’s the key intuition for the theorem. In a cyclic group of order n, multi-
plication of powers of a corresponds to the addition of the powers mod n. Indeed, if an = e, then
an+1 = a, an+2 = a2, ..., and aiaj = a(i+j) mod n for i, j ∈ Z. Hence, a cyclic group of order n
behaves exactly like Zn with addition modulo n. Similarly, a cyclic group of order ∞ behaves just
like Z with addition, as products of powers of the generator a correspond to adding the powers of a
in Z. We formalize what we mean by “behaving like” when we talk about group homomorphisms.

If we know the order of an element a ∈ G, we can compute the order of ak for any k ∈ N.

1.9. Theorem: Let a ∈ G with |a| = n ∈ Z+ and let k ∈ Z+. Then〈
ak
〉

=
〈
agcd(n,k)

〉
, and

∣∣∣ak∣∣∣ =
n

gcd(n, k)
.

Proof. Let d = gcd(n, k). Then k = dq for some q ∈ Z+ and ak = (ad)q, so that
〈
ak
〉
⊆
〈
ad
〉
.

To show the other inclusion, recall that there exists s, t ∈ Z such that d = ns + kt. Hence
ad = ans+kt = (an)s(ak)t = e(ak)t = (ak)t ∈

〈
ak
〉
, so

〈
ad
〉
⊆
〈
ak
〉
. Thus,

〈
ad
〉

=
〈
ak
〉
.

Next, let b be any divisor of n. Then (ab)n/b = an = e, so that |ab| ≤ n/b. But if i < n/b, then
(ab)i 6= e as bi < n. Hence, |ab| = n/b for any divisor b of n. In particular, for d = gcd(n, k),
|ad| = n/d. Altogether, along with Corollary 1.6, we get∣∣∣ak∣∣∣ =

∣∣∣〈ak〉∣∣∣ =
∣∣∣〈ad〉∣∣∣ =

∣∣∣ad∣∣∣ =
n

d
=

n

gcd(n, k)
.

The advantage of Theorem 1.9 is that it allows us to replace one generator of a cyclic
subgroup with a more convenient one, as shown in the following example.

1.10. Example: If |a| = 30, we have
〈
a26
〉

=
〈
a2
〉
,
〈
a23
〉

= 〈a〉,
〈
a22
〉

=
〈
a2
〉
,
〈
a21
〉

=
〈
a3
〉
.

From this we can easily see that
∣∣a23∣∣ = |a| = 30 and |a22| = |a2| = 15. Moreover, if one wants to

list the elements of, say,
〈
a21
〉
, it is easier to list the elements of

〈
a3
〉

instead.
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1. Properties of Cyclic Groups

Theorem 1.9 establishes an important relationship between the order of an element in a
finite cyclic group and the order of the group. We now show that the order of an element in a
finite cyclic group must divide the order of the group and look at the criterion for

〈
ai
〉

=
〈
aj
〉
,

or equivalently, |ai| = |aj |.

1.11. Corollary: In a finite cyclic group, the order of an element divides the order of the group.

Proof. Let G = 〈a〉 and ak ∈ G for some k ∈ Z, and let |G| = |a| = n. By Theorem 1.9,

|ak| = n

gcd(n, k)
,

so the order of ak divides the order of G.

1.12. Corollary: Let G be a group and a ∈ G with |a| = n. Then for all i, j ∈ Z,〈
ai
〉

=
〈
aj
〉
⇐⇒ gcd(n, i) = gcd(n, j) ⇐⇒ |ai| = |aj |.

Proof. Suppose gcd(n, i) = gcd(n, j). Then by Theorem 1.9,〈
ai
〉

=
〈
agcd(n,i)

〉
=
〈
agcd(n,j)

〉
=
〈
aj
〉
.

Conversely, suppose
〈
ai
〉

=
〈
aj
〉
, then |ai| = |aj |, whhich implies by the second part of Theorem

1.9 that
n

gcd(n, i)
=

n

gcd(n, j)
=⇒ gcd(n, i) = gcd(n, j).

The second iff follows by using |ai| = n/ gcd(n, i).

The next two corollaries are important special cases of the preceding corollary.

1.13. Corollary: Let |a| = n. Then 〈a〉 =
〈
aj
〉
⇐⇒ gcd(n, j) = 1 ⇐⇒ |a| = |aj |.

Proof. Substitute i = 1 in Corollary 1.12.

1.14. Corollary: An integer j in Zn is a generator of Zn iff gcd(n, j) = 1.

Proof. We have Zn = 〈1〉. By Corollary 1.12, 〈j〉 = 〈1〉 = Zn iff gcd(n, j) = 1.

1.15. Example: Consider U(10) = {1, 3, 7, 9} with order 4. We know that 〈3〉 = U(10). By
Corollary 1.13,

〈
3j mod 10

〉
= 〈3〉 ⇐⇒ gcd(4, j) = 1, so j ∈ {1, 3}, giving us that 3 = 31 mod 10

and 7 = 33 mod 10 are the generators of U(10).

24



2. Classification of Subgroups of Cyclic Groups

Section 2. Classification of Subgroups of Cyclic Groups

Suppose G = 〈a〉 with |G| = |a| = 30. The following theorem says that if H is any subgroup
of G, then H has the form

〈
a30/k

〉
for some k that is a divisor of 30. Moreover, G has one

subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15 and 30, and no others.

2.1. Theorem: Every subgroup of a cyclic group is cyclic. Moreover, if | 〈a〉 | = n, then the
order of any subgroup of 〈a〉 is a divisor of n. For each positive divisor k of n, the group 〈a〉 has
exactly one subgroup of order k, namely

〈
an/k

〉
.

Proof. Let G = 〈a〉 and H ≤ G. If H = {e}, it is of course cyclic with generator e. Suppose H
is a proper non-trivial subgroup. We first show there exists t ∈ Z+ such that at ∈ H. Indeed, we
must have at ∈ H for some t ∈ Z \ {0}, so a−t is also in H as H is a subgroup, and one of t and −t
is in Z+. Now letm be the smallest positive integer such that am ∈ H. We will prove that 〈am〉 = H.

Suppose ak ∈ H for some k ∈ Z. We will show that k must be a multiple of m. By the division
algorithm, there exists q, r ∈ Z with 0 ≤ r < m such that k = qm + r. Hence ak = aqmar so that
ar = ak(am)−q ∈ H as both ak and am are in H. Since m is the least positive integer such that
am ∈ H and 0 ≤ r < m, so r = 0. Therefore, k is a multiple of m, which implies that ak ∈ 〈am〉
and H = 〈am〉 is a cyclic subgroup.

Suppose now that G has finite order and |G| = |a| = n. The order of H is given by

|〈am〉| = |am| = n

gcd(n,m)
,

so the order of H divides n. We also note that an = e ∈ H = 〈am〉, so m divides n. Finally, let k
be any positive divisor of n. Then

〈
an/k

〉
has order given by

n

gcd(n, n/k)
=

n

n/k
= k.

On the other hand, we will show that any subgroup of order k of 〈a〉 must be equal to
〈
an/k

〉
. By

the first part of the theorem, the subgroup must be of the form 〈am〉 for some m ∈ N where m|n.
As m = gcd(m,n),

k = |〈am〉| = n

gcd(m,n)
=

n

m
.

Hence, m = n/k and H =
〈
an/k

〉
.

2.2. Corollary: For each n ∈ N and positive divisor k of n, the cyclic subgroup 〈n/k〉 is the
unique subgroup of Zn of order k. Moreover, these are the only subgroups of Zn.

Proof. Take the group in Theorem 2.1 to be Zn and a = 1.
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2. Classification of Subgroups of Cyclic Groups

Theorems 1.9 and 2.1 together provide a simple way to find all the generators of the sub-
groups of a finite cyclic group.

2.3. Example: Consider the cyclic group 〈a〉 with |a| = 30. By Theorem 2.1, we conclude that
the subgroups of 〈a〉 are precisely those of the form 〈am〉 where m|30. Moreover, if k is a divisor
of 30, then the subgroup of order k is

〈
a30/k

〉
Thus, we can explicitly list out the subgroups of 〈a〉:

〈a〉 =
{
e, a, a2, . . . , a29

}
order 30,〈

a2
〉

=
{
e, a2, a4, . . . , a28

}
order 15,〈

a3
〉

=
{
e, a3, a6, . . . , a27

}
order 10,〈

a5
〉

=
{
e, a5, a10, a15, a20, a25

}
order 6,〈

a6
〉

=
{
e, a6, a12, a18, a24

}
order 5,〈

a10
〉

=
{
e, a10, a20

}
order 3,〈

a15
〉

=
{
e, a15

}
order 2,〈

a30
〉

= {e} order 1.

2.4. Example: The list of subgroups of Z30 is

〈1〉 = {0, 1, 2, . . . , 29} order 30 ,

〈2〉 = {0, 2, 4, . . . , 28} order 15,

〈3〉 = {0, 3, 6, . . . , 27} order 10,

〈5〉 = {0, 5, 10, 15, 20, 25} order 6,

〈6〉 = {0, 6, 12, 18, 24} order 5,

〈10〉 = {0, 10, 20} order 3,

〈15〉 = {0, 15} order 2,

〈30〉 = {0} order 1.

2.5. Example: To find the generators of the subgroup of order 9 in Z36, we observe that 36/9 = 4
is one generator. To find the others, we recall from Corollary 1.13 that |a| = |aj | ⇐⇒ gcd(n, j = 1).
Thus, other generators are all elements of Z36 of the form 4j (operation is addition here, so power
is translated to multiplication), where gcd(9, j) = 1. Thus,

〈4 · 1〉 = 〈4 · 2〉 = 〈4 · 4〉 = 〈4 · 5〉 = 〈4 · 7〉 = 〈4 · 8〉.

In the generic case, to find all the subgroups of 〈a〉 of order 9 where |a| = 36, we have〈(
a4
)1〉

=
〈(
a4
)2〉

=
〈(
a4
)4〉

=
〈(
a4
)5〉

=
〈(
a4
)7〉

=
〈(
a4
)8〉

.

In particular, note that once you have the generator an/d for the subgroup of order d where d is a

divisor of |a| = n, all the generators of
〈
ad
〉

have the form
(
ad
)j

where j ∈ U(d).
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2. Classification of Subgroups of Cyclic Groups

By combining Theorems 1.9 and 2.1, we can easily count the number of elements of each
order in a finite cyclic group. For convenience, we introduce an important number-theoretic
function called the Euler ϕ function.

2.6. Definition: Define the Euler totient function by

ϕ : Z+ → Z+

ϕ(1) = 1

ϕ(n) = number of positive integers less than n and relative prime to n

2.7. Example:

n 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4 · · ·

By definition, |U(n)| = ϕ(n) for each n ≥ 2. We now show that ϕ(d) gives the number of
elements of order d in a cyclic group whose order is a multiple of d.

2.8. Theorem: If d is a positive divisor of n, then the number of elements of order d in a cyclic
group of order n is ϕ(d).

Proof. Let G = 〈b〉 with |G| = |b| = n and H be a unique subgroup of order d given by
〈
bn/d

〉
.

For simplicity, write a := bn/d and note that |a| = d. By Corollary 1.12, any element of order d
also generates 〈a〉. Then by Corollary 1.13, an element ak generates the subgroup 〈a〉 of order d iff
gcd(k, d) = 1. Hence, the number of elements of order d in G is equal to ϕ(d).

2.9. Remark: Note that for a finite cyclic group of order n, the number of elements of order d
for any divisor d of n depends only on d! Thus, Z8, Z640, and Z80000 each has ϕ(8) = 4 elements
of order 8, despite they have different orders.

2.10. Corollary: In a finite group, the number of elements of order d is a multiple of ϕ(d).

Proof. If G has no elements of order d, the statement is true as ϕ(d) divides 0. Suppose there exists
a ∈ G with |a| = d. Then 〈a〉 has ϕ(d) elements of order d by Theorem 2.8. Suppose there exists
b ∈ G of order d such that b 6∈ 〈a〉. Then 〈b〉 has ϕ(d) elements of order d. If there exists some c of
order d such that c ∈ 〈a〉 ∩ 〈b〉, then 〈a〉 = 〈c〉 = 〈b〉, contradicting the fact that b 6∈ 〈a〉. Thus, 〈a〉
and 〈b〉 together have 2ϕ(d) elements. We continue enumerating in this way for each element of
order d in G which is not contained in the previously enumerated cyclic subgroups. As G is finite,
this process comes to an end to give us that there exists a multiple of ϕ(d) elements of order d.
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2. Classification of Subgroups of Cyclic Groups

The following properties of the ϕ function make computing ϕ(n) simple. In particular, it is
easily computed for powers of prime numbers and for products of relatively prime integers.

2.11. Theorem:

• For a prime p and n ∈ Z+, ϕ(pn) = pn − pn−1.

• Suppose m,n ∈ Z+ and gcd(m,n) = 1. Then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Part 1. We want to enumerate the number of positive integers less than or equal to pn that
are relatively prime to pn. There are pn positive integers less than or equal to pn. Let m be a
positive integer less than or equal to pn. To have gcd(p,m) > 1, p must be a divisor of m, so m can
be one of p, 2p, . . . , pn−1p. There are pn−1 such possibilities. Hence gcd (pn,m) = 1 for pn − pn−1
positive integers m less than pn, hence ϕ (pn) = pn − pn−1.

Part 2. We want to enumerate the number of positive integers less than mn that are relatively
prime to mn. We list the integers between 1 and mn out as follows:

1 m+ 1 2m+ 1 . . . (n− 1)m+ 1
2 m+ 2 2m+ 2 . . . (n− 1)m+ 2
...

...
...

...
...

m m+m 2m+m . . . (n− 1)m+m = mn.

For each r ∈ {1, . . . ,m}, the r-th row contains the elements km + r, for k ∈ {0, . . . , n − 1}. Now,
clearly gcd (km+ r,m) = gcd(r,m), so that all entries of the r-th row are relatively prime to m if
and only if gcd(r,m) = 1. If an integer r is not relatively prime to m, it is not relatively prime to
mn, hence to compute ϕ(mn) we can ignore all rows numbered by r where gcd(r,m) > 1. Hence
we only consider ϕ(m) rows.

Now, within each of these ϕ(m) rows, we only need those elements that are relatively prime to mn.
As gcd(m,n) = 1, the set {[0(m) + r], [1(m) + r], . . . , [(n − 1)m + r]} consists of all the possible
congruence classes under congruence modn, for each r that is relatively prime to m. Out of these,
we only need to consider those integers that are relatively prime to n, so there are ϕ(n) such inte-
gers. By being in this row, they are also relatively prime tom, hence they are relatively prime tomn.

Thus in total, there are ϕ(m) rows with ϕ(n) elements each that are relatively prime to mn. Hence
ϕ(mn) = ϕ(m)ϕ(n).
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1. Definition and Notations

Section 1. Definition and Notations

1.1. Definition: Let A be a non-empty set.

• A permutation of A is a bijective function from A to A.

• A permutation group of a set A is a set of permutations of A that form a group under
function composition.

1.2. Remark: We focus on the case where A is finite, of the form {1, 2, . . . , n} for some n ∈ Z+.

1.3. Notation: Let A = {1, 2, 3, 4}. Define α : A→ A as

α(1) = 2, α(2) = 3, α(3) = 1, α(4) = 4.

This can also be written compactly in array form as

α =

[
1 2 3 4
2 3 1 4

]
,

where α(j) is placed directly below j for each j ∈ A.

1.4. (Cont’d): Composition of permutations expressed in array notation is carried out from
right to left by going from top to bottom, then again from top to bottom. For example, given two
permutations

σ =

[
1 2 3 4 5
2 4 3 5 1

]
, γ =

[
1 2 3 4 5
5 4 1 2 3

]
,

we have (γσ)(1) = γ(σ(1)) = γ(2) = 4:

We note that the product given by function composition is not commutative.

1.5. Example: Consider two permutations α, β : A→ A defined by

α =

[
1 2 3 4
2 3 1 4

]
, β =

[
1 2 3 4
2 1 4 3

]
.

Observe that

αβ =

[
1 2 3 4
3 2 4 1

]
, βα =

[
1 2 3 4
1 4 2 3

]
.

30



1. Definition and Notations

We now give an example of a permutation group.

1.6. Example: Let S3 denote the set of all bijective functions from {1, 2, 3} to itself. It’s easy
to see that |S3| = 3! = 6 as there are 6 permutations on a set of size 3. We list the elements out
explicitly:

S3 =

{
ε =

[
1 2 3
1 2 3

]
, α =

[
1 2 3
2 3 1

]
, α2 =

[
1 2 3
3 1 2

]

β =

[
1 2 3
1 3 2

]
, αβ =

[
1 2 3
2 1 3

]
, α2β =

[
1 2 3
3 2 1

]}
Here, ε denotes the identity permutation. Note that α3 = ε = β2 and βα = α2 = β.

This permutation group S3 is called the symmetric group of degree 3.

1.7. Definition: Let A = {1, 2, . . . , n} and Sn denote the group of all permutations of A,
equipped with function composition. Elements of Sn have the following array form:

α =

[
1 2 · · · n

α(1) α(2) · · · α(n)

]
Sn is called the symmetric group of degree n. It is clear that |Sn| = n!.

