
State-Space Meets Attention: Modeling Financial
Time-Series for Volatility Estimation

Junyao Duan (jd4024), Yingxin Zhang (yz3202), William Vietor (wgv2103)

1 Introduction

Short-term volatility forecasting is a cornerstone of modern quantitative trading, underpinning option
pricing, risk management, and execution strategies in electronic markets. The Optiver Realized Volatil-
ity Prediction challenge [4] offers a rigorous testbed, requiring models that can handle high-resolution,
irregularly sampled limit-order book data across hundreds of stocks. Classical approaches—including
gradient-boosted trees (e.g., LightGBM [5]), shallow MLPs, and 1D convolutional networks—have
demonstrated solid baseline performance but depend heavily on manual feature engineering and may
falter on very long horizons or sparse observations.

Deep sequence models bring new capabilities to this problem. Transformer encoders [7] leverage
self-attention for efficient, parallel modeling of long-range dependencies, while continuous-time
state-space architectures such as Mamba [2, 1] combine structured latent dynamics with convo-
lutional mixing to achieve linear-time inference and a reduced memory footprint. Beyond these
pure paradigms, hybrid designs—such as appending attention layers to Mamba blocks, interleaving
state-space and attention modules, or fusing them in parallel—promise to unite the best of both
worlds, capturing local microstructure fluctuations and global sequence patterns in a unified model.

In this work, we benchmark a spectrum of architectures on the Optiver dataset: classical machine-
learning baselines, pure Transformer and Mamba models, and three hybrid variants (Mamba with
Attention, Interleaved Mamba–Attention, and Parallel Mamba–Attention). Our goal is to determine
which design principles most effectively capture the complex temporal dynamics of high-frequency
volatility data.

2 Related Work

Previous work on the Optiver volatility prediction task has relied largely on tree-based methods
(e.g., LightGBM [5]), shallow feed-forward networks, and 1D convolutional architectures. These
models are adept at capturing local non-linear relationships and short-term temporal patterns but
often require extensive feature engineering and can struggle to generalize over long or irregularly
sampled sequences.

Recurrent networks such as LSTMs [3] offer a more direct mechanism for modeling sequential
dependencies by maintaining internal state across time steps. However, their inherently sequential
processing limits parallelism and scalability, making them computationally expensive on high-
resolution, long-horizon time series common in financial microstructure data.

Transformers [7] mitigate these limitations through self-attention, which computes pairwise inter-
actions between all time steps in parallel. This allows them to capture both short- and long-range
dependencies efficiently, and they have demonstrated state-of-the-art performance in diverse domains
including natural language, computer vision, and time series analysis.

More recently, continuous-time state-space models like Mamba [2, 1] have gained traction for long se-
quence modeling. By combining structured state updates with convolutional mixing, Mamba achieves

0Our code is available at https://github.com/wvietor/coms4995FinalProject.

Preprint. Under review.

https://github.com/wvietor/coms4995FinalProject


linear-time inference and a reduced memory footprint, while matching or exceeding Transformer
accuracy in many sequence modeling benchmarks [6].

3 Method

3.1 Data Preprocessing

The dataset comprises one-second snapshots of high-frequency limit-order book activity and ex-
ecuted trades. Each record—indexed by stock_id and time_id —features normalized first-
and second-level order-book entries (e.g., bid_price[1/2], ask_price[1/2], bid_size[1/2],
ask_size[1/2]), along with trade sizes and order counts. This multi-depth view of liquidity
and price dynamics provides the fine-grained information necessary to forecast short-term realized
volatility from market microstructure signals.

The prediction target for each observation at time_id= t is the realized volatility over the 10-minute
interval that follows, which we denote by time_id = t′. Since time_id values are not guaranteed
to be sequential, we define t′ as the next chronologically ordered interval following t, based on a
reconstructed time axis. The realized volatility, denoted RVt′ , is computed from mid-prices sampled
at one-second resolution within the target interval:

RVt′ =

√√√√ 599∑
s=1

(logPt′,s − logPt′,s−1)
2
,

where Pt′,s denotes the mid-price at the s-th second of the interval t′. In our setting, mid-price is
calculated as the average of the best bid and ask prices at the top of the order book:

Pt′,s =
bid_price1t′,s + ask_price1t′,s

2
.

This non-overlapping estimator serves as a high-frequency proxy for true return volatility. Ground
truth volatility values are available for training, while test targets are hidden and only evaluated during
submission in a forecasting setup. As we do not have access to the actual test labels, we construct
our own validation and test splits using the methodology described below to simulate the forecasting
setting and assess model generalization.