Permutation groups on A are non-Abelian for if there are at least three elements in A.

1.8. Lemma: Let n ≥ 3. Then the center Z(Sn) of Sn is trivial.

Proof. Let ε 6= π ∈ Sn be a permutation such that π(i) = j for i 6= j ∈ A. Since permutations are
injective, π(j) 6= j. Since n ≥ 3, we can find k 6∈ {j, π(j)} and ρ ∈ Sn which interchanges j and k
and fixes everything else. Let π(j) = m. Then m 6= j and m 6= k, so ρ fixes m, which implies that
ρ(π(j)) = ρ(m) = m = π(j). Now k = ρ(j) by definition of ρ, so π(k) = πρ(j). But π(j) 6= π(k)
since permutations are injective. Thus, ρπ(j) 6= πρ(j). Therefore, π 6= ε is not in Z(Sn) since there
exists a ρ ∈ Sn such that π does not commute with ρ. Since π was chosen arbitrarily, we conclude
that only ε ∈ Z(Sn) and hence Z(Sn) is trivial.

1.9. Proposition: For n ≥ 3, Sn is non-Abelian.

Proof. Recall that a group G is Abelian iff C(a) = G for every a ∈ G. In the Lemma above, we
see that for any ε 6= π ∈ Sn, we have a group ρ ∈ Sn such that πρ 6= ρπ. It follows that Sn is
non-Abelian.
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2. Properties of Permutations

Section 2. Properties of Permutations

Another common notation for specifying permutations is the cycle notation.

2.1. Definition: An expression of the form (a1, a2, . . . , am) is called a cycle of length m or
an m-cycle.

2.2. Example:

α =

[
1 2 3 4 5 6
2 1 4 6 5 3

]
⇐⇒ (1, 2)(3, 4, 6)(5)

β =

[
1 2 3 4 5 6
5 3 1 6 2 4

]
⇐⇒ (1, 5, 2, 3)(4, 6)

Often, a cycle with a single entry is omitted and it is understood that the point in question is fixed.
For example, the cycle (4, 6) can be thought of as representing the permutation (1)(2)(3)(4, 6)(5).
The identity permutation is often denoted by ε = (1).

We first show that each permutation can be represented by a product of disjoint cycles.

2.3. Theorem: Every permutation of a finite set can be written as a product of disjoint cycles.

Proof. Let α be a permutation on A = {1, 2, . . . , n}. Choose a1 ∈ A, a2 = α(a1), a3 = α(a2) =
α2(a1), . . ., until we arrive at a1 = αm(a1) for some m. Since A is finite, m < ∞. To be
precise, we must have i < j ∈ N0 such that αi(a1) = αj(a1), so that a1 = αj−i(a1).

1 We express
this relationship among a1, . . . , am as the cycle (a1, . . . , am) and write α = (a1, . . . , am) · · · . If
A = {a1, . . . , am}, we are done. Otherwise, choose b1 ∈ A\{a1, . . . , am} and repeat the same process
to get a cycle (b1, . . . , bk). We claim that these two cycles are disjoint. Indeed, if αi(a1) = αj(b1)
for some i, j ∈ N0, then αi−j(a1) = b1, which contradicts the criterion for choosing b1. Continuing
in this manner until we find enough disjoint cycles that contain all elements of the finite set A.

1Consider A = {1, 2, 3} with

α =

[
1 2 3
2 3 1

]
.

Choose 1 ∈ A, 2 = α(1), 3 = α(2) = α2(1). We then arrive that α(3) = α3(1) = 1. Here, m = 3. To be precisely,
α0(1) = 1 = α3(1), which gives us a1 = α3−0(a1) as desired.
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2. Properties of Permutations

Next, disjoint cycles commute.

2.4. Theorem: If the pair of cycles α = (a1, . . . , am) and β = (b1, . . . , bn) have no entries in
common, then αβ = βα.

Proof. Suppose α and β are permutations of S = {a1, . . . , am, b1, . . . , bn, c1, . . . , cs}, where the ci’s
are left fixed by α and β (not required to exist). We show that αβ(x) = βα(x) for all x ∈ S. The
case for x = ci is trivial. Next, since ai 6∈ β, we know β(ai) = ai for all i’s. Thus, for x = ai,

αβ(ai) = α(ai) = ai+1 = β(ai+1) = βα(ai),

with the understanding that am+1 = a1. Similarly, bi 6∈ α =⇒ α(bi) = bi for all i’s, so

αβ(bi) = α(bi+1) = bi+1 = β(bi) = βα(bi),

with the understanding that bn+1 = b1.

We now look at the order of a permutation.

2.5. Lemma: A cycle of length n has order n; that is, for σ ∈ Sm of length n, | 〈σ〉 | = n.

Proof. By definition, the order of a permutation σ is the smallest positive integer n such that
σn = ε. Suppose we have an n-cycle σ = (a0, a1, . . . , an−1). Its order cannot be less than n,
because if 0 < k < n, then σk(a0) = ak and it’s implicit in the concept of a cycle that a0 6= ak.

On the other hand, σn is certainly the identity permutation, because it acts on each element of
the cycle by moving it around the entire cycle once. Formally, one can prove by induction that
σk(aj) = a(j+k) mod n and since n ≡ 0 mod n, we have (j + n) mod n = j whenever 0 ≤ j < n.

Finally, elements that are not in the cycle are fixed by σ and therefore also by σn. Since σn = e
and σk = e when 0 < k < n, we conclude that |σ| = n.

2.6. Theorem: The order of a permutation of a finite set written in disjoint cycle form is the
least common multiple of the lengths of the cycles.

Proof. Let us call the elements c1, . . . , cs that appear in a permutation γ = (c1, . . . , cs) symbols.
Suppose that α and β are disjoint cycle of length m and n, and let k = lcm(m,n). By the Lemma
above, |α| = |β| = k, so αk = ε = βk. Now (αβ)k = αkβk as α and β commute by Theorem 2.4.

Let t be the order of αβ. Since (αβ)k = ε, t divides k. Now (αβ)t = αtβt = ε, so αt = β−t. As α
and β are disjoint cycles, they have no common symbol. The same holds for αt and β−t as raising
a cycle to a power does not introduce any new symbols. Hence, the equality of αt and β−t means
that we must have αt = ε = β−t, so that m and n both divide t (again since αm = ε = βn). Hence,
the least common multiple k of m and n also divides t. Combined with above, we conclude that
k = t. That is, |αβ| = lcm(m,n). This argument can now be extended to any finite product of
disjoint cycles.
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2. Properties of Permutations

The Theorem above is a powerful tool for calculating the order of permutations and the
number of permutations of a particular order.

2.7. Example: Let us find the number of elements of S7 of order 3. By the Theorem above,
we need only count the number of permutations of the form (a1, a2, a3) and (a1, a2, a3)(a4, a5, a6).

• First form: 7P3 = 70.

• Second form: (7P3) · (4P3) · 12 = 280. a

Thus, there are in total 350 elements of S7 of order 3.

aWe need 1
2

since (a1, a2, a3)(a4, a5, a6) = (a4, a5, a6)(a1, a2, a3) for fixed {a1, . . . , a6}.

2-cycles, which are also called transpositions, are of particular importance.

2.8. Theorem: Every permutation in Sn for n ≥ 2 is a product of 2-cycles.

Proof. First, write the identity as ε = (1, 2)(2, 1). We know that every permutation can be written
as a product of disjoint cycles:

(a1, . . . , am) (b1, . . . , bn) · · · (c1, . . . , cs) .

It is easily verified that this can be written as

(a1, am) (a1, am−1) · · · (a1, a2) (b1, bn) (b1, bn−1) · · · (b1, b2) · · · (c1, cs) (c1, cs−1) · · · (c1c2)

2.9. Example: We claim that β = (1, 2, 3, 4, 5) ≡ (1, 5)(1, 4)(1, 3)(1, 2). By definition, we have

β =

[
1 2 3 4 5
2 3 4 5 1

]
.

Observe that

((1, 5)(1, 4)(1, 3)(1, 2))(1) = ((1, 5)(1, 4)(1, 3))(2) = 2

((1, 5)(1, 4)(1, 3)(1, 2))(2) = ((1, 5)(1, 4)(1, 3))(1) = ((1, 5)(1, 4)(1, 3))(3) = 3

((1, 5)(1, 4)(1, 3)(1, 2))(3) = ((1, 5)(1, 4)(1, 3))(3) = ((1, 5)(1, 4))(1) = 4

((1, 5)(1, 4)(1, 3)(1, 2))(4) = ((1, 5)(1, 4))(4) = ((1, 5))(1) = 5

((1, 5)(1, 4)(1, 3)(1, 2))(5) = ((1, 5))(5) = 1

2.10. Remark: It is worth noting that this decomposition into 2-cycles is not unique. For
example, the cycle (1, 2, 3, 4, 5) can also be expressed as (5, 4)(5, 2)(2, 1)(2, 5)(2, 3)(1, 3).
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2. Properties of Permutations

2.11. Lemma: If ε = β1β2 · · ·βr where βi’s are 2-cycles, then r is even.

Proof. Clearly, r 6= 1 as a 2-cycle cannot be the identity ε. If r = 2, we are done. Now suppose
r > 2 and that the result is true for all s < r. Suppose the rightmost 2-cycle is (a, b). Since
(i, j) = (j, i), the product βr−1βr can be expressed in one of the following forms for some symbols
c, d in the set on which the permutation is considered. The expression on the right in each case
can be written as a product of cycles so that a does not occur in the right cycle on the LHS:

ε = (a, b)(a, b)

(a, b)(b, c) = (a, c)(a, b)

(a, c)(c, b) = (b, c)(a, b)

(a, b)(c, d) = (c, d)(a, b)

If the first case occurs, we may delete βr−1βr from the original product to obtain ε = β1β2 · · ·βr−2.
By IH, r − 2 is even, r is even. In the other three cases, we replace the form of βr−1βr on the
right by its counterpart on the left to obtain a new product of r 2-cycles that is still the identity,
but where the rightmost occurrence of the integer a is in the second-from-the-rightmost 2-cycle of
the product instead of the rightmost 2-cycle. We now repeat the procedure just described with
βr−2βr−1, and, as before, we obtain a product of (r − 2) 2-cycles equal to the identity or a new
product of r 2-cycles, where the rightmost occurrence of a is in the third 2-cycle from the right.
Continuing this process, we must obtain a product of (r− 2) 2-cycles equal to the identity, because
otherwise we have a product equal to the identity in which the only occurrence of the integer a is
in the leftmost 2-cycle, and such a product does not fix a, whereas the identity does. Hence, by
IH, r − 2 is even, and r is even as well.

All 2-cycle-decompositions of the same permutation have the same parity.

2.12. Theorem: If a permutation α can be expressed as a product of an even (odd) number of
2-cycles, then every decomposition of α into a product of 2-cycles must have an even (respectively,
odd) number of 2-cycles.

Proof. Suppose α = β1 · · ·βr = γ1 · · · γs for r, s ∈ N. Then ε = γ1 · · · γsβ−1r · · ·β−11 = γ1 · · · γsβr · · ·β1.
Note that we used above that the inverse of a 2-cycle is itself. By the Lemma above, s+ r is even,
so s, r are both odd or both even.

The above theorem allows us to make the following definition.

2.13. Definition: A permutation that can be expressed as a product of an even (odd) number
of 2-cycles is called an even (respectively, odd) permutation.

2.14. Theorem: The set of even permutations in Sn forms a subgroup of Sn.

Proof. First, ε ∈ An. It is clear that a 2-cycle is its own inverse. Hence the inverse of an even
permutation is also even. Finally, clearly the product of two even permutations is even.
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2. Properties of Permutations

2.15. Definition: The group of even permutations in Sn, denoted by An, is called the alter-
nating group of degree n.

2.16. Theorem: For n ≥ 2, |An| = n!/2.

Proof. For each odd permutation α, the permutation (1, 2)α is even and (1, 2)α 6= (1, 2)β when
α 6= β. Thus the number of even permutations is greater than or equal to the number of odd
permutations. Similarly if α is even, the permutation (1, 2)α is odd and (1, 2)α 6= (1, 2)β if α 6= β.
Hence the number of odd permutations is greater than or equal to the number of even permutations.
So, indeed, these numbers must be equal and each is equal to |Sn|

2 . So |An| = n!
2 .
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3. Dihedral Groups

Section 3. Dihedral Groups

3.1. Motivation: We look at a particular type of permutation groups called dihedral groups.
We are interested in the so-called symmetries of the regular polygon with n ≥ 3 sides. These
are bijections from the polygon onto itself such that the orientation is preserved.They consist of
rotational and refection symmetries.

3.2. Consider an equilateral triangle. In its resting state, the vertices a, b, c are in the positions
1, 2, 3, respectively. On applying one of our symmetries, the resulting figure must look the same,
and only the labels may change. It is clear then that the rotational symmetries are given by rotating
(counterclockwise) by 0, 2π

3 , and 4π
3 . For example, rotating by 2π

3 sends the vertex a to position 2,
vertex b to position 3, and vertex c to position 1.

3.3. Let us formalize this using array form and cycle form. First, rotation by 2π
3 :

r1 =

[
1 2 3
2 3 1

]
= (1, 2, 3).

Next, reflection about the bisector passing through the vertex in the first position:

s0 =

[
1 2 3
1 3 2

]
= (2, 3).

In general, we have

{r0 = (1), r1 = (1, 2, 3), r2 = (1, 3, 2), s0 = (2, 3), s1 = (1, 2), s2 = (1, 3)} ,

Note there are 6 = 2 · 3 such symmetries. We are now ready to define dihedral groups.

3.4. For n ≥ 3, consider the regular n -polygon in R2. It has 2n symmetries, namely n rotations
rk (counter-clockwise) by 2πk

n for k = 0, 2, . . . , n − 1, and n reflections sl about the axis passing

through πl
n for l = 0, . . . , n− 1. There are 2n such symmetries in total. The key point is that the

set {r0, . . . , rn−1, s0, . . . , sn−1} forms a group under the product given by composition of maps.

Let us form the multiplication table for the symmetries of the regular 3 -gon, that is, the equilateral
triangle considered above.

r0 r1 r2 s0 s1 s2
r0 r0 r1 r2 s0 s1 s2
r1 r1 r2 r0 s1 s2 s0
r2 r2 r0 r1 s2 s0 s1
s0 s0 s2 s1 r0 r2 r1
s1 s1 s0 s2 r1 r0 r2
s2 s2 s1 s0 r2 r1 r0

We now define the dihedral group Dn of order 2n abstractly as follows.
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3. Dihedral Groups

3.5. Definition: The dihedral group Dn of order 2n is defined by

rirj = r(i+j) mod n

risj = s(i+j) mod n

sirj = s(i−j) mod n

sisj = r(i−j) mod n

3.6. Example: Consider the symmetries of a square. D4 = {r0, r1, r2, r3, s0, s1, s2, s3}, where ri
denotes the (counterclockwise) rotation by 2πi

4 and si denote the reflection about the axis passing
through πi

4 . The corresponding axes are marked on the figure as Si:

Let us write the elements of D4 in array form:

r0 =

[
1 2 3 4
1 2 3 4

]
= (1) = ε

r1 =

[
1 2 3 4
2 3 4 1

]
= (1, 2, 3, 4)

r2 =

[
1 2 3 4
3 4 1 2

]
= (1, 3)(2, 4)

r3 =

[
1 2 3 4
4 1 2 3

]
= (1, 4, 3, 2)

s0 =

[
1 2 3 4
2 1 4 3

]
= (1, 2)(3, 4)

s1 =

[
1 2 3 4
3 2 1 4

]
= (1, 3)

s2 =

[
1 2 3 4
4 3 2 1

]
= (1, 4)(2, 3)

s3 =

[
1 2 3 4
1 4 3 2

]
= (2, 4)
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1. Definition and Examples

Section 1. Definition and Examples

1.1. Definition: A homomorphism ϕ from a group G equipped with a product to another
group G with product ? is a mapping that preserves the group operation, i.e.,

∀a, b ∈ G : ϕ(a · b) = ϕ(a) ? ϕ(b).

We often omit the product symbol and write ϕ(ab) = ϕ(a)ϕ(b), where it is understood that the
product of a and b on the LHS is in G and the product of ϕ(a) and ϕ(b) on the RHS is in G.

1.2. Definition: An isomorphism from a group G to a group G is a homomorphism which is
one-to-one and onto. In this case, we say that the groups are isomorphic and write G ∼= G.

Implicitly, the existence of a bijective between G and G implies that they have the same
order. To prove that two groups are isomorphic, we need to show the existence of a well-
defined function between the two sets, which is bijective and preserves the group structure.

1.3. Example: Let G = (R,+) and G = (R,×). Then G and G are isomorphic under the
mapping ϕ(x) = 2x. To show this,

• ϕ(x+ y) = 2x+y = 2x2y = ϕ(x)ϕ(y).

• Suppose 2x = 2y, then log2 2x = log2 2y so that x = y. This ϕ is injective.

• For every y ∈ R+, x = log2(y) is the pre-image of y under ϕ, so it is surjective.

1.4. Example: A cyclic group of infinite order is isomorphic to Z. Let G = 〈a〉. Define
ϕ : G→ Z by ϕ(ak) = k. Then ϕ is well-defined and is an isomorphism:

• ϕ(akal) = ϕ(ak+l) = k + l = ϕ(ak) + ϕ(al), so ϕ is a homomorphism.

• ϕ(ak) = ϕ(al) =⇒ k = l =⇒ ak = al, so ϕ is injective.

• For each k ∈ Z, the element ak ∈ G is mapped to k under ϕ, so ϕ is surjective.

1.5. Example: A finite cyclic group 〈a〉 of order n is isomorphic to Zn under the mapping
ϕ(ak) = k mod n. The mapping ϕ is well-defined because ak = al in a cyclic group of order n
implies that n divides k − l. It is an isomorphism as the following hold:

• ϕ(akal) = ϕ(ak+l) = (k + l)(modn) = k(modn) + l(modn) = ϕ(ak) + ϕ(al), so ϕ is a homomorphism.

• ϕ(ak) = ϕ(al) =⇒ k mod n = ` mod n =⇒ n|(k − l), so ak = al. Hence, ϕ is injective.

• For each k ∈ Zn, the element ak ∈ G is mapped to k under ϕ, so ϕ is surjective.

1.6. Example: U(10) and U(5) are both isomorphic to Z4. Recall that U(10) = {1, 3, 7, 9} = 〈3〉
and U(5) = {1, 2, 3, 4} = 〈3〉, so both groups are cyclic of order 4 and hence isomorphism to Z4.
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1. Definition and Examples

1.7. Example: Let G = SL(2,R), the simple linear group of 2×2 real matrices with determinant
equal to 1. Let M ∈ SL(2,R) and define ϕM from G to itself by ϕM (A) = MAM−1 for A ∈ G. As
the determinant is multiplicative, MAM−1 does indeed belong to G for each A ∈ G. We will show
that ϕM is indeed an isomorphism of G into itself.

• ϕM (AB) = MABM−1 = MAM−1MBM−1 = ϕM (A)ϕM (B) so ϕM is a group homomorphism.

• Suppose ϕM (A) = ϕM (B). Then MAM−1 = MBM−1, so A = B follows by left and right
cancellation and thus ϕM is one-to-one.

• Let B ∈ G. Then A = M−1BM ∈ G and ϕM (A) = MM−1BMM−1 = B, so ϕ is onto.

This mapping ϕM is called conjugation by M .

1.8. Example: We now look at some non-examples.

• The mapping from R with addition to itself given by ϕ(x) = x3 is not an isomorphism. ϕ is
one-to-one and onto but not a group homomorphism as it is not true that (x+ y)3 = x3 + y3

for all x, y ∈ R.

• Two groups of the same order need not be isomorphic. For example, consider U(10) =
{1, 3, 7, 9} and U(12) = {1, 5, 7, 11} both of which are of order 4. Note that U(10) is cyclic
with generators 3 and 7, but U(12) is not cyclic. In fact, for each x ∈ U(12), x2 = 1. Suppose
that ϕ is a group homomorphism from U(10) onto U(12). Then

ϕ(9) = ϕ(3 · 3) = ϕ(3)ϕ(3) = 1 = ϕ(1)ϕ(1) = ϕ(1 · 1) = ϕ(1).

This means that ϕ cannot be injective and U(10) 6∼= U(12). As we will see later, if two groups
are isomorphic and one is cyclic, then the other must also be cyclic.

• (Q,+) and (Q∗ := Q \ {0},×) are not isomorphic. If ϕ were a group isomorphism from Q
onto Q∗ there would exist some rational number a such that ϕ(a) = −1. Then

−1 = ϕ(a) = ϕ
(a

2
+
a

2

)
= ϕ

(a
2

)
ϕ
(a

2

)
= ϕ2

(a
2

)
.

However, the square of a rational number cannot be equal to −1.
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2. Cayley’s Theorem

Section 2. Cayley’s Theorem

2.1. Theorem (Cayley): Every group is isomorphic to a group of permutations.

Proof. Let G be a group. For g ∈ G, define Lg : G→ G by

∀x ∈ G : Lg(x) = gx.

That is, for each g ∈ G, Lg is the function of left multiplication by g on G. Then Lg is a permuta-
tion on G, as it is one-to-one and onto from G to itself.

Let G = {Lg | g ∈ G}. We will define an operation on G that makes it a group. As G is a set
consisting of functions, the obvious operation to define on it is the function composition. We will
now show that G is indeed a group with this this operation.

• For g, h ∈ G, LgLh(x) = (gh)x = Lgh(x) ∈ G, so G is closed under function composition.

• Associativity follows by associativity of function composition.

• Le is the identity element of G, where e is the identity of G.

• For each g ∈ G, Lg−1 is the inverse of Lg.

It remains to show that there exists an isomorphism ϕ : G→ G. Define ϕ(g) = Lg for g ∈ G. We
have already shown that Lgh = LgLh, so that ϕ(gh) = ϕ(g)ϕ(h). Now suppose Lg = Lh. Then in
particular, Lg(e) = Lh(e), so ge = he and thus g = h. Hence, ϕ is one-to-one. By the definition of
G, it is clear that ϕ is onto. We have shown that G is isomorphic to the group G of permutations
of left multipliers on G. Note that G is called the left regular representation of G.
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3. Properties of Isomorphisms

Section 3. Properties of Isomorphisms

3.1. Theorem: Suppose that ϕ is an isomorphism from a group G onto a group G with identity
elements denoted by eG and eG, respectively. Then the following properties hold:

(1). ϕ carries the identity of G to G, that is, ϕ(eG) = eG.

(2). For each n ∈ Z and a ∈ G, ϕ(an) = ϕn(a). In particular, ϕ(a−1) = ϕ−1(a).

(3). For a, b ∈ G, ab = ba ⇐⇒ ϕ(a)ϕ(b) = ϕ(b) = ϕ(a).

(4). G = 〈a〉 ⇐⇒ G = 〈ϕ(a)〉.
(5). |a| = |ϕ(a)| for all a ∈ G.

(6). For k ∈ Z and b ∈ G, the equation xk = b has the same number of solutions in G as does the
equation yk = ϕ(b) in G.

(7). If |G| is finite, then G and G have exactly the same number of elements of every order.

Proof.

(1). eGϕ(eG) = ϕ(eG) = ϕ(eG · eG) = ϕ(eG)ϕ(eG). By cancellation, ϕ(eG) = eG.

(2). For positive integers n ∈ N, we show that ϕ(an) = ϕn(a) by induction. The base case n = 1, 2
are trivial. Suppose it is true for k ∈ N, that is, ϕ(ak) = ϕk(a). Then

ϕ(ak+1) = ϕ(aka) = ϕ(ak)ϕ(a) = ϕk(a)ϕ(a) = ϕk+1(a).

For n = 0, we already have the equality ϕ(eG) = eG. The n < 0 case is identical.

(3). ab = ba⇔ ϕ(ab) = ϕ(ba)⇔ ϕ(a)ϕ(b) = ϕ(b)ϕ(a) by injectivity and multiplicativity of ϕ.

(4). Suppose G = 〈a〉, then certainly 〈ϕ(a)〉 ≤ G. On the other hand, for any g ∈ G, there exists
g ∈ G = 〈a〉 such that ϕ(g) = g. The element g must be of the form ak for some k ∈ Z, hence
g = ϕ(ak) = ϕk(a) ∈ 〈ϕ(a)〉.

(5). If ϕm(a) = eG for some m ∈ N and m is the smallest such positive integer, then ϕ(am) =
eG = ϕ(eG) so that am = eG by injectivity of ϕ. Suppose ak = eG for some smaller positive
integer than m. Then ϕk(a) = eG, a contradiction. Hence, |a| = |ϕ(a)|.

(6). Suppose gk = b for some g ∈ G, then ϕ(g)k = ϕ(gk) = ϕ(b), so that ϕ(g) is a solution of the
equation yk = ϕ(b) in G. Conversely, if gk = ϕ(b) and let g ∈ G be the unique pre-image of
g under ϕ. Then ϕ(gk) = ϕk(g) = gk = ϕ(b), so that gk = b by injectivity.

(7). Follows from the fact that |a| = |ϕ(a)| for all a ∈ G.

3.2. The failure of any one of the above properties can be used to show that certain groups are
not isomorphic.
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3. Properties of Isomorphisms

3.3. Theorem: Suppose that ϕ is an isomorphism from a group G onto a group G. Then

(1). ϕ−1 is an isomorphism from G onto G.

(2). G is Abelian iff G is Abelian.

(3). G is cyclic iff G is cyclic.

(4). If K ≤ G, then ϕ(K) = {ϕ(k) | k ∈ K} ≤ G.

(5). If K ≤ G, then ϕ−1(K) = {g ∈ G | ϕ(g) ∈ K} is a subgroup of G.

(6). ϕ(Z(G)) = Z(G).

Proof.

(1). We show that ϕ−1 is a group homomorphism. Let x, y ∈ G. Then there exists a, b ∈ G
such that x = ϕ(a) and y = ϕ(b). Hence, ϕ−1(xy) = ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ϕ(ab)) = ab =
ϕ−1(x)ϕ−1(y). Finally, ϕ−1 is bijective as ϕ is bijective.

(2). Follows from Theorem 3.1(3).

(3). Follows from Theorem 3.1(4).

(4). Clearly, eG = ϕ(eG) ∈ ϕ(K) so ϕ(K) is non-empty. Suppose ϕ(k1), ϕ(k2) ∈ ϕ(K). Then
ϕ(k1)ϕ(k2)

−1 = ϕ(k1k
−1
2 ) ∈ ϕ(K) as k1k

−1
2 ∈ K. Hence, ϕ(K) is a subgroup.

(5). Follows from (1) and (4).

(6). Follows from Theorem 3.1(3).
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4. Automorphisms

Section 4. Automorphisms

4.1. Definition: An automorphism is an isomorphism from a group G onto itself. The set of
automorphisms of a group G is denoted by Aut(G).

4.2. Example: The function ϕ : C→ C, ϕ(a+ bi) = a− bi is an automorphism on (C,+).

4.3. Definition: Let G be a group and a ∈ G. The function ϕa defined on G by ϕa(g) =
aga−1 for all g ∈ G is called the inner automorphism of G induced by a. The set of all inner
automorphisms of G is denoted by Inn(G).

4.4. Example: Consider ϕr1 induced by r1 on D4. Recall that r−11 = r3. Thus,

4.5. Theorem: For a group G, Aut(G) and Inn(G) are groups under function composition.

Proof. The proof for Aut(G) is trivial. Now suppose ϕa, ϕb are inner automorphisms induced by
a, b ∈ G. Then ϕaϕb(x) = ϕa(bxb

−1) = a(bxb−1)a−1 = (ab)x(ab)−1 = ϕab(x). Associativity follows
from function composition. Clearly, ϕe is the identity and (ϕa)

−1 = ϕa−1 .

4.6. Example: Let us compute Inn(D4), the set of all inner automorphisms on the group D4.
First, for any y ∈ Z(G), ϕy = ϕr0 which is the identity automorphism:

y ∈ Z(G) =⇒ ∀x ∈ G : yxy−1 = xyy−1 = x =⇒ ϕy = ϕr0 .

From the table, r0, r2 ∈ Z(D4), so ϕr2 = ϕr0 . Next,

ϕr3(x) = r3xr
−1
3 = r1r2xr

−1
2 r−11 = r1xr

−1
1 = ϕr1(x).

Similarly, as s0 = r2s2 and s1 = r2s3, we have ϕs0 = ϕs2 and ϕs1 = ϕs3 , so we are now left with
only ϕr0 , ϕr1 , ϕs0 , ϕs1 . These are the distinct inner automorphisms (details omitted).
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4. Automorphisms

4.7. Example: We now show how to compute Aut(Z10). Let α ∈ Aut(Z10). Then by the
group automorphism property, α is completely determined by its value at the identity, 1, as
α(l) = α(l(1)) = lα(1). As 1 is an element of order 10, by Theorem 3.1 (v), for α to be an
isomorphism, α(1) must also be an element of order 10. By Corollary 1.13 applied to Z10, we have
|k| = |1| = 10 iff gcd(10, k) = 1, hence k ∈ {1, 3, 7, 9}. Hence, we can choose α(1) to be one of
these four possible values. Depending on our choice, let us denote the corresponding mappings by
α1, α3, α7, α9. We will now show that each of these mappings is indeed an automorphism.

As α1(k) = kα1(1) = k, α1 is the identity automorphism. For each remaining αk, x mod 10 ≡
y mod 10 ⇐⇒ kx mod 10 ≡ ky mod 10 as gcd(k, 10) = 1. Thus, each αk is well-defined. It is
clearly a group homomorphism as αk(a + b) = k(a + b) mod 10 = (ka + kb) mod 10 = (αk(a) +
αk(b)) mod 10. As k is a generator of Z10 for each k with gcd(k, 10) = 1, each αk is onto. To see
it’s one-to-one, suppose αk(a) = αk(b), then ka ≡ kb mod 10 which implies that 10|k(b − a). But
then gcd(k, 10) = 1 =⇒ 10(b− a) so a ≡ b mod 10.

We now have the following multiplication table for Aut(Z10). It is parallel to the multiplication
table of U(10), which is not a coincidence.

4.8. Theorem: For each n ∈ N, Aut(Zn) is isomorphic to U(n).

Proof. Any automorphism α is determined by the value of α(1). As α(1) must have order equal
to the order of 1 which is n, it can take values in U(n) by Corollary 1.13. Define the map T :
Aut(Zn)→ U(n) by T (α) = α(1). As α is uniquely determined by α(1), T is a one-to-one mapping.
To show T is onto, let k ∈ U(n) and αk ∈ Aut(Zn) be the map such that αk(1) = k. Then of course
T (αk) = k. It remains to show that T is a group homomorphism. Let α, β ∈ Aut(Zn). Then

T (αβ) = αβ(1) = α (1 + · · ·+ 1)︸ ︷︷ ︸
β(1) times

= α(1) + · · ·+ α(1)︸ ︷︷ ︸
β(1) times

= α(1)β(1) = T (α)T (β).
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1. Cosets

Section 1. Cosets

1.1. Definition: Let G be a group and H be a non-empty subset of G. For any a ∈ G, define

aH = {ah | h ∈ H}
Ha = {ha | h ∈ H}

aHa−1 = {aha−1 | h ∈ G}

If H ≤ G, aH is called the left coset of H in G containing a and Ha is called the right coset
of H in G containing a. The element a is called the coset representative of aH (or Ha).

1.2. Example: Consider the following elementary examples:

• Let G = S3, H = {(1), (1, 3)}. The left cosets of H in S3 are:

(1)H = H

(1, 2)H = {(1, 2)(1), (1, 2)(1, 3)} = {(1, 2), (1, 3, 2)}
(1, 3, 2)H = {(1, 3, 2), (1, 3, 2)(1, 3)} = {(1, 3, 2), (1, 2)}

(1, 3)H = {(1, 3), (1, 3)(1, 3)} = {(1, 3), (1)} = H

(2, 3)H = {(2, 3), (2, 3)(1, 3)} = {(2, 3), (1, 2, 3)}
(1, 2, 3)H = {(1, 2, 3), (1, 2, 3)(1, 3)} = {(1, 2, 3), (2, 3)}

• Let G = Z9, H = {0, 3, 6}. The cosets of H in Z9 are:

0 +H = {0, 3, 6} = 3 +H = 6 +H

1 +H = {1, 4, 7} = 4 +H = 7 +H

2 +H = {2, 5, 8} = 5 +H = 8 +H

• Let G = D4, H = {r0, r2}. The cosets of H in D4 are

r0H = {r0, r2} = H

r1H = {r1, r1r2} = {r1, r3}
r2H = {r2, r2r2} = {r2, r0} = H

r3H = {r3, r3r2} = {r3, r1}
s0H = {s0, s0r2} = {s0, s2}
s1H = {s1, s1r2} = {s1, s3}
s2H = {s2, s2r2} = {s2, s0}
s3H = {s3, s3r2} = {s3, s1}

We have some observations:

• Cosets need not be subgroups.

• Cosets of a subgroup H corresponding to different elements a, b ∈ G can be the same.

• The left coset does not need to equal to the right coset, i.e., aH need not be the same as Ha.
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1. Cosets

These examples and observations raise many questions:

• When does aH = bH? (See Lemma 1.3 (4), (6).)

• Do aH and bH have any elements in common? (See Lemma 1.3 (5).)

• When does aH = Ha? (See Lemma 1.3 (8).)

• Which cosets are subgroups? (See Lemma 1.3 (9).)

1.3. Lemma: Let H ≤ G and a, b ∈ G. Then

(1). a ∈ aH.

(2). aH = H ⇐⇒ a ∈ H.

(3). (ab)H = a(bH) and H(ab) = (Ha)b.

(4). aH = bH ⇐⇒ a ∈ bH.

(5). Either aH = bH or aH ∩ bH = ∅.

(6). aH = bH ⇐⇒ a−1b ∈ H.