Our initial models used only raw order-book and trade features. To accelerate convergence and
embed market microstructure insights, we then extracted a richer set of derived descriptors. We
computed multi-level spreads (e.g., spread11, spread12), VWAPs, log-scaled trade sizes and
bid/ask imbalances, and rolling estimates of realized volatility. Additionally, we fitted short-window
OLS regressions on key series (e.g., bid_price1, ask_price2, vwap1) to obtain local slope and
intercept terms as indicators of immediate trends. These engineered features surface latent liquidity
and volatility patterns, improving the model’s ability to learn complex market dynamics.

To streamline training, we built a custom PyTorch data loader that constructs fixed ten-minute
windows of observations and yields them as mini-batches of shape (B, 600, F ), where 600 is the
number of one-second timesteps and F is the feature dimension. We forward-fill missing entries using
the last observed values—since missing data generally indicates no change in the order book—and
truncate or pad each window to maintain consistent length.

3.2 Baseline Architectures

RNN/LSTM We normalize input features and process them through a stack of LSTM layers to
capture temporal dependencies. The final hidden and cell states are aggregated, flattened, and passed
through a deep MLP head to produce the scalar prediction.

Transformer We project input features into a common model space, add positional information to
capture sequence order, and then feed the sequence through a stack of self-attention encoder layers to
model long-range dependencies. The resulting sequence representation is aggregated (e.g., by mean
pooling) and passed through a final linear layer to produce the scalar prediction.

2



Mamba We project input features into a common model space and pass them through a sequence
of Mamba state-space blocks, which combine continuous-time dynamics with convolutional mixing
to capture both long- and short-range dependencies. After layer normalization, the final time-step
embedding is projected to produce the scalar prediction.

3.3 Architectures to Be Evaluated

Mamba with Attention This architecture combines six sequential Mamba blocks—a linear-time
state-space model designed for long sequences—with a single Transformer-style Multi-Head At-
tention (MHA) layer appended at the end. The Mamba blocks capture local and medium-range
temporal patterns efficiently, while the final MHA layer aggregates global dependencies across the
entire sequence. This hybrid design leverages the strengths of both paradigms: efficient sequence
modeling from Mamba and long-range pattern recognition from attention.

InterleavedMambdaAttn The Interleaved architecture alternates Mamba and Attention blocks in
a stacked configuration, allowing information to pass through both mechanisms at each depth. This
structure promotes richer representations by interleaving localized modeling (Mamba) with global
contextualization (Attention). Each layer is structured as: Input → Mamba → Multi-Head Attention
→ LayerNorm → Next Block This design encourages the model to capture both microstructure
fluctuations and broader temporal context at multiple abstraction levels.

ParallelMambdaAttn The Parallel Mamba-Attention network processes inputs through Mamba
and Attention modules in parallel at each layer. Their outputs are then combined via summation
before passing through normalization. This fusion architecture allows the model to simultaneously
leverage both localized state transitions and cross-token relationships, improving robustness to diverse
temporal patterns. The shared input allows both branches to process identical signals through different
lenses.

3.4 Model Evaluation

We evaluate model performance using Root Mean Squared Percentage Error (RMPSE), a scale-
invariant metric well-suited to volatility forecasting. RMPSE penalizes relative deviations between
predicted and actual values, making it more informative than absolute error metrics when targets span
multiple orders of magnitude. Formally, it is defined as:

RMPSE =

√√√√ 1

n

n∑
i=1

(
ŷi − yi

yi

)2

,

where ŷi denotes the predicted realized volatility and yi the ground truth.

4 Experiments

4.1 Experiment Setup

Hardware. The Transformer, Mamba, Mamba with Attention, Interleaved Mamba Attention, and
Parallel Attention Mamba models were run on a Google Colab Pro+ VM equipped with a single
NVIDIA Tesla T4 GPU (15 GB VRAM) and 2 vCPU Intel Xeon cores. The host machine provides
51 GB system RAM and 236 GB ephemeral disk (Ubuntu 22.04.4 LTS, Linux 6.1.123). We used
PyTorch 2.4.0 + cu121 with CUDA 12.1, Python 3.11.12, and enabled automatic mixed precision
(torch.cuda.amp.autocast). All runs use a fixed random seed 42 for reproducibility.