(7). |aH| = |bH|.
(8). aH = Ha ⇐⇒ H = aHa−1.

(9). aH ≤ G ⇐⇒ a ∈ H.

Proof. (1). H ≤ G⇒ e ∈ H ⇒ a = ae ∈ aH.

(2). a ∈ H ⇒ ∀h ∈ H : ah ∈ H ⇒ aH ⊆ H. On the other hand, a ∈ H ⇒ a−1 ∈ H ⇒ h =
a(a−1h) ∈ aH ⇒ H ⊆ aH. Conversely, suppose that aH = H. Then a = ae ∈ aH = H.

(3). By associativity, (ab)h = a(bh) and h(ab) = (ha)b for all h ∈ H.

(4). aH = bH ⇒ a = ae ∈ aH = bH. Conversely, a ∈ bH ⇒ ∃h1 ∈ H : a = bh1 ⇒ aH =
(bh1)H = b(h1)H = bH by (2) and (3).

(5). c ∈ aH ∩ bH ⇒ aH = cH = bH by (4).

(6). aH = bH ⇔ H = a−1bH ⇔ a−1b ∈ H by (4).

(7). The map ah→ bh from aH to bH is bijective, so they have the same size.

(8). aH = Ha⇔ aHa−1 = Haa−1 = H.

(9). a ∈ H ⇒ aH = H ≤ G by (2). Conversely, aH ≤ G ⇒ e ∈ aH ⇒ eH ∩ aH 6= ∅. By (5),
aH = eH = H so a ∈ H by (2).

1.4. Remark: Note that (1), (5), and (7) imply that a group G can be partitioned into distinct
cosets of equal cardinality, and indeed the relation a ∼ b iff aH = bH is an equivalence relation
that partitions G into equivalence classes given by distinct cosets. The subgroup H is often thus
chosen in such a way as to partition the group in some desirable way. For example, consider
H = SL(2,R) ≤ G = GL(2,R) and its cosets. For any matrix A ∈ GL(2,R), the coset AH consists
of all matrices with the same determinant as A.
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2. Lagrange’s Theorem

Section 2. Lagrange’s Theorem

2.1. Theorem: If G is a finite group and H ≤ G, then |H| divides |G|. The number of distinct
left/right cosets of H in G is |G|/|H|.

Proof. Let a1H, . . . , arH denote the distinct left cosets of H in G. Then for each a ∈ G, aH = aiH
for some i. By Lemma 1.3(1), a ∈ aH = aiH. Thus, each a ∈ G belongs to some coset aiH, i.e.,

G = a1H ∪ · · · ∪ arH.

This union is disjoint by Lemma 1.3(5), hence |G| = |a1H|+ · · ·+ |arH| = r|H| by Lemma 1.3(7).
Hence, |H| divides |G| and |G|/|H| is equal to the number of left cosets of H in G.

Lagrange’s Theorem is a subgroup candidate criterion, that is, it provides a list of can-
didates for the orders of subgroups of a group. For example, a group of order 12 may have
subgroups of order 12, 6,4,3,2,1, but no others. However, the converse of Lagrange’s Theorem
is False! In other words, a group of order 12 need not have a subgroup of order 6. See below.

2.2. Example: The converse of Lagrange’s theorem is false. Consider A4, the alternating group
of degree 4 (the set of even permutations of {1, 2, 3, 4} under composition). Then

|A4| =
4!

2
= 12,

but we claim that A4 has no subgroups of order 6. To see this, observe that S4 has 8 elements of
order 3 as they are all 3-cycles; they are even permutations and belong to A4. Now suppose that
A4 has a subgroup H of order 6. Let a be any element of order 3 in A4 and suppose a 6∈ H. Then
A4 = H ∪ aH so that a2 ∈ H or a2 ∈ aH. If a2 ∈ H, then a = a4 ∈ H, a contradiction. On the
other hand, a2 ∈ aH implies that a2 = ah for some h ∈ H, so a ∈ H, a contradiction. Thus, it
must be true that a ∈ H for every a with order 3. But this implies that 8 elements belong to a
subgroup of order 6, contradiction.

This counterexample shows that unlike in a cyclic group, a finite group of order n need not
have a subgroup of order k if k divides n. (Compare with Theorem 2.1.)

Next, we give a special name and notation for the number of left/cosets of a subgroup in a
group. Corollary 2.4 is an immediate consequence of the proof of Lagrange’s Theorem.

2.3. Definition: The index of a subgroup H in G, denoted by |G : H|, is the number of
distinct left cosets of H in G.

2.4. Corollary: If G is a finite group and H ≤ G, then |G : H| = |G|/|H|.

Proof. Trivial.
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2. Lagrange’s Theorem

2.5. Corollary: In a finite group, the order of each element of the group divides the order of
the group.

Proof. Let G be a finite group and a ∈ G. Then 〈a〉 ≤ G and hence |a| = | 〈a〉 | divides |G|.

2.6. Corollary: A group of prime order is cyclic.

Proof. Let G have prime order, say p, and let e 6= a ∈ G. By Lagrange, | 〈a〉 | divides |G| = p, so
| 〈a〉 | = p or 1. As a 6= e, 〈a〉 = p, which implies that 〈a〉 = G.

2.7. Corollary: Let G be a finite group and a ∈ G. Then a|G| = e.

Proof. By Corollary 2.5, there exists n ∈ N such that n|a| = |G|. Hence a|G| = an|a| = e.

2.8. Corollary (Fermat’s Little Theorem): For every a ∈ Z and every prime p,

ap mod p = a mod p.

Proof. There exist m, r ∈ Z with 0 ≤ r < p such that a = pm+ r, that is, a mod p ≡ r. It remains
to prove that rp mod p ≡ r. If r = 0, the result holds. If r ∈ {1, 2, . . . , p − 1} = U(p), then by
Lemma 2.7, rp−1 mod p ≡ 1. Hence, rp mod p ≡ r.

2.9. Example: Consider p = 2257 − 1. If p is prime, then by Fermat’s Little Theorem,

10p mod p = 10 mod p =⇒ 10p+1 mod p = 100 mod p.

Using multiple precision and a simple loop, a computer was able to calculate

10p+1 mod p = 102
257

mod p

in a few seconds. The result was not 100, so p is not prime.

The following places powerful limits on the existence of certain subgroups in finite groups.

2.10. Theorem: For two finite subgroups H and K of a group, let HK = {hk | h ∈ H, k ∈ K}.
Then

|HK| = |H||K|
|H ∩K|

.

Proof. The set HK has hk products, but they may not all be distinct. That is, we may have
hk = h′k with h 6= h′ ∈ H and k 6= k′ ∈ K. To determine |HK|, we must find the extent to
which this happens. For each t ∈ H ∩ K, hk = h(tt−1)k = (ht)(t−1k) ∈ HK as ht ∈ H and
t−1k ∈ K. Hence, each group element in HK is represented by at least |H ∩K| products in HK.
But hk = h′k′ implies t := h−1h′ = kk′−1 ∈ H ∩ K, so that h′ = ht and k′ = t−1k. Thus, each
element in HK is represented by exactly |H ∩K| products. The result follows.
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2. Lagrange’s Theorem

2.11. Example: A group of order 75 can have at most one subgroup of order 25. Suppose for
a contradiction that G has two subgroups of order 25, H and K. Since |H ∩K| divides |H| = 25,
we know that |H ∩K| ∈ {1, 5, 25}. By Theorem 2.10, we have

|HK| = |H||K|
|H ∩K|

=
25 · 25

|H ∩K|
∈ {625, 125, 25}.

But HK ⊆ G, so |HK| ≤ |G| = 75. It follows that |H ∩K| = 25 and therefore H = K.

For any prime p > 2, we know that Z2p and Dp are non-isomorphic groups of order 2p. This
naturally raises the question of whether there could be other possible groups of these orders.

2.12. Theorem (Classification of Groups of Order 2p): Let G be a group of order 2p,
where p > 2 is prime. Then G is isomorphic to Z2p or Dp.

Proof. If G has an element of order 2p, then G ∼= 〈a〉, i.e., G is a cyclic group of order 2p and is
thus isomorphic to Z2p. Now suppose there is no element of order 2p in G. Then any non-identity
element of G must have order 2 or p by Corollary 2.5. If every non-identity element of G has order
2, then G is Abelian. In this case, the set {e, a, b, ab} is closed and contains all inverses, hence it is
a subgroup of order 4 of G, contradicts to the fact that any subgroup of G must have order 2 or p
by Lagrange’s Theorem. Hence, some element a ∈ G must have order p.

Let b ∈ G \ 〈a〉. Then |b| ∈ {2, p}. By another application of Lagrange’s Theorem, | 〈a〉 ∩ 〈b〉 |
divides | 〈a〉 | = p and 〈a〉 6= 〈b〉 =⇒ | 〈a〉 ∩ 〈b〉 | = 1. If |b| = p, then by Theorem 2.10,

| 〈a〉 〈b〉 | = p2

1
= p2 > 2p = |G|,

which is impossible, so it must hold that |b| = 2. Thus, altogether, we have shown that any element
outside 〈a〉 must have order 2. Further, note that e, a, a2, . . . , ap−1 and b, ab, a2b, . . . , ap−1b are all
distinct elements of G. Since there are 2p = |G| such elements, they must be all the elements of G.

Consider the element ab. Since it does not belong to 〈a〉, it must have order 2. Hence, ab =
(ab)−1 = ba−1. This relation will determine the multiplication table of G.

Recall the dihedral group Dp of order 2p for p ≥ 3. Choose a rotation of order p (e.g., r1) and
any reflection (e.g., s2). Then every element of D2p can be written as products of these two ele-
ments. The set {r1, s2} is said to generate the group G. Further, r1s2 = s3 and s2r

−1
1 = s2rp−1 =

s(2−p+1) mod p = s3 so that r1s2 = s2r
−1
1 .

In G (and Dp), the multiplication table is completely determined by the relation ab = ba−1 as we
have the following:

akal = ak+l mod p , ak(alb) = ak+l mod pb

(alb)ak = ba−lak = bak−l mod p = al−k mod pb , (akb)(alb) = akb2a−l = ak−l mod p

Hence G ∼= Dp via the isomorphism ϕ(aqbr) = rq1s
r
2 for q = 0, 1, . . . , p− 1 and r = 0, 1.
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2. Lagrange’s Theorem

2.13. Corollary: S3 ∼= D3.

Proof. |S3| = 2(3) = 6 and it is not cyclic.
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3. An Application to Permutation Groups

Section 3. An Application to Permutation Groups

3.1. Definition: Let G be a group of permutations of a set S. For each i ∈ S,

• the stabilizer of i in G is defined as stabG(i) = {ϕ ∈ G | ϕ(i) = i} ⊆ G.
• the orbit of i in G is defined as orbG(i) = {ϕ(i) | ϕ ∈ G} ⊆ S.

3.2. Lemma: For all i ∈ G, stabG(i) ≤ G.

Proof. Trivial.

3.3. Example: Let the group G be given by

G = {(1), (1, 3, 2)(4, 6, 5)(7, 8), (1, 3, 2)4, 6, 5), (1, 2, 3)(4, 5, 6), (1, 2, 3)(4, 5, 6)(7, 8), (7, 8)}

Then

orbG(1) = {1, 3, 2} stabG(1) = {(1), (7, 8)}
orbG(2) = {2, 1, 3} stabG(2) = {(1), (7, 8)}
orbG(3) = {3, 2, 1} stabG(3) = {(1), (7, 8)}
orbG(4) = {4, 6, 5} stabG(4) = {(1), (7, 8)}
orbG(5) = {5, 4, 6} stabG(5) = {(1), (7, 8)}
orbG(6) = {6, 5, 4} stabG(6) = {(1), (7, 8)}
orbG(7) = {7, 8} stabG(7) = {(1), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6)}
orbG(8) = {8, 7} stabG(8) = {(1), (1, 3, 2)(4, 6, 5), (1, 2, 3)(4, 5, 6)}

3.4. Theorem: [Orbit Stabilizer] Let G be a finite group of permutations of a set S. Then

∀i ∈ S : |G| = |orbG(i)| · |stabG(i)|.

Proof. By Lagrange’s theorem, |G|
|stabG(i)| gives the number of left cosets of stabG(i) in G. We will

give a one-to-one correspondence between the left-cosets of stabG(i) and the elements in the orbit
of i. Define T (ϕ(stabG(i))) = ϕ(i). To see that T is well-defined, note that if

α · stabG(i) = β · stabG(i),

then α−1β ∈ stabG(i) which implies that (α−1β)(i) = i. This gives that α(i) = β(i) so T is well-
defined. To see it’s one-to-one, suppose that α(i) = β(i). Then (α−1β)(i) = i, so α−1β ∈ stabG(i).
This implies that α · stabG(i) = β · stabG(i), establishing that T is one-to-one. Finally, we show
that T is onto. Let j ∈ orbG(i), so j = α(i) for some α ∈ G. Hence j = α(i) = T (α · stabG(i)).
Altogether, we have shown that there exists a bijection between the left cosets of stabG(i) and the
orbit of i, hence

|G|
|stabG(i)|

= |orbG(i)|.
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4. Rotation Group of a Cube

Section 4. Rotation Group of a Cube

Let G be the rotation group of a cube. What is |G|? Let us viewG as a group of permutations
on the set {1, 2, 3, 4, 5, 6}, as any rotation must carry a face of the cube to a face of the cube.

WLOG, let us fix the face corresponding to 1 and use the Orbit-Stabilizer theorem. There
exists a rotation that carries face 1 to each of the faces 1, 2,3, 4, 5, 6, so |orbG(i)| = 6. The
rotations that fix face 1 are given by rotations 0, π/2, π, 3π/2 about the line perpendicular to
face 1 passing through the center of the cube. Hence, |stabG(i)| = 4. Altogether,

|G| = |orbG(1)| · |stabG(1)| = 6 · 4 = 24.

4.1. Theorem: The group of rotations of a cube is isomorphic to S4.

Proof. We show that G maps to a subgroup of S4, hence must be equal to S4 as |S4| = 24. To
each rotation of the cube, we associate an element of S4. In particular, a cube has 4 diagonals and
the rotation group induces a group of permutations on the four diagonals. Labelling the diagonals
a, b, c, d, we see that a π/2 rotation yields the permutation α = (1, 2, 3, 4) and another π/2 rotation
yields β = (1, 4, 2, 3). Hence, the group of permutations of the diagonals induced by the rotations
of the cube contains the 8 element subgroup

{ε, α, α2, α3, β2, β2α, β2α2, β2α3},

and the element αβ has order 3. Clearly, then, the rotations yield all 24 permutations, since the
order of the rotation group must be divisible by both 8 and 3 (by Lagrange and Corollary 2.5). It
follows that G ∼= S4.
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1. Definition

Section 1. Definition

1.1. Definition: The external direct product of groups G1, . . . , Gn, written as G1⊕· · ·⊕Gn,
is the set of all n-tuples in which the ith component is an element of Gi, and the operation is
component-wise. That is,

G1 ⊕ · · · ⊕Gn = {(g1, . . . , gn) | gi ∈ Gi}

with (g1, . . . , gn)(h1, . . . , hn) = (g1h1, . . . , gnhn).

It is implicit in the definition that the operation in each component i corresponds to the
binary operation of Gi. It is easy to show that the external direct produt of groups is itself a
group.

1.2. Example:

U(5)⊕ U(3) = {1, 2, 3, 4} ⊕ {1, 2}
= {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.

As an example (2, 2)(3, 1) = (1, 2) as (2 · 3) mod 5 = 1 and (2 · 1) mod 3 = 2.

1.3. Example:

Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Note that this group is Abelian and of order 6, so it is isomorphic to Z6. To see this, we show that
Z2 ⊕ Z3 is cyclic of order 6. Consider the element (1, 1) in the direct product. We have

1(1, 1) = (1, 1) 2(1, 1) = (0, 2) 3(1, 1) = (1, 0)
4(1, 1) = (0, 1) 5(1, 1) = (1, 2) 6(1, 1) = (0, 0)

1.4. Example: Any group of order 4 is isomorphic to Z4 or Z2⊕Z2. Let G = {e, a, b, ab}. If G is
cyclic, it is isomorphic to Z4. If not, by Lagrange’s theorem it holds that each non-identity element
has order 2, that is, |a| = |b| = |ab| = 2. Define the mapping ϕ : G → Z2 ⊕ Z2 by ϕ(e) = (0, 0),
ϕ(a) = (1, 0), ϕ(b) = (0, 1), and ϕ(ab) = (1, 1). Then it is easily verified that ϕ is an isomorphism.

Combining this example with Theorem 2.12 gives a complete classification of all groups of order
2p for p prime.
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2. Properties of External Direct Products

Section 2. Properties of External Direct Products

2.1. Theorem: The order of an element in a direct product of a finite number of finite groups
is the least common multiple of the orders of the components of the element. That is,

|(g1, g2, . . . , gn)| = lcm(|g1|, |g2|, . . . , |gn|).

Proof. Let ei denote the identity of Gi for i = 1, . . . , n. Define s = lcm(|g1|, . . . , |gn|) an t =
|(g1, . . . , gn)|. Then (g1, . . . , gn)s = (gs1, . . . , g

s
n) = (e1, . . . , en), so that t divides s by Corollary 1.7.