Target scaling. Raw realised-volatility values are ∼10−4, which led to vanishing gradients early
in training. We therefore multiply the targets by 103 before computing the RMSPE loss and divide
the model outputs by 103 at prediction time. This rescaling leaves RMSPE unchanged but improves
numerical stability and accelerates convergence.

3



Table 1: Hardware and software environment used for all experiments.

Component Specification
GPU 1 NVIDIA Tesla T4 (15 GB VRAM)
CPU 2 × Intel Xeon vCPUs (Colab VM)
System RAM 51 GB
Disk 236 GB ephemeral storage (188 GB free)
Operating System Ubuntu 22.04.4 LTS, Linux 6.1.123
CUDA / cuDNN CUDA 12.1, cuDNN bundled with PyTorch 2.4
PyTorch 2.4.0 +cu121
Python 3.11.12
Mixed Precision torch.cuda.amp.autocast enabled
Random Seed 42

4.2 Main Results

Table 2: Capacity-matched models (≈12 M parameters, best of 15 epochs, single seed).

Model Params (M) Best Val RMSPE ↓ Test RMSPE ↓ Epoch
Transformer 6×256 12.9 0.3831 0.4502 12
Mamba 6×300 12.8 0.4376 0.4386 8
Mamba + Attention 6×280 12.3 0.4378 0.4385 11
Interleaved 6×256 12.4 0.3711 0.3841 14
Parallel 6×280 12.4 0.4379 0.4392 2

Capacity scaling. Previouly, we trained pure-Mamba, Mamba + Attn and Parallel models with 8 to
9 M parameters (results not included in the table). We increased the number of parameters to 12 M to
match the scale of transformer and the interleaved hybrid model. The validation RMSPEs for the
three enlarged models remain unchanged (<0.003). We attribute this to a dataa and feature limited
regime and width-only scaling. Future work should explore deeper stacks or richer feature sets as
well.

Figure 1: Validation loss per epoch for different models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n 
Lo

ss

Transformer
Mamba
Mamba + Attention
Interleaved
Parallel

The results in Table 2 and Figure 1 reveal several key insights about how these capacity-matched (≈
12 M-parameter) architectures perform on high-frequency volatility forecasting. First, the vanilla
Transformer achieves a strong baseline with a best validation RMSPE of 0.3831 and a test RMSPE
of 0.4502 (epoch 12). In contrast, the pure Mamba state-space model (6×300) converges much

4



more rapidly—reaching its best validation RMSPE of 0.4376 by epoch 8—but plateaus at a higher
error on both validation and test sets (0.4376 / 0.4386), indicating that its inductive bias toward
continuous-time dynamics alone is insufficient to match the Transformer’s representational power.

When we append a single self-attention layer after six Mamba blocks (“Mamba + Attention 6×280”),
or instead fuse a lightweight attention branch inside every Mamba layer (“Parallel 6×280”), the
validation and test RMSPE remain essentially unchanged from the pure-Mamba baseline (best
val≈0.438 in both cases). This indicates that neither adding attention only at the end nor shallow,
per-layer fusion is sufficient to unlock a clear accuracy benefit on this dataset.

By contrast, the interleaved architecture—alternating Mamba blocks with Transformer-style multi-
head attention layers (Interleaved 6×256)—delivers a substantial improvement. It attains the lowest
validation RMSPE (0.3711) and the best test RMSPE (0.3841) of all models, albeit at a later
convergence point (epoch 14). This demonstrates that deeply integrating state-space updates with
global attention at each layer enables the model to capture both local microstructural fluctuations and
long-range dependencies more effectively than either mechanism alone or when they are combined
superficially.

5 Conclusion

We compared five capacity-matched sequence models for one-second–resolution volatility forecasting
on the Optiver dataset: a 6-layer Transformer, a 6-layer Mamba state-space model, and three hybrids
that combine Mamba and self-attention by (i) appending a single attention layer, (ii) interleaving
blocks, and (iii) fusing both mechanisms in parallel.

Our results lead to two lessons. First, simply stacking an attention layer on top of a state-space
backbone—or vice-versa—delivers only marginal accuracy gains; the two inductive biases do not au-
tomatically reinforce one another. Second, architectures that chain local (SSM) and global (attention)
modules in alternating fashion throughout the network can outperform either paradigm in isolation,
albeit at the cost of extra compute.

After equalising parameter budgets (≈ 12 M) and training for 15 epochs, the models split into two
accuracy bands. Mamba, two of the three Mamba-derived variants, and the Transformer cluster
tightly at 0.437 ± 0.001 RMSPE, while the Interleaved hybrid achieves 0.371. Thus the overall spread
is about 0.066 RMSPE (≈15 % relative), but within the upper band the models differ by less than
0.001 (≈ 0.2 % relative).