On the other hand, as (gt1, . . . , g
t
n) = (g1, . . . , gn)t = (e1, . . . , en), we have gti = ei for each i. Again

by Corollary 1.7, we have |gi| divides t for each i. Hence, the least common multiple of all the |gi|’s,
s, divides t.

2.2. Example: We determine the number of elements in Z25⊕Z5 of order 5. By Theorem 2.1,
we must count those elements (a, b) ∈ Z25 ⊕ Z5 such that 5 = lcm(|a|, |b|). This tells us that we
either have |a| = 5 and |b| ∈ {1, 5}, or |a| = 1 and |b| = 5.

• In the first case, a ∈ {5, 10, 14, 20} (by Corollary 1.13); b ∈ {0, 1, 2, 3, 4} (order either 1 or 5).
Hence, there are 4 choices for a and 5 choices for b, with a total of 20 choices.

• In the second case, a = 0 and b ∈ {1, 2, 3, 4}. This case gives 4 elements of order 5.

Altogether, there are 20 + 4 = 24 elements of order 5 in Z25 ⊕ Z5.

2.3. Example: We determine the number of cyclic subgroups in Z100 ⊕ Z25 of order 10.
Let us enumerate the number of elements of order 10. By Theorem 2.1, we have two cases:
|a| = 10 ∧ |b| ∈ {1, 5}, or |a| = 2 ∧ |b| = 5.

• In the first case, we have a ∈ {10, 30, 70, 90} and b ∈ {1, 5, 10, 15, 20}.
• In the second case, we have a = 1 and b ∈ {5, 10, 15, 20}.

Hence, we get a total of 24 elements of order 10. However, as each subgroup of order 10 has 4
generators, there are in total 6 cyclic subgroups of order 10.

2.4. Theorem: Let G and H be finite cyclic groups. Then G⊕H is cyclic iff |G| and |H| are
relatively prime.

Proof. Suppose G⊕H is cyclic and m = |G|, n = |H|. Let d = gcd(m,n). Then |G⊕H| = |G||H| =
mn. Suppose (a, b) is a generator of G⊕H. Then

(a, b)mn/d = ((am)n/d, (bn)m/d) = (eG, eH)

as am = eG and bn = eH . Hence mn = |(a, b)| divides mn/d which forces that d = 1.

On the other hand, suppose gcd(m,n) = 1 and a, b are generators of G,H, respectively. Then

|(a, b)| = lcm(m,n) = mn = |G⊕H|

as gcd(m,n) = 1, so that (a, b) must be a generator of G⊕H.
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2.5. Corollary: An external direct product G1⊕· · ·⊕Gn of finite cyclic groups is cyclic iff |Gi|
and |Gj | are relatively prime for all i 6= j.

Proof. Induction on Theorem 2.4.

2.6. Corollary: Let m = n1 · · ·nk. Then Zm is isomorphic to Zn1⊕· · ·⊕Znk
iff gcd(ni, nj) = 1

for all i 6= j.

Proof. |Zni | = |ni|. Now apply Theorem 2.4.

2.7. Remark: This result can be used to express the same group up to isomorphism in different
forms. For example,

Z2 ⊕ Z2 ⊕ Z15
∼= Z2 ⊕ Z2 ⊕ Z3 ⊕ Z5

∼= Z2 ⊕ Z6 ⊕ Z5
∼= Z2 ⊕ Z30

We also have

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z5
∼= Z2 ⊕ Z6 ⊕ Z5

∼= Z2 ⊕ Z3 ⊕ Z2 ⊕ Z5
∼= Z6 ⊕ Z10
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3. Internal Direct Products

Section 3. Internal Direct Products

So far, we have been looking at the external direct product, where we start with a finite
number of groups and use them to arrive at a larger group in such a way that properties of
the larger group can be derived from them:

• If G = H ⊕K, then |G| = |H||K|.
• Every element of G has the form (h, k) with h ∈ H and k ∈ K.

• If |h| and |k| are finite, then |(h, k)| = lcm(|h|, |k|).
• If H and K are Abelian, then so is G = H ⊕K.

• If H and K are cyclic and gcd(|H|, |K|) = 1, then G = H ⊕K is also cyclic.

We would now like to reverse this process, that is, to start with a group G and break it down
into a product of subgroups so that properties of G can be obtained from properties of the
subgroups. It is possible to do this if the subgroups are normal.

3.1. Definition: A subgroup H of a group G is called a normal subgroup of G if aH = Ha for
all a ∈ G. This is denoted by H E G.

3.2. Proposition: Let H be a normal subgroup of a group G and K be any subgroup of G.
Then HK is a subgroup of G.

Proof. The identity e = ee ∈ HK, so HK is non-empty. Let a = h1k1, b = h2k2 ∈ HK. Then
ab−1 = (h1k1)

(
k−12 h−12

)
= h1

(
k1k
−1
2

)
h2 = h1h

′ (k1k−12

)
for some h′ ∈ H as H is normal. Hence

ab−1 = (h1h
′)
(
k1k
−1
2

)
∈ HK so that HK is a subgroup.

3.3. Definition: A group G is said to be the internal direct product of H and K and we write
G = H ×K if H and K are normal subgroups of G, G = HK, and H ∩K = {e}.

3.4. Example: Let G = D6 = {r0, . . . , r5, s0, . . . , s5} be the dihedral group of order 12. Let
H = {r0, r2, r4, s0, r2s0, r4s0} and K = {r0, r3}. Then H and K are normal subgroups of G,
H ∩K = {r0}, and HK = G.

3.5. Definition: Let H1, . . . ,Hn be a finite collection of normal subgroups of G. We say that
G is the internal direct product of H1, . . . ,Hn and write G = H1 × · · · ×Hn if

• G = H1 · · ·Hn;

• (H1 · · ·Hi) ∩Hi+1 = {e} for i = 1, . . . , n− 1.

3.6. Theorem: If a group G is the internal direct product of a finite number of subgroups
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3. Internal Direct Products

H1, . . . ,Hn, then G is isomorphic to the external direct product of H1, . . . ,Hn.

Proof. We first show that hi ∈ Hi and hj ∈ Hj commute for i 6= j. Observe that

(hihjh
−1
i )h−1j ∈ Hjh

−1
j = Hj

as Hj is normal. Similarly,

hi(hjh
−1
i h−1j ) ∈ hiHi = Hi

as Hi is normal. Hence, hihjh
−1
i h−1j ∈ Hi ∩Hj = {e}, so hihj = hjhi.

Next, we show that each element of G has a unique representation in the form h1 · · ·hn with
hi ∈ Hi. Indeed, suppose h1 · · ·hn = h′1 · · ·h′n with hi, h

′
i ∈ Hi for each i. Then h′nh

−1
n =(

h′n−1
)−1 · · · (h′1)−1 h1 · · ·hn−1. By the fact that hi and hj commute for i 6= j, we get h′nh

−1
n =

(h′1)
−1 h1 (h′2)

−1 h2 · · ·
(
h′n−1

)−1
hn−1, so that h′nh

−1
n ∈ Hn∩H1H2 · · ·Hn−1 = {e} and h′n = hn. We

can now cancel hn and h′n from the two sides of h1 · · ·hn = h′1 · · ·h′n and repeat the same process
until we arrive at hi = h′i for all i.

Now that we have established the uniqueness of the representation of an element g in G as a product
of elements of Hi we can define the following map ϕ : G→ H1⊕H2⊕ · · · ⊕Hn without ambiguity:

ϕ (h1h2 · · ·hn) = (h1, h2, · · · , hn)

Then ϕ is an isomorphism (verify this!).
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1. Definitions and Examples

Section 1. Definitions and Examples

We have seen that for H ≤ G, it is not always true that aH = Ha. When this special
property holds, we say that H is a normal subgroup of G and write H E G.

1.1. Definition: A subgroup H of a group G is called a normal subgroup of G, denoted
H E G, if aH = Ha for all a ∈ G.

1.2. Intuition: In a normal subgroup H of G, you can switch the order of a product of an
element a from the group G and an element h from the normal subgroup H, but you must “fudge”
a bit on the element from the normal subgroup H by using some h′ from H rather than h. That
is, there is an element h′ in H such that ah = h′a. Likewise, there is some h′′ in H such that
ha = ah′′. (It is possible that h′ = h and h′′ = h, but we may not assume this.)

The following result is known as the normal subgroup test.

1.3. Theorem: A subgroup H of G is normal iff xHx−1 ⊆ H for all x ∈ G.

Proof. If H is normal, then for each x ∈ G and h ∈ H, xh = h′x for some h′ ∈ H. Hence
xhx−1 = h′ ∈ H and xHx−1 ⊆ H. Now suppose xHx−1 ⊆ H for all x ∈ G. Then for each h ∈ H,
there exists h′ ∈ H such that xhx−1 = h′, which implies that xh = h′x and xH ⊆ Hx. On the
other hand, since x−1 ∈ G, there exists h′′ ∈ H such that x−1hx = h′′ for each h ∈ H, so that
hx = xh′′ and Hx ⊆ xH.

1.4. Lemma: Every subgroup of an Abelian group is normal.

Proof. Let G be Abelian and H ≤ G. Then ∀g ∈ G : gH = {gh | h ∈ H} = {hg | h ∈ H} = Hg.

1.5. Lemma: The center Z(G) of a group is normal.

Proof. Recall that the center Z(G) is an Abelian subgroup, i.e., ∀a ∈ G,∀h ∈ Z(G) : ah = ha.

1.6. Lemma: H is a normal subgroup of its normalizer N(H) := {x ∈ G | xHx−1 = H}.

Proof. We first show that H ≤ N(H). For x ∈ H, we have xH = H. Also, x−1 ∈ H by group
axiom, so Hx−1 = H. Together, we see that xHx−1 = H and x ∈ N(H). This tells us that
H ⊆ N(H). Now H is itself a group so it is a subgroup of N(H), i.e., H ≤ N(H).

It remains to show that H is normal in N(H). Let a ∈ H and b ∈ N(H). By the definition of
normalizer, bab−1 ∈ H. It follows that H is normal in N(H).
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1. Definitions and Examples

1.7. Lemma: The alternating group An is a normal subgroup of Sn for each n.

Proof. Later.

1.8. Lemma: Every subgroup of Dn consisting only of rotations is normal.

Proof. For any rotation R and any reflection F , we have FR = R−1F . Moreover, any two rotations
commute.

1.9. Lemma: Let H be a normal subgroup of a group G and K be any subgroup of G. Then
HK is a subgroup of G.

Proof. Note that e = ee is in HK. Then for any a = h1k1 and b = h2k2 where h1, h2 ∈ H and
k1, k2 ∈ K, there is an element h′ ∈ H such that

ab−1 = h1k1k
−1
2 h−12 = h1(k1k

−1
2 )h−12 = (h1h

′)(k1k
−1
2 ).

Thus, ab−1 ∈ HK. As a warning, you should not assume that this result holds for arbitrary
subgroups H and K of G.

1.10. Lemma: If a group G has a unique subgroup H of some finite order, then H E G.

Proof. For any g ∈ G, gHg−1 ≤ G and |gHg−1| = |H|.

1.11. Lemma: SL(2,R) E GL(2,R).

Proof. Let x ∈ GL(2,R) = G and h ∈ SL(2,R) = H. Note that det(xhx−1) = det(x) · det(h) ·
(det(x))−1 = det(x) · (det(x))−1 = 1. Thus, xhx−1 ∈ H and xHx−1 ⊆ H.
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2. Quotient Groups

Section 2. Quotient Groups

The reason why normal subgroups are of special significance is that when H E G is normal,
then the set of left/right cosets ofH inG is itself a group, called the factor group or quotient
group of G by H. We can often obtain information about a group by studying one of its factor
groups.

2.1. Theorem: Let G be group and H E G. The set G/H = {aH | a ∈ G} is a group under
the operation (aH)(bH) = abH.

Proof. We first show that the operation is well-defined. Suppose aH = a′H and bH = b′H. Then
there exists h1, h2 ∈ H such that a′ = ah1 and b′ = bh2, so that

a′b′H = ah1bh2H = ah1bH

= ah1Hb H is normal

= aHb

= abH H is normal

Clearly, eH is the identity and a−1H is the inverse of aH for each a ∈ G. Finally, associativity
follows because for a, b, c ∈ G,

(aHbH)cH = (abH)(cH) = (ab)cH = a(bc)H = aH(bcH) = aH(bHcH).

2.2. Remark: For the above group operation to be well-defined, H must be a normal subgroup
of G. To see this, for any h ∈ H, hH = eH = H. Hence for a ∈ G, eHaH = eaH = aH is the
same as hHaH = haH, so that aH = haH for every h ∈ H. This tells us that a−1ha ∈ H and
a−1Ha ⊆ H for every a ∈ G. By definition, H is normal.

2.3. Definition: Let H E G. Then the group G/H is called the quotient group of G by H.

2.4. Remark: Clearly, the order of the quotient group G/H is the number of left cosets of H
in G, which is the index of H in G, given by |G : H|. If |G| <∞ and H is normal,

|G/H| = |G|
|H|

.

2.5. Remark: Note that for a normal subgroup H of G and g ∈ G, |gH| can denote both the
order of the coset gH in the quotient group G/H and the cardinality of the coset gH, and these
two numbers need not be equal. It will generally be clear from the context what we mean.
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2.6. Example: Let 4Z = {0,±4,±8, . . .}. Then Z/4Z consists of the left cosets of 4Z in Z,
which are 0 + 4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z. The “multiplication table” of Z/4Z (with addition) is
given by

0 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z
0 + 4Z 0 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z
1 + 4Z 1 + 4Z 2 + 4Z 3 + 4Z 0 + 4Z
2 + 4Z 2 + 4Z 3 + 4Z 0 + 4Z 1 + 4Z
3 + 4Z 3 + 4Z 0 + 4Z 1 + 4Z 2 + 4Z

It follows then that Z/4Z ∼= Z4 with order 4. It is not hard to show that for any n ∈ N, taking
nZ = {0,±n,±2n, . . .}, we have Z/nZ ∼= Zn.

2.7. Example: Consider the subgroup K = {r0, r2} of the dihedral group D4. We have seen
that r0K = r2K, r1K = r3K, s0K = s2K, and s1K = s3K. Thus, K E D4 and the quotient group
D4/K = {K, r1K, s0K, s2K} has multiplication table

K r1K s0K s1K

K K r1K s0K s1K

r1K r1K K s1K s0K

s0K s0K s1K K r1K

s1K s1K s0K r1K K

=

r0 r2 r1 r3 s0 s2 s1 s3
r0 r0 r2 r1 r3 s0 s2 s1 s3
r2 r2 r0 r3 r1 s2 s0 s3 s1
r1 r1 r3 r2 r0 s1 s3 s2 s0
r3 r3 r1 r0 r3 s3 s1 s0 s2
s0 s0 s2 s3 s1 r0 r2 r3 r1
s2 s2 s0 s1 s3 r2 r0 r1 r3
s1 s1 s3 s0 s2 r1 r3 r0 r2
s3 s3 s1 s2 s0 r3 r1 r2 r0

The above table is simply the multiplication table of D4 but arranged in a way that corresponds
to the multiplication table of D4/K. We see that the formation of a quotient group causes a
systematic collapse of the elements of G, i.e., all the elements in the coset of H containing a reduce
to a single element aH in G/H.
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Section 3. Applications of Quotient Groups

3.1. Example: We prove that the alternating group A4 has no subgroups of order 6 using
quotient groups. Suppose H ≤ A4 with |H| = 6. We claim that H is a normal subgroup. In fact,
we show that for any group G, a subgruop H with index 2 must be normal.

To see this, let a ∈ G. If a ∈ H, then of course aH = H = Ha. Otherwise, if a 6∈ H, then aH
and Ha are both the sets of elements of G that do not belong to H, hence they are equal to each
other. It follows that H is normal.

We can thus consider the quotient group A4/H which must have order 2. Hence, for every α ∈ A4,
α2H = (αH)2 = H so that α2 ∈ H for every α ∈ A4. But it can be verified that A4 has 9 distinct
elements of the form α2, whereas H was assumed to have order 6. Contradiction.

3.2. Theorem: Let G be a group and Z(G) be the center of G. If G/Z(G) is cyclic, then G is
Abelian.

Proof. Recall that G is Abelian iff G = Z(G). We will show that G/Z(G) = {Z(G)} which implies
that G = Z(G). Since G/Z(G) is cyclic, G/Z(G) = 〈gZ(G)〉 for some g ∈ G.

Let a ∈ G. Then aZ(G) = (gZ(G))i = giZ(G) for some i ∈ Z. Thus, a = giz for some z ∈ Z(G).
As z, g ∈ C(g) where C(g) ≤ G is the centralizer of g (z ∈ Z(G) so z commutes with g; g commutes
with itself), we also have a ∈ C(g) as the group C(g) is closed under the group operation. This
gives us ag = ga. Since a was chosen arbitrarily, g commutes with a for all a ∈ G. Thus, g ∈ Z(G),
gZ(G) = Z(G), and G/Z(G) = {Z(G)}.

3.3. Remark: Note that this proof shows that if G/H is cyclic for any subgroup H of Z(G),
then G is Abelian.

3.4. Remark: Taking the contrapositive, if G is not Abelian, then G/Z(G) is not cyclic. In
particular, suppose G has order pq where p and q are primes. Suppose e 6= a ∈ Z(G). Then |Z(G)|
is either p or q by Lagrange’s theorem. By another application of Lagrange’s theorem, this shows
that |G/Z(G)| is either q or p, so that G/Z(G) is cyclic (Corollary 2.6). Hence, G must be Abelian
or Z(G) = {e}.

3.5. Theorem: For any group G, G/Z(G) ∼= Inn(G).

Proof. For g ∈ G, define T (gZ(G)) := ϕg where ϕg is the inner automorphism given by ϕg(x) =
gxg−1 for all x ∈ G. We will show that T is a well-defined isomorphism.

We have gZ(G) = hZ(G) iff h−1g ∈ Z(G). Now for each x ∈ G, ϕg(x) = ϕh(x) iff gxg−1 =
hxh−1 ⇐⇒ h−1gx = xh−1g for each x ∈ G iff h−1g = Z(G) iff gZ(G) = hZ(G). Hence, ϕ is
well-defined and one-to-one. T is clearly onto Inn(G) as every inner automorphism is of the form
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3. Applications of Quotient Groups

ϕg for some g ∈ G.

Finally, we observe that ϕgϕh(x) = g(hxh−1)g−1 = (gh)x(gh)−1 = ϕgh(x) for each x ∈ G. Hence,
T (gZ(G)hZ(G)) = T (ghZ(G)) = ϕgh = ϕgϕh = T (gZ(G))T (hZ(G)), so that T is a group homo-
morphism and indeed an isomorphism.

3.6. Theorem (Cauchy’s Theorem for Abelian Groups): Let G be a finite Abelian group
and p be a prime that divides the order of G. Then G has an element of order p.

Proof. We do induction on |G|. If |G| = 2, then G = {e, a} where |a| = 2.

Now suppose the result is true for all Abelian groups with order less than |G|. We claim that G
has an element x of prime order. Let x ∈ G with |x| = m. If m is prime, we are done. Otherwise,
if m = qn where q is prime, then |xn| = q, which is prime.

WLOG, let x ∈ G with |x| = q where q is prime. If q = p, we are finished. Otherwise, since every
subgroup of an Abelian group is normal, we may construct the quotient group G = G/ 〈x〉. Then
G is Abelian and p divides |G| as |G| = |G|/q. By induction, then, G has an element, call it y 〈x〉,
of order p.

Then (y 〈x〉)p = yp 〈x〉 = 〈x〉 and therefore yp ∈ 〈x〉. If yp = e, we are done. If not, then yp has
order q and yq has order p.

68



4. Connection to Direct Products

Section 4. Connection to Direct Products

Recall that the internal direct product of subgroups of a group is isomorphic to their exter-
nal direct product. We now consider some consequences of this. One strength of the external
direct product is that its order is simply the product of the orders of the constituent groups.

4.1. Theorem: Every group of order p2, where p is prime, is isomorphic to Zp2 or Zp ⊕ Zp.

Proof. Let |G| = p2. If G has an element of order p2, then G is cyclic and hence isomorphic to Zp2 .
If not, then every non-identity element of G must have order p. We claim that for each a ∈ G\{e},
then subgroup 〈a〉 is normal. Suppose it is not normal, then there exists b ∈ G with bab−1 6∈ 〈a〉.
Then 〈a〉 and

〈
bab−1

〉
are distinct subgroups of order p2. Since 〈a〉 ∩

〈
bab−1

〉
is a subgroup of both

groups, it must be the trivial subgroup {e}. This gives us that the distinct left cosets of
〈
bab−1

〉
in G are

〈
bab−1

〉
, a
〈
bab−1

〉
, a2
〈
bab−1

〉
, . . . , ap−1

〈
bab−1

〉
. The element b−1 must belong to one of

these cosets, that is, b−1 = ai(bab−1)j = aibajb−1 for some integers i and j. But this implies that
aibaj = e which gives that b = a−i−j ∈ 〈a〉, a contradiction as bab−1 6∈ 〈a〉. Hence, 〈a〉 is normal.

This means that for x 6= y ∈ G, both of order p, 〈x〉 × 〈y〉 is isomorphic to 〈x〉 ⊕ 〈y〉 and hence is a
subgroup of G or order p2. This means that G = 〈x〉 × 〈y〉 ∼= Zp ⊕ Zp, as promised.

4.2. Corollary: If |G| = p2 where p is a prime, then G is Abelian.
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5. The Group of Units Modulo n as an External Direct Product

Section 5. The Group of Units Modulo n as an External Direct Product

5.1. Definition: Let n ∈ N and k be a positive divisor of n. Define

Uk(n) = {x ∈ U(n) | x mod k ≡ 1}.

To be finished.
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1. Definitions and Examples

Section 1. Definitions and Examples

1.1. Definition: A homomorphism ϕ from a group G to a group G is a mapping from G
into ϕG such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G.

Recall from linear algebra, the kernel of a linear mapping L : V → W is a subspace ker(L)
of V consists of the vectors that get mapped to the zero vector 0W of W . We generalize this
notion here by defining the kernel of a homomorphism ϕ : G → G as the set of elements that
get mapped to the identity element eG of G.

1.2. Definition: The kernel of a homomorphism ϕ : G → G, denoted Ker(ϕ) is the set
{x ∈ G | ϕ(x) = eG}.

1.3. Example:

• ϕ : GL(2,R)→ R∗, ϕ(A) = det(A) is a group homomorphism with Ker(ϕ) = SL(2,R).

– The identity of R∗ is 1.

– The set of matrices in SL(2,R) has a determinant of 1.

• ϕ : R∗ → R∗, ϕ(x) = |x| is a homomorphism with Ker(ϕ) = {1,−1}.
– ±1 gets mapped to 1 by the absolute value function, which is the identity of R∗.

• Let R[x] be the group of real polynomials in one variable with pointwise addition. Then
ϕ : R[x]→ R[x], ϕ(f) = f ′ (the first derivative) is a group homomorphism with Ker(ϕ) given
by the set of constant polynomials.

– Differentiating a constant yields zero (the zero polynomial), which is the identity of R[x].

• ϕ : Z→ Zn, ϕ(m) = m mod n is a group homomorphism with Ker(ϕ) = nZ = 〈n〉.
– m ≡ 0 mod n ⇐⇒ m = kn for some k ∈ Z.

• ϕ : R∗ → R∗, ϕ(x) = x2 is a group homomorphism with Ker(ϕ) = {1,−1}.
– ±1 gets mapped to 1 by the square function, which is the identity of R∗.

• ϕ : (R,+)→ (R,+), ϕ(x) = x2 is not a homomorphism as (x+ y)2 6= x2 + y2 in general.
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Section 2. Properties of Homomorphisms

2.1. Theorem: Let G and G be groups, ϕ : G→ G be a homomorphism, g ∈ G, eG and eG be
the identity elements of G and G, respectively. Then

(1). ϕ(eG) = eG.

(2). ϕ(gn) = [ϕ(g)]n for all n ∈ Z.

(3). If |g| <∞, then |ϕ(g)| divides |g|.
(4). Ker(ϕ) is a subgroup of G.

(5). ϕ(a) = ϕ(b) ⇐⇒ aKer(ϕ) = bKer(ϕ).

(6). ϕ(g) = g′ =⇒ ϕ−1(g′) = {x ∈ G | ϕ(x) = g′} = gKer(ϕ).

Proof. (1) is trivial; (2) is simply ϕ(gn) = ϕ(g) · · ·ϕ(g) for n times.

• For (3), note that if gn = eG for n ∈ Z, then ϕ(g)n = ϕ(gn) = ϕ(eG) = eG. In other words,
|g| = n must be a multiple of the order of |ϕ(g)|.

• For (4), Ker(ϕ) 6= ∅ as eG ∈ Ker(ϕ). Now for x, y ∈ Ker(ϕ), ϕ(xy−1) = ϕ(x)ϕ−1(y) = eG.

• For (5), ϕ(a) = ϕ(b)⇔ ϕ(a)−1ϕ(b) = ϕ(a−1b) = eG ⇔ a−1b ∈ Ker(ϕ)⇔ aKer(ϕ) = bKer(ϕ).

• For (6), note that if h ∈ gKer(ϕ), then h = gk for some k ∈ Ker(ϕ), so that

ϕ(h) = ϕ(gk) = ϕ(g)ϕ(k) = g′ =⇒ gKer(ϕ) ⊆ ϕ−1(g′).

Suppose x ∈ ϕ−1(g′) so that ϕ(x) = g′ = ϕ(g). By (5), this implies that xKer(ϕ) = gKer(ϕ),
so that x ∈ gKer(ϕ) and thus ϕ−1(g′) ⊆ gKerϕ.

Group homomorphisms preserve the binary operation structure of the groups, hence they
preserve certain properties of groups.

2.2. Theorem: Let ϕ : G→ G be a homomorphism with H ≤ G. Then

(1). ϕ(H) = {ϕ(h) | h ∈ H} ⊆ G.

(2). H is cyclic =⇒ ϕ(H) is cyclic.

(3). H is Abelian =⇒ ϕ(H) is Abelian.

(4). H E G =⇒ ϕ(H) E ϕ(G).

(5). |Ker(ϕ)| = n =⇒ ϕ is an n-to-1 mapping from G to ϕ(G).

(6). |ϕ(H)| divides |H|.
(7). K ⊆ G =⇒ ϕ−1(K) = {k ∈ G | ϕ(k) ∈ K} ≤ G.

(8). K is normal =⇒ ϕ−1(K) is normal.

(9). If ϕ is onto and Ker(ϕ) = {eG}, then ϕ is an isomorphism from G to G.
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Proof. The proof for (1), (2), (3) are from Theorem 3.3.

• (4): If ϕ(h) ∈ ϕ(H), ϕ(g) ∈ ϕ(G), then ϕ(g)ϕ(h)ϕ(g)−1 = ϕ(ghg−1) ∈ ϕ(H) as H is normal.

• (5): For g′ = ϕ(g) ∈ ϕ(G), we have ϕ−1(g′) = gKer(ϕ) by Theorem 2.1 (6), and |ϕ−1(g′)| =
|gKer(ϕ)| = |Ker(ϕ)| = n.

• (6): Set ϕH = ϕ|H , the restriction of ϕ to the subgroup H. Then ϕH : H → ϕ(H) is an
onto homomorphism. Suppose |Ker(ϕH)| = t, then by (5), ϕH is a t-to-1 mapping. Hence
t · |ϕ(H)| = |H|, so |ϕ(H)| divides |H|.

• (7): Since eG ∈ ϕ−1(K), so it is non-empty. Suppose x, y ∈ ϕ−1(K). then ϕ
(
xy−1

)
=

ϕ(x)ϕ(y)−1 ∈ K as K is a subgroup. Hence ϕ−1(K) is a subgroup.

• (8): Let k ∈ ϕ−1(K) and x ∈ G. Then ϕ
(
xkx−1

)
= ϕ(x)ϕ(k)ϕ(x)−1 ∈ K as K is normal

and ϕ(k) ∈ K. Hence xkx−1 ∈ ϕ−1(K).

• Finally, (9) clearly follows from part (5).

2.3. Corollary: Let ϕ : G→ G be a group homomorphism. Then Ker(ϕ) E G.

Proof. Theorem 2.2 (6) and (7).

2.4. Example:

• Let ϕ : C∗ → C∗ be given by ϕ(x) = x4. Then Ker(ϕ) = {1,−1, i,−i} and ϕ is a 4-to-1
mapping. Then by Theorem 2.1 (6), since ϕ( 4

√
2) = 2, we get

ϕ−1(2) =
4
√

2Ker(ϕ) = { 4
√

2,− 4
√

2,
4
√

2i,− 4
√

2i}.

• Consider ϕ : Z12 → Z12 given by ϕ(x) = 3x. Then Ker(ϕ) = {0, 4, 8}. Since 2 ∈ ϕ−1(6), we
have ϕ−1(6) = 2 + Kerϕ = {2, 6, 10}. Also note that |ϕ(2)| = |6| = 2, which divides 6 = |2|.
Let K = {0, 6}. Then ϕ−1(K) = {0, 2, 4, 6, 8, 10} (which is a subgroup of Z12).

• We determine all homomorphisms from Z12 to Z30. Any homomorphism is completely deter-
mined by its action on the generator 1 ∈ Z12. To be precise, if ϕ(1) = a, then ϕ(x) = xa.
Now |a| = |ϕ(1)| divides |1| = 12. We also have that |a| divides 30 . Hence |a| = 1, 2, 3 or 6.
This gives that a = 0 (with order 1), 15 (with order 2), 10 or 20 (with order 3), or 5 or 25
(with order 6).
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Section 3. First Isomorphism Theorem

The following theorem relates the structure of the kernel and the image of a homomorphism
via a quotient group.

3.1. Theorem: Let ϕ : G→ G be a group homomorphism. Then the mapping

ψ : G/Ker(ϕ)→ ϕ(G)

gKer(ϕ) 7→ ϕ(g)

That is,

G/Ker(ϕ) ∼= ϕ(G).

Proof. We will show that ψ is a well-defined isomorphism. By Theorem 2.1, gKer(ϕ) = hKer(ϕ)
iff ϕ(g) = ϕ(h), so ψ is well-defined and injective. It is clearly onto ϕ(G). It remains to show that
ψ is multiplicative. This holds as

ψ((gKerϕ)(hKerϕ)) = ψ(ghKerϕ) = ϕ(gh) = ϕ(g)ϕ(h) = ψ(gKerϕ)ψ(hKerϕ).

3.2. Remark:

Here, the map γ : G → G/Kerϕ given by γ(g) = gKerϕ is called the natural or canonical map
onto G/Kerϕ. The relationship between the three maps in the future is as follows:

ψγ = ϕ.

The diagram is said to be commutative as taking the route from G to ϕ(G) remains the same
through the direct route (the right arrow ϕ) and the “longer route” (γ then ψ).

3.3. Corollary: If ϕ : G→ G is a homomorphism and |G| is finite, then |ϕ(G)| divides |G|.

Proof. Note that

|G|
|Kerϕ|

= |G/Kerϕ| = |ϕ(G)|.
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3. First Isomorphism Theorem

3.4. Example: Consider ϕ : D4 → D4 given by

ϕ(r0) = ϕ(r2) = r0

ϕ(r1) = ϕ(r3) = s0

ϕ(s0) = ϕ(s2) = r2

ϕ(s1) = ϕ(s3) = s2

Then ϕ is a homomorphism with Kerϕ = {r0, r2}. Now

ψ : D4/Kerϕ→ ϕ(D4) = {r0, r2, s0, s2}
r0Kerϕ 7→ r0

r1Kerϕ 7→ s0

s0Kerϕ 7→ r2

s1Kerϕ 7→ s2

is an isomorphism.

3.5. Example: Consider the map ϕ : Z → Zn given by ϕ(m) = m mod n. We saw that
Kerϕ = 〈n〉. The map ϕ is clearly onto Zn. Thus, we have

Z/ 〈n〉 ∼= Zn.

3.6. Example: Let H ≤ G. Recall the normalizer N(H) = {x ∈ G | xHx−1 = H} and the
centralizer C(H) = {x ∈ G | ∀h ∈ H : xhx−1x} which are both groups. Also, C(H) ≤ N(H).
Define χ : N(H) → Aut(H) by χ(g) = ϕg, the inner automorphism induced by g. Then χ is a
homomorphism.

To verify this, first note that for all h ∈ H, ϕg(h) = ghg−1 ∈ H as g ∈ N(H). Further, we
have already seen that ϕgh = ϕgϕh, so χ is a homomorphism. To find the kernel of χ, note that
ϕg = ϕe ⇐⇒ ghg−1 = ehe−1 = h for all h ∈ H. This is precisely the criterion for g ∈ C(H), so
Kerχ = C(H). Hence, we have

N(H)/C(H) ∼= Aut(H).

This is sometimes called the N/C theorem.

The following is an application of the N/C theorem.

3.7. Example: Let G be a group of order 35. We show that G is cyclic. First, every non-identity
element of G has order in {5, 7, 35}. Now, not all elements can have order 5, as elements of order
5 appear in groups of 4 (i.e., if x has order 5, so does x2, x3, x4 and 4 does not divide 35− 1 = 34.
Similarly, not all elements have order 7 as these elements appear in groups of 6, which also does
not divide 34. Hence G has both elements of order 7 and 5.