6 Future Work

While our preliminary results demonstrate the potential of state-space and attention-based models for
high-frequency volatility forecasting, several practical limitations constrain the scope of our current
study. We outline four primary directions for extending this work.

Lightweight Hybrid Designs One promising research direction is to make the hybrid architecture
leaner without sacrificing the complementary strengths of state–space and attention. The first idea is
that we can further investigate lighter interleaving schedules, such as adding attention layer every k
(k > 1) mamba blocks instead of every block. The second idea is that instead of using 50/50 fixed
fusion in the parallel model, we can add a learned gate to dynamically control how much of each
branch’s outout contributes to the final representation.

Scaling to the Full Dataset and Larger Models Due to the limited resources of our Colab
environment (a single NVIDIA T4 GPU with 15 GB VRAM and 2 vCPUs), we restricted our
experiments to only five of the 112 stocks in the Optiver challenge. In future work, we will utilize
larger GPU clusters and longer training schedules to process the entire dataset with expanded model
capacities. By training richer models across all stocks for more epochs—without premature plateaus
or overfitting—we expect to capture a broader range of market behaviors and rare volatility events,
thereby enhancing generalization and robustness under extreme conditions.

Deeper Feature Engineering Constrained by project deadlines, our current feature set is limited to
basic order-book spreads, VWAPs, log-transformed trade imbalances, and rolling realized volatility.

5



With additional time, we will conduct a thorough exploratory analysis—leveraging microstructure
theory and statistical diagnostics—to develop richer descriptors such as higher-order imbalance ratios,
dynamic liquidity measures, and automated interaction terms. We will also investigate learned feature
representations (e.g., embedding layers or automated search algorithms) to uncover latent patterns.

Benchmarking and Cross-Pollination with Top Kaggle Approaches We have yet to perform an
in-depth comparison between our pipeline and the methodologies used by leading Kaggle competitors.
Examining their published approaches—including preprocessing techniques, feature engineering
strategies, and model ensembles—can both validate our design choices and reveal opportunities for
improvement. By integrating selected best practices from those solutions, we expect to enhance
preprocessing robustness, enrich feature representations, and refine ensembling strategies, ultimately
boosting predictive performance.

References
[1] Albert Gu, Karan Goel, Tri Dao, Christopher Ré, and Kurt Keutzer. Transformers are ssms:

Generalized models and efficient algorithms through structured state space duality. arXiv preprint
arXiv:2405.21060, 2024. URL https://arxiv.org/abs/2405.21060.

[2] Albert Gu, Karan Goel, Atri Zhang, Tri Dao, Christopher Ré, and Kurt Keutzer. Mamba: Linear-
time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2024.
URL https://arxiv.org/abs/2312.00752.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

[4] Kaggle. Optiver realized volatility prediction. https://www.kaggle.com/competitions/
optiver-realized-volatility-prediction, 2021. Accessed: 2025-05-11.

[5] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, volume 30, 2017.

[6] Zichao Liu, Yuning Du, Xiaojie Ma, and Ji Lin. The hidden attention of mamba models. arXiv
preprint arXiv:2403.01590, 2024. URL https://arxiv.org/abs/2403.01590.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017. URL https://arxiv.org/abs/1706.03762.

A Appendix

A.1 Use of Generative AI Tools

We made limited use of generative AI tools (e.g., Windsurf, ChatGPT) to assist with low-level
coding tasks and improve the clarity of our writing. These tools were used strictly to accelerate
implementation and refine phrasing. All conceptual work, model architecture choices, experimental
design, and analysis were independently developed by our team. In code, we reviewed and modified
any AI-assisted suggestions to ensure correctness and understanding. All uses of generative tools
were carefully constrained to preserve the originality and integrity of the work.

6

https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2312.00752
https://www.kaggle.com/competitions/optiver-realized-volatility-prediction
https://www.kaggle.com/competitions/optiver-realized-volatility-prediction
https://arxiv.org/abs/2403.01590
https://arxiv.org/abs/1706.03762

	Introduction
	Related Work
	Method
	Data Preprocessing
	Baseline Architectures
	Architectures to Be Evaluated
	Model Evaluation

	Experiments
	Experiment Setup
	Main Results

	Conclusion
	Future Work
	Appendix
	Use of Generative AI Tools