Let H ≤ G be a subgroup of order 7. We claim that H is the only subgroup of order 7, for if
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3. First Isomorphism Theorem

K ≤ G with |K| = 7 and K 6= H, then

|HK| = |H||K|
|H ∩K|

=
7 · 7

1
= 49

which is impossible in a group of order 35. Note that |H ∩K| = 1 as it cannot have order 7. Hence,
for all a ∈ G, aHa−1 = H, so that N(H) = G. Now as |H| = 7, H is cyclic and thus Abelian,
so H ≤ C(H). This implies that 7 divides the order of C(H) and as |C(H)| divides 35, either
|C(H)| = 7 or |C(H)| = 35. In the first case, |N(H)/C(H)| = 35/7 = 5. But this quotient group
must be isomorphic to a subgroup of Aut(Z7) ∼= U(7) which has order 6, and of course, 5 does not
divide 6. On the other hand, if C(H) = G, then taking x = hk with h a non-identity element of
H (and hence of order 7) and k ∈ G with order 5 gives |x| = |hk| = 35 as h and k commute and h
and k have orders 7 and 5, respectively.

The following statement gives the converse to “the kernel of a homomorphism is a normal
subgroup”.

3.8. Theorem: Every normal subgroup N of G is the kernel of a homomorphism of G. Namely,
N = Kerγ for γ : G→ G/N given by γ(g) = gN .

Proof. Clearly, γ is well-defined. It is multiplicative as γ(gh) = ghN = gNhN = γ(g)γ(h) for
g, h ∈ G. The kernel of γ is given by {g ∈ G | gN = N} which is precisely equal to {g ∈ G | g ∈
N} = N .
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0.9. Remark: The goal of this chapter is to establish the following result: Every finite Abelian
group is a direct product of cyclic groups of prime-power order. Moreover, the number of terms
in the direct product and the orders of the cyclic groups are uniquely determined by the group. In
other words, for any finite Abelian group G, we have

G ∼= Zpn1
1
⊕ · · · ⊕ Zpnk

k
,

where the pi’s are not necessarily distinct and the prime-powers pn1
1 , . . . , p

nk
k are uniquely deter-

mined by G. Expressing G as such a direct product is known as determining the isomorphism
classes of G.

We delay the proof and consider some applications first.
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1. The Isomorphism Classes of Abelian Groups

Section 1. The Isomorphism Classes of Abelian Groups

1.1. Note: We can use the fundamental theorem to construct Abelian groups of any order.
Suppose the group has order pk where p is a prime and k ∈ Z+ can be written as a sum of positive
integers k = n1 + · · ·+ nt. The set of positive integers {n1, . . . , nt} is called a partition of k; each
partition gives rise to the following Abelian group of order pk:

Zn1
p ⊕ · · · ⊕ Znt

p .

Further, the fundamental theorem gives that each partition yields a distinct isomorphism class of
finite Abelian groups. Let us consider some concrete constructions for k = 1, 2, 3 and 4.

Order of G k Partitions of k Possible direct products for G

p 1 1 Zp
p2 2 2 Zp2

1 + 1 Zp ⊕ Zp
p3 3 3 Zp3

2 + 1 Zp2 ⊕ Zp
1 + 1 + 1 Zp ⊕ Zp ⊕ Zp

p4 4 4 Zp4
3 + 1 Zp3 ⊕ Zp
2 + 2 Zp2 ⊕ Zp2
2 + 1 + 1 Zp2 ⊕ Zp ⊕ Zp
1 + 1 + 1 + 1 Zp ⊕ Zp ⊕ Zp ⊕ Zp

The fundamental theorem makes it easy to classify all Abelian groups of a given order.

1.2. Note: Now that we have described how to use partitions to construct Abelian groups
of prime-power order, we move to the general case of any finite order, say n. We first write the
prime-power decomposition of n, say

n = pn1
1 · · · p

nk
k .

Now form all the Abelian groups of orders pn1
1 , . . . , p

nk
k as outlined above using partitions. Finally,

we put them together to form all possible external direct products of these groups.

1.3. Example: Consider |G| = 7938 = 2 · 34 · 72. The prime-power 2 gives us Z2; 34 gives us
one of Z81,Z27 ⊕ Z3,Z9 ⊕ Z9,Z9 ⊕ Z3 ⊕ Z3, or Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3; 72 gives Z49 or Z7 ⊕ Z7. Thus,
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G must be isomorphic to one of the following:

Z2 ⊕ Z81 ⊕ Z49

Z2 ⊕ Z81 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z27 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z27 ⊕ Z3 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z9 ⊕ Z9 ⊕ Z49

Z2 ⊕ Z9 ⊕ Z9 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z9 ⊕ Z3 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z9 ⊕ Z3 ⊕ Z3 ⊕ Z7 ⊕ Z7

Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z49

Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z7 ⊕ Z7

How do we know which of the options it is equal to? One could, for instance, compare the number
of elements of given orders to narrow it down. For instance, if G has an element of order 49, it
must be the first, third, fifth, seventh, or ninth option above. If we know that G has an element of
order 81, then it must be isomorphic to the second option.

1.4. Note: How do we express a finite Abelian group G as an internal direct product? Suppose
we have a group of order 2n. Pick an element a1 of maximum order, say 2r. Then 〈a1〉 is one of
the factors in the internal direct product. If G 6= 〈a1〉, choose an element of maximum order 2s

such that s ≤ n− r and none of a2, a
2
2, a

4
2, . . . , a

2s−1

2 is in 〈a1〉. Then 〈a2〉 is another direct factor.
If G 6= 〈a1〉 × 〈a2〉 = {ai1a

j
2 | 0 ≤ i < 2r, 0 ≤ j < 2s}, then choose a3 of maximum order 2t such

that t ≤ n− r− s and none of a3, a
2
3, . . . , a

2t−1

3 is in 〈a1〉 × 〈a2〉. Then 〈a3〉 is another direct factor.
We continue in this manner until our direct product has the same order as G. If the order of G
is n = pn1

1 · · · p
nk
k , then we build the pieces for each prime and put them together as an internal

direct product.

1.5. Example: Let G = {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64} under multiplica-
tion modulo 65. G has order 16 = 24, so it must be isomorphic to one of the following:

Z16

Z8 ⊕ Z2

Z4 ⊕ Z4

Z4 ⊕ Z2 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2

To decide which of the five options G must be isomorphic to, we list the orders of its elements:

Element 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64

order 1 4 4 2 4 4 4 4 4 4 4 4 2 4 4 2

As the only possible orders are 1, 2, and 4, we can rule out the first two and the last options. Next,
Z4 ⊕ Z2 ⊕ Z2 has only 8 elements of order 4, whereas G has 12. Thus, G must be isomorphic by
elimination to Z4 ⊕ Z4. We now show how to express G as an internal direct product. Choose 8,
say, which has the maximum order 4 = 22, so 〈8〉 is one factor. Next, choose some element a which
has maximal order 4− 2 = 2 and a, a2 6∈ 〈8〉 = {8, 64, 57, 1}, say a = 12. Then G = 〈8〉 × 〈12〉.
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1.6. Example: Let

G = {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62, 64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134},

under multiplication modulo 135.

As |G| = 24 = 23 × 3, G must be isomorphic to one of the following:

Z8 ⊕ Z3
∼= Z24

Z4 ⊕ Z2 ⊕ Z3
∼= Z12 ⊕ Z2

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3
∼= Z6 ⊕ Z2 ⊕ Z2

The element 8 has order 12 , so the last option is ruled out. The elements 109 and 134 both have
order 2, so the group cannot be cyclic (as it has two subgroups of order 2). Hence G must be
isomorphic to Z12 ⊕ Z2. So G can be expressed as G = 〈8〉 × 〈134〉.

To express G as an internal direct product using our algorithm, we see that as G ∼= Z12 ⊕ Z2, the
maximum order an element can have of power 2 is 4, say for instance, 28. Hence 〈28〉 is one factor,
and we can choose an element of order 2 , say 134 which is not in {1, 28, 109, 82}. Then 〈28〉×〈134〉
takes care of the powers of 2 . The element 46 is of order 3 , so we get G = 〈28〉 × 〈134〉 × 〈46〉.
This is isomorphic to the direct product we have already obtained.

The fundamental theorem gives us the following corollary, which is a converse of Lagrange’s
theorem for finite Abelian groups.

1.7. Corollary: If m divides the order of a finite Abelian group G, then G has a subgroup of
order m.

1.8. Example: Suppose G is an Abelian group of order 72 = 23 × 32. We will find a subgroup
of G of order 12 . By the fundamental theorem G must be isomorphic to one of the following six
groups:

Z8 ⊕ Z9
∼= Z72 Z8 ⊕ Z3 ⊕ Z3

∼= Z24 ⊕ Z3

Z4 ⊕ Z2 ⊕ Z9
∼= Z36 ⊕ Z2 Z4 ⊕ Z2 ⊕ Z3 ⊕ Z3

∼= Z12 ⊕ Z6

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9
∼= Z18 ⊕ Z2 ⊕ Z2 Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3

∼= Z6 ⊕ Z6 ⊕ Z2

It is clear that one can find a subgroup of order 12 in the first four cases, since there is a cyclic
group whose order is a multiple of 12 sitting in the direct product (Z72,Z24,Z36,Z12) . Let us try
to find subgroups in the last two cases which have order 12. Clearly, 〈6〉 ⊕ Z2 ⊕ Z2 is a subgroup
of order 12 in Z18 ⊕ Z2 ⊕ Z2 and Z6 ⊕ {0} ⊕ Z2 has order 12 in Z6 ⊕ Z6 ⊕ Z2.
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Section 2. Proof of the Fundamental Theorem

We will prove the fundamental theorem via a series of lemmas.

2.1. Lemma: Let G be a finite Abelian group of order pnm, where p is a prime that does not
divide m. Then G = H ×K, where H =

{
x ∈ G | xpn = e

}
and K = {x ∈ G | xm = e}. Moreover,

|H| = pn.

Proof. Any set of the form {x ∈ G | xl = e} for some integer l is a subgroup, as el = e and

xl = yl = e implies that
(
xy−1

)l
= xiy−l = e as G is Abelian. Hence, H and K are subgroups. We

will now prove that G = HK and H ∩K = {e}. The latter follows easily as x ∈ H ∩K implies
that xp

n
= e = xm, so that |x| divides m and pn. But as p is prime and does not divide m, it must

hold that |x| = 1 and x = e.

Let x ∈ G. As gcd (m, pn) = 1, there exist s, t ∈ Z such that sm+ tpn = 1, so that x = xsm+tpn =
xsmxtp

n
. Now, xsm ∈ H as (xsm)p

n

= xs|G| = e; similarly, xtp
n ∈ K, so x ∈ HK. Finally,

pnm = |HK| = |H||K|. If p divides |K|, then K has an element of order p by Cauchy’s Theorem
(9.3.4). Hence p divides m, a contradiction. So it must hold that |H| = pn. Repeated applications
of Lemma 11.2.1 give the following. Let G be an Abelian group with |G| = pn1

1 · · · p
nk
k , where the

pi -s are distinct primes. Then taking G (pi) = {x ∈ G | xp
ni
i = e},

G = G (p1)× · · · ×G (pk)

and |G (pi)| = pni
i .

We will now further decompose each G (pi).

2.2. Lemma: Let G be an Abelian group of prime-power order and let a be an element of
maximum order in G. Then G can be written in the form 〈a〉 ×K for some subgroup K.

Proof. Let |G| = pn. We will prove the result by induction on n. If n = 1, then |G| = p and |a| = p,
so that G = 〈a〉 × 〈e〉. Next, suppose that the statement is true for all Abelian groups of order pk,
where k < n. Choose an element a of maximum order pm. Then xp

m
= e for all x ∈ G (as the

order of any element must be a power of p and pm is the highest among such orders). If G = 〈a〉,
we are done.

Otherwise, choose b of smallest order such that b /∈ 〈a〉. We claim that 〈a〉 ∩ 〈b〉 = {e}. Since

|bp| = |b|
p < |b|, we know that bp ∈ 〈a〉. Suppose bp = ai, then e = bp

m
= (bp)p

m−1

=
(
ai
)pm−1

, so

that
∣∣ai∣∣ ≤ pm−1. Hence ai is not a generator of 〈a〉, so that gcd (pm, i) 6= 1 This implies that p

divides i, so that i = pj for some integer j. Hence bp = ai = apj . Let c = a−jb. Then c /∈ 〈a〉, and
cp = a−jpbp = e. We have thus found an element c of order p with c /∈ 〈a〉, so by the way we have
chosen b, it must hold that |b| = p.

Now, suppose x ∈ 〈a〉 ∩ 〈b〉. If x 6= e, then x generates 〈b〉 so that b ∈ 〈a〉, a contradiction. Hence
the intersection is {e}. Now, let Ḡ := G/〈b〉 and write any coset x〈b〉 as x̄. If |ā| < |a| = pm, then
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āp
m−1

= ē hence ap
m−1 ∈ 〈a〉 ∩ 〈b〉 = {e}. This is a contradiction as |a| = pm, hence |ā| = pm. That

is, ā is an element of maximum order in |G| As |Ḡ| < |G|, we can use the induction hypothesis to
get

Ḡ = 〈ā〉 × K̄

for some subgroup K̄ of Ḡ Let K = {x ∈ G | x̄ ∈ K̄}. We will show that G = 〈a〉 × K. Let
x ∈ 〈a〉 ∩K, then x̄ ∈ 〈ā〉 ∩ K̄ = {ē} = {〈b〉}. Hence x ∈ 〈b〉, but as x ∈ 〈a〉, we have x = e. Now,
|〈a〉K| = |〈a〉||K| = |ā||K̄|p = |Ḡ|p = |G| so that indeed G = 〈a〉 ×K.

Lemma 11.2.2 and induction gives the following lemma.

2.3. Lemma: A finite Abelian group of prime-power order is an internal direct product of cyclic
groups.

Hence altogether we have proved that

G = G (p1)× · · · ×G (pn)

and that each G (pi) is an internal direct product of cyclic groups. Hence G is an internal
direct product of cyclic groups of prime-power order. We are left to show the uniqueness of the
direct product obtained above.

The groups G (pi) are uniquely determined by G as they contain those elements of G whose
orders are powers of pi. We are left to prove that there is only one way (up to isomorphism) to
write each G (pi) as an internal direct product of cyclic subgroups.

2.4. Lemma: Suppose that G is a finite Abelian group of prime-power order. If G = H1×· · ·×Hm

and G = K1 × · · · ×Kn, where the Hi − s and Ki − s are nontrivial cyclic subgroups with |H1| ≥
· · · ≥ |Hm| and |K1| ≥ · · · ≥ |Kn|, then m = n and |Hi| = |Ki| for each i.

Proof. The proof is by induction on |G|. If |G| = p, the result is true. Suppose the statement is
true for all Abelian groups of order less than |G|.

Let Gp = {xp | x ∈ G}. Then Gp is a subgroup of G (verify this). Further, if p divides the order of
G, then G has an element of order p, say a. Hence a 6= e, ap = e, so that the map a 7→ ap is not
injective, and Gp is a proper subgroup of G.

Now Gp = Hp
1 × · · · × Hp

m′ and Gp = Kp
1 × · · · × Kp

n′ , where m′ is the largest integer i such
that |Hi| > p and n′ is the largest integer j such that |Kj | > p (this is to ensure that the direct
product decomposition of Gp does not have trivial factors). By the induction hypothesis, since
|Gp| < |G|, we have m′ = n′ and |Hp

i | = |Kp
i | for all i = 1, . . . ,m′. Since |Hi| = |Hp

i | p, it follows
that |Hi| = |Ki| for all i = 1, . . . ,m′. For the remaining i, |Hi| = p = |Ki|.

Finally, since |Hi| · · · |H ′m| pm−m
′

= |G| = |Ki| · · · |K ′n| pn−n
′
, we have m − m′ = n − n′, so that

m = n.
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Section 1. Group Actions

1.1. Definition: A (left) group action of a group G on a set X is a function ϕ : G×X → X
satisfy the following properties:

• Compatibility: ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G and x ∈ X.

• Identity: ϕ(e, x) = x for all x ∈ X.

1.2. Intuition: The above definition simply states that for each g ∈ G, there exists a map
ϕ(g, ·) : X → X, which we will show shortly is actually a bijection or permutation of the set X.
Further, we will show that the map g 7→ ϕ(g, ·) is a group homomorphism from G to a permutation
group on the set X, and conversely, that any group homomorphism from G to a permutation group
on the set X is obtained via a group action.

1.3. Example: Define ϕ1, ϕ2 : R × R2 → R2 by ϕ1(a, (x, y)) = (x + a, y) and ϕ2(b, (x, y)) =
(x, y + b). Then ϕ1 and ϕ2 are group actions. They are the actions of horizontal and vertical
translations respectively on R2. We check that ϕ1 is a group action:

• ϕ1 (a1 + a2, (x, y)) = (x+ a1 + a2, y) = ϕ1 (a1, (x+ a2, y)) = ϕ (a1, ϕ1 (a2, (x, y)) for all
a1, a2 ∈ R and for all (x, y) ∈ R2

• ϕ(0, (x, y)) = (x+ 0, y) = (x, y) for all (x, y) ∈ R2. Note that here G is the Abelian group R
with the operation of addition, and X = R2.

1.4. Example: Let G = {e, a} and X = C. Then G acts on X by ϕ : G × X → X given by
ϕ(e, x+ iy) = x+ iy and ϕ(a, x+ iy) = x− iy.

1.5. Example: Every subgroup H of a group G (including G itself) acts on G by left multi-
plication. That is, ϕ(h, x) = hx for all h ∈ H and for all x ∈ G is a group action. To see this,
observe that ϕ (h1h2, x) = (h1h2)x = h1 (h2x) = ϕ (h1, h2x) = ϕ (h1, ϕ (h2, x)) and ϕ(e, x) = x for
all h1, h2 ∈ H and x ∈ G. If H = G, we get for each g ∈ G and x ∈ G,ϕ(g, x) = gx = Lg(x), where
Lg is the function of left multiplication on G. Recall from the proof of Cayley’s theorem that Lg
is a bijection or permutation of G for each g ∈ G and the map g 7→ Lg is a group homomorphism.

1.6. Example: In A2, we defined for a group G, a subgruop H ≤ G, and L, the set of cosets
of H in G, the map Lg : L → L given by Lg(xH) = gxH. Then ϕ : G × L → L given by
ϕ(g, xH) = Lg(xH) = gxH is a group action.

1.7. Example: A subgroup H of a group G actions on G by conjugation ϕ(h, x) = hxh−1.

1.8. Example: Let X = {1, . . . , n} and G = Sn. Then G acts on X by ϕ(α, i) = α(i).

86



1. Group Actions

1.9. Theorem: Let G be a group acting on the set X.

• For every g ∈ G, the mapping ϕg : X → X defined by ϕg(x) = ϕ(g, x) for all x ∈ X, is a
permutation of X.

• The mapping g 7→ ϕg is a group homomorphism between G and a group of permutations of
X.

Proof.

• We will show that ϕg−1 is the inverse of each ϕg, so that the latter (and the former!) is a
bijection. ϕg−1ϕg(x) = ϕ

(
g−1, ϕ(g, x)

)
= ϕ

(
g−1g, x

)
= ϕ(e, x) = x for each x ∈ X. Similarly,

ϕgϕg−1(x) = x for all x ∈ X.

• Let g, h ∈ G and x ∈ X. Then ϕgh(x) = ϕ(gh, x) = ϕ(g, ϕ(h, x)) = ϕ (g, ϕh(x)) = ϕgϕh(x),
so that ϕgh = ϕgϕh. This shows that g 7→ ϕg is a homomorphism.

The converse of the above theorem is also true.

1.10. Theorem: Let G be a group, X be a set and S be a permutation group of X. If ψ : G→ S
is a group homomorphism, then ϕ : G × X → X given by ϕ(g, x) = ψ(g)(x), for all g ∈ G and
x ∈ X, is a group action of G on X. The theorem gives in particular that ψ(g) = ϕg for every
g ∈ G.

Proof. We check that the two conditions of a group action are satisfied:

• ϕ(e, x) = ψ(e)x = x as ψ by virtue of being a homomorphism must take the identity of G to
the identity permutation.

• ϕ(gh, x) = ψ(gh)(x) = ψ(g)ψ(h)(x) = ψ(g)(ϕ(h, x)) = ϕ(g, ϕ(h, x)) as ψ is a homomorphism.

1.11. Motivation: With the above two theorems, we have a one-to-one correspondence between
homomorphisms from a group G to a permutation group of a set X, and group actions of G on X.
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Section 2. Burnside’s Lemma

We now prove an important result in counting applications using the machinery of group
actions. This result is also known as the Cauchy-Frobenius Lemma. We start by restating
the definitions of the stabilizer and orbit in the context of group actions, then translate the
Orbit-Stabilizer theorem that we encountered before.

2.1. Definition: Let ϕ : G×X → X be a group action. The stabilizer of an element x ∈ X
in G is defined as the following set:

stabϕG(x) = {g ∈ G | ϕ(g, x) = ϕg(x) = x}

2.2. Definition: Definition 12.2.2. Let ϕ : G × X → X be a group action. The orbit of an
element x ∈ X under G is defined as the following set:

orbϕG(x) = {ϕg(x) | g ∈ G} .

2.3. Theorem (Orbit Stabilizer theorem for Group Actions): Let G be a finite group,
X a set, and ϕ : G×X → X be a group action. Then for any x ∈ X, |G| =

∣∣orbϕG(x)
∣∣ ∣∣stabϕG(x)

∣∣.
Proof. See Theorem 3.4.

2.4. Definition: Let ϕ : G ×X → X be a group action. For g ∈ G, let Xg denote the set of
elements of X that are fixed by ϕg :

Xg = {x ∈ X | ϕg(x) = ϕ(g, x) = x} .

2.5. Remark:

• Let ϕ : G ×X → X be a group action. For an element x ∈ X,
∣∣orbϕG(x)

∣∣ = 1 if and only if
orbϕG(x) = {x} if and only if x ∈ Xg for all g ∈ G

• If a and b are in the same orbit, then the orbits of a and b are equal. This gives immediately
that the relation a ∼ b if a ∈ orbϕG(b) is an equivalence relation.

• Further, by the orbit stabilizer theorem, if a ∼ b, then the cardinalities of stabϕG(a) and
stabϕG(b) are the same.
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We are now ready to state and prove the main result of this subsection, which is essentially
a theorem that gives us a way to count the number of orbits of a given group action.

2.6. Theorem (Burnside’s lemma/Orbit Counting theorem/Cauchy-Frobenius lemma):
Let ϕ : G×X → X be a group action, where G is a finite group and X is a set. Then the number
of distinct orbits of elements of X is given by

1

|G|
∑
g∈G
|Xg|

Proof. Let n be equal to the number of pairs (g, x) where ϕg(x) = ϕ(g, x) = x. This can be counted
in two ways. One is by fixing g ∈ G first, and the other, by fixing x ∈ X first.

For each g ∈ G, the number of pairs such that ϕg(x) = x is equal to |Xg|, so that n =
∑

g∈G |Xg| .
On the other hand, for each x ∈ X, the number of such pairs is equal to | stabϕG(x)|, so that
n =

∑
x∈X

∣∣stabϕG(x)
∣∣.

For each x ∈ X, summing over orb ϕ
G(x) gives

∑
t∈orbϕG(x)

∣∣stabϕG(t)
∣∣ =

∣∣orbϕG(s)
∣∣ ∣∣stabϕG(x)

∣∣ = |G|
by the orbit stabilizer theorem. That is, the sum of

∣∣stabϕg (t)
∣∣ where t varies over a fixed orbit is |G|.

Hence,
∑

g∈G |Xg| =
∑

x∈X
∣∣stabϕG(x)

∣∣ = |G|× number of orbits.
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Section 3. Counting Applications

3.1. Example: Suppose we have a string of n beads where each bead can have t colours. There
are tn such configurations. As the string can be flipped over, we have certain repetitions. This can
be explained using the tool of a group acting on a set. Let X be the set of all possible configura-
tions. As the only symmetry possible is about the centre of the string (achieved by flipping the
string over), the group we consider is G = Z2. Here 0 will act on X by doing nothing, and 1 acts
by flipping the string.

Say, for example that n = 5 and t = 3, with colours say, green, yellow and blue. Some examples of
configurations which are the same as each other (on flipping over) are

G Y Y B B and B B Y Y G

In the language of orbits, the two configurations above are equivalent via the relation of belonging
to the same orbit.

We want to count the number of distinct configurations, or in other words, the number of distinct
orbits. By Burnside’s Lemma,

Number of orbits =
1

|Z2|
∑
g∈Z2

Xg

For g = 0, Xg = X as every configuration is fixed by doing nothing. On the other hand, the number
of fixed points of 1 (flipping the string over) are determined by one half of the string (as the other
half must be the same by symmetry). This depends on whether n is even or odd. If n is even, then

we have t
n
2 fixed points, and if n is odd, we have t

n+1
2 fixed points. So we get

Number of orbits =
1

2

(
tn + t

n
2

)
if n is even and

Number of orbits =
1

2

(
tn + t

n+1
2

)
if n is odd.

In both cases, if t = 1, then for any n we get only one orbit. This is as expected since only one
distinct string of n beads can be made if the beads are all of the same colour.

3.2. Example: Suppose we want to count the number of ways in which the six vertices of a
hexagon can be coloured so that three are black and three are white. There are

(
6
3

)
= 20 ways

to do this. However, if the hexagons were actually ceramic tiles, say, there would clearly be some
repetitions as some of the patterns can be obtained from the remaining ones by rotation.

The 20 possibilities are given below, where the figures on each line can be obtained from the others
on the same line by rotation.
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We will now take X to be the set of all 20 possibilities given above and G to be the group of
rotational symmetries of the hexagon {r0, r1, . . . , r5} (with notation borrowed from the dihedral
group D6). Then G acts on X by rotating the diagrams, and the lines a, b, c and d of diagrams
that can be obtained from each other by rotation describe precisely the distinct orbits of the group
action. In other words, a diagram that can be obtained from another by a rotation is equivalent to
it via the equivalence relation of belonging to the same orbit. We can now use Burnside’s Lemma
to verify that the number of orbits of this group action is indeed 4.

Number of orbits =
1

|G|
∑
g∈G
|Xg|

Here |G| = 6. We calculate Xg for each g ∈ G below.

Element |Xg|
r0 20
r1 0
r2 2
r3 0
r4 2
r5 0

Here, we see that r2 and r4 fix exactly the two elements on line (d), r0 fixes all 20 elements and the
remaining rotations do not fix any of the figures. Hence

Number of orbits =
1

6
(20 + 2 + 2) = 4

What happens if we consider these patterns not on a hexagonal ceramic tile, but instead on a
necklace? In this case, all the figures on line (b) would be equivalent to those on line (c) as the
necklace can also be turned over. So the number of distinct configurations would only be 3. To
understand this in terms of orbits, we see that G in this case is all of D6, as the necklaces remain
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unchanged on reflections as well. In this case we get

Element |Xg|
r0 20
r1 0
r2 2
r3 0
r4 2
r5 0
s0 4
s1 0
s2 4
s3 0
s4 4
s5 0

and

Number of orbits =
1

12
(20 + 2 + 2 + 4 + 4 + 4) = 3.

3.3. Example: Now suppose that the necklace consists of 6 beads, where each bead can be one
of t colours. How many distinct figures are possible?

Here again, as the necklace can be rotated and flipped, we will take G = D6 and X to be the set of
possible configurations. The number of configurations |X| = t6. Let us now consider the number
of fixed points for each element of D6. We label the vertices x1, . . . , x6, where each xi can be one
of t colours. Being a fixed point of each rotational/reflectional symmetry places certain conditions
on the choice of xi.

Then we get the following number of fixed points for each element of D6. Each letter A,B,C,D
denotes a distinct colour. Hence we get

Number of orbits =
1

12

(
t6 + 3t4 + 4t3 + 2t2 + 2t

)
If t = 1, we get

1

12
(1 + 3 + 4 + 2 + 2) = 1

as expected, as there is only one necklace that can be made with six beads of the same colour.
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Element |Xg| Pattern

r0 t6 All patterns
r1 t AAAAAA
r2 t2 ABABAB
r3 t3 ABCABC
r4 t2 ABABAB
r5 t AAAAAA
s0 t4 ABCDCB
s1 t3 AABCCB
s2 t4 ABACDC
s3 t3 ABBACC
s4 t4 ABCBAD
s5 t3 ABCCBA
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1. Definition and Notations

Section 1. Definition and Notations

1.1. Definition: Let G be a group and a, b ∈ G. We say that a and b are conjugate in G if
xax−1 = b for some x ∈ G. The conjugacy class of a is the set conj(a) = {xax−1 | x ∈ G}.

1.2. Example: For G = D4, we have

• conj(r0) = {r0},
• conj(r1) = {r1, r3} = conj(r3),

• conj(r2) = {r2},
• conj(s0) = {s0, s2} = conj(s2),

• conj(s1) = {s1, s3} = conj(s3).

1.3. Theorem: Let G be a finite group, a ∈ G, and C(a) = {x ∈ G | xa = ax} be the centralizer
of a. Then |conj(a)| = |G : C(a)|.

Proof. Define the map T that sends the coset xC(a) to the conjugate xax−1 of a. Now xax−1 =
yay−1 if and only if x−1ya = ax−1y if and only if x−1y ∈ C(a), which in turn is true if and only if
the cosets xC(a) and yC(a) are equal. Hence T is well-defined and one-to-one. It is clearly onto
the conjugacy class of a. Hence the number of cosets of C(a) in G given by the index |G : C(a)| is
equal to the number of conjugates of a, so that | conj(a)| = |G : C(a)|.

Recall that we showed in Assignment 1 that |G| =| conj(a||C(a) | for each a ∈ G. This
follows from Theorem ?? and the fact that for the finite group G, |G : C(a)| = |G|

|C(a)| . We get
the following corollary immediately.

1.4. Corollary: If G is a finite group, then |conj(a)| divides |G|.
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Section 2. Sylow Theorems

2.1. Theorem (Sylow I): Let G be a finite group and p ∈ Z be prime. If pk divides |G| for
some k ∈ N, then G has at least one subgroup of order pk.

Proof. We do induction on |G|. If G is trivial, the theorem trivially holds as no prime power divides
1. Now suppose the statement holds for all groups of order less than |G|.

If G as a proper subgroup H such that pk divides |H|, then by IH, H has a subgroup of order pk,
and so does G too. Hence, we assume that G does not have a proper subgroup such that pk divides
its order.

Recall the following equation from a previous proof:

|G| = |Z(G)|+
∑

a6∈Z(G)

|G : C(a)|.

Now pk divides |G| but pk does not divide |C(a)| for each a /∈ Z(G) as C(a) is a proper subgroup
of G. As |G| = |G : C(a)| · |C(a)| and p is a prime, we must have that p divides |G : C(a)|
for each a /∈ Z(G). This gives in turn that p divides Z(G). Now, Z(G) is an Abelian group,
hence by Cauchy’s theorem (Theorem ??), Z(G) contains an element of order p, say x. As 〈x〉
is a normal subgroup of G,G/〈x〉 is a quotient group. Further, pk−1 divides |G/〈x〉|, so by the
induction hypothesis G/〈x〉 has a subgroup of order pk−1. It is left as an exercise to prove that this
subgroup is of the form H/〈x〉 where H is some subgroup of G (Hint: Use Theorem 2.2 (vii)). Now
|H/ 〈x〉 | = pk−1 and |〈x〉| = p, hence |H| = pk as required.

2.2. Definition: Let G be a finite group and p be prime. If pk divides |G| and pk+1 does not
divide |G| for some k ∈ Z+, then any subgroup of order pk is called a Sylow p-subgroup of G.

2.3. Remark: Suppose |G| = 23 · 32 · 54 · 7. Then Sylow’s first theorem tells us that G has
subgroups of orders 2, 4, 8, 3, 9, 5, 25, 125, 625 and 7. Moreover, the Sylow 2-subgroup has order 8 ,
the Sylow 3 -subgroup has order 9, the Sylow 5 -subgroup has order 625 and the Sylow 7 -subgroup
has order 7. In other words, a Sylow p -subgroup of G is a subgroup whose order is the largest
power of p consistent with Lagrange’s theorem.

As every subgroup of prime order must be cyclic, we get the following corollary as a gener-
alization of Cauchy’s theorem.

2.4. Corollary: Let G be a group of finite order and suppose p is a prime that divides |G|.
Then G has an element of order p.
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2.5. Definition: Let H and K be subgroups of a group G. We say that H and K are conjugate
in G if there exists g ∈ G such that H = gKg−1.

2.6. Remark: Note that H = gKg−1 implies that |H| = |K|.

2.7. Lemma: Let K be a Sylow p-subgroup of a finite group G. Recall that N(K) = {g ∈ G |
gKg−1 = K} is the normalizer of K. If x ∈ N(K) and |x| is a power of p, then x ∈ K.

Proof. K is a normal subgroup of N(K) and 〈x〉 a subgroup of N(K) so that their product 〈x〉K
is a subgroup of N(K). Suppose |x| = pl and |K| = pk, then by Theorem 2.10,

|〈x〉K| = |〈x〉||K|
|〈x〉 ∩K|

=
plpk

|〈x〉 ∩K|
.

Hence |〈x〉 ∩K| ≥ pl as the subgroup 〈x〉K is a subgroup whose order is a power of p, where the
power cannot be greater than k. On the other hand |〈x〉 ∩ K| ≤ pl, so that 〈x〉 ∩ K = 〈x〉 and
x ∈ K.

2.8. Lemma: Let K be a subgroup of a finite group G and let C = {K1, . . . ,Kn} be the set of
conjugates of K. Then |C| = |G : N(K)|.

Proof. Later.

2.9. Theorem (Sylow II): If H is a subgroup of a finite group G and |H| is a power of a
prime p, then H is contained in some Sylow p-subgroup of G.

Proof. Later.

2.10. Theorem (Sylow III): Let p be a prime and G be a finite group with |G| = pkm
where p does not divide m. Then with n denoting the number of Sylow p-subgroups of G, we have
n ≡ 1 mod p and n divides m. Further, any two Sylow p-subgroups of G are conjugate.

Proof. Later.

2.11. Remark: Henceforth, we will denote the number of Sylow p-subgroups of a finite group
G by np.

2.12. Corollary: A Sylow p-subgroup of a finite group G is a normal subgroup iff it is the only
Sylow p-subgroup of G.
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